2 вычисление определителей n го порядка примеры. Определитель матрицы

КОНСПЕКТ 2

2.1 ОПРЕДЕЛИТЕЛИ ВТОРОГО ПОРЯДКА

Определителем второго порядка (соответствующим данной матрице

) называется число

Пример1 : Вычислим определитель матрицы

Пример 2. Вычислить определители второго порядка:

2(-4) - 5(-3) = -8 + 15 = 7

=

2.2 ОПРЕДЕЛИТЕЛИ ТРЕТЬЕГО ПОРЯДКА

Пусть дана квадратная матрица третьего порядка:

А =

Определителем (или детерминантом) третьего порядка , соответствующим данной матрице, называют число

det A = =

Пример 3

Первый способ решения:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок». Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:

Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс». Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример 3

Второй способ решения:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Пример 4

Вычислить определитель третьего порядка:

Пример 5

Вычислить определитель третьего порядка

ПРАКТИКУМ 2

ЗАДАНИЕ N 1 , то…

Решение:

то

По условию, тогда

ЗАДАНИЕ N 2 Тема: Определители второго порядка Если определитель второго порядка

, то…

Решение:

В нашем случае имеем

По условию, тогда

ЗАДАНИЕ N 3

Тема: Определители второго порядка Если определитель второго порядка

, то…

Решение: Так как определитель второго порядка равен числу, которое получают по правилу:

то

По условию, тогда

ЗАДАНИЕ N 4 Тема: Определители второго порядка Если определитель второго порядка, то…

Решение: Напоминаем, что определитель второго порядка равен числу, которое получают по правилу:

В нашем случае имеем

По условию, тогда

ЗАДАНИЕ N 5 Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках.Тогда определительравен …

Решение:

ЗАДАНИЕ N 6

Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках.Тогда определительравен …

Решение: Определитель третьего порядка равен сумме шести слагаемых, из которых три берутся со знаком «+» и три – со знаком «−». Правило вычисления слагаемых со знаком «+» схематически указано на рис. 1. Одно из слагаемых равно произведению элементов определителя, лежащих на главной диагонали. Каждое из двух других находится как произведение элементов, лежащих на параллели к этой диагонали, с добавлением третьего множителя из противоположного угла определителя. Слагаемые со знаком «−» получаются таким же образом, но относительно второй диагонали (рис. 2). Тогда

САМОСТОЯТЕЛЬНАЯ РАБОТА 2

ЗАДАНИЕ N 1 Тема: Определители второго порядка Если определитель второго порядка, то…

Чтобы найти определитель матрицы нужно воспользоваться формулами, которые действительны для определителей 2 и 3 порядка.

Формула

Пусть задана матрица второго порядка $ A = \begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22} \end{pmatrix} $. Тогда её определитель вычисляется по формуле:

$$ \Delta = \begin{vmatrix} a_{11}&a_{12}\\a_{21}&a_{22} \end{vmatrix} = a_{11}\cdot a_{22} - a_{12}\cdot a_{21} $$

Из произведения элементов, стоящих на главной диагонали $ a_{11}\cdot a_{22} $, вычитается произведение элементов, расположенных на побочной диагонали $ a_{12}\cdot a_{21} $. Это правило верно только (!) для определителя 2-го порядка.

Если дана матрица третьего порядка $ A = \begin{pmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{pmatrix} $, то вычислить её определитель следует по формуле:

$$ \Delta = \begin{vmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix} = $$

$$ = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31}+a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31}-a_{23}a_{32}a_{11}-a_{12}a_{21}a_{33} $$

Примеры решений

Пример 1
Пусть задана матрица $ A = \begin{pmatrix} 1&2\\3&4 \end{pmatrix} $ Вычислить её определитель.
Решение

Как найти определитель матрицы? Обратим внимание на то что матрица квадратная второго порядка, то есть количество столбцов равно количеству строк и они содержат по 2 элемента. Поэтому применим первую формулу. Перемножим элементы, стоящие на главной диагонали и вычтем из них произведение элементов, стоящих на побочной диагонали:

$$ \Delta = \begin{vmatrix} 1&2\\3&4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = 4-6 = -2 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \Delta = -2 $$
Пример 2
Дана матрица $ A = \begin{pmatrix} 2&2&1\\1&-3&-1\\3&4&-2 \end{pmatrix} $. Требуется вычислить определитель.
Решение

Так как в задаче квадратная матрица 3-го порядка, то найти определитель следует по второй формуле. Для простоты решения задачи достаточно подставить вместо $ a_{ij} $ переменных, стоящих в формуле значения из матрицы нашей задачи:

$$ \Delta = \begin{vmatrix} 2&2&1\\1&-3&-1\\3&4&-2 \end{vmatrix} = $$

$$ = 2\cdot (-3) \cdot (-2) + 2\cdot (-1) \cdot 3 + 1\cdot 4\cdot 1 - $$ $$ - 1\cdot (-3)\cdot 3 - (-1)\cdot 4\cdot 2 - 2\cdot 1\cdot (-2) = $$

$$ = 12 - 6 + 4 + 9 + 8 + 4 = 31 $$

Стоит отметить когда мы находим произведения элементов на побочной диагонали и подобных её, то перед произведениями ставится знак минус.

Ответ
$$ \Delta = 31 $$

Определение 6 . Определителем третьего порядка, соответствующим матрице системы (1.4), назовем число D , равное

Для того, чтобы вычислить определитель третьего порядка применяют две вычислительные схемы, позволяющие вычислять определители третьего порядка без особых хлопот. Эти схемы известны как " правило треугольника " (или "правило звездочки") и " правило Саррюса ".

По правилу треугольника сначала перемножаются и складываются элементы, соединенными на схеме линиями


т.е. получаем сумму произведений: a 11 a 22 a 33 +a 12 a 23 a 31 +a 21 a 13 a 32 .

Обратите внимание, что перемножаются элементы, соединенные одной линией, прямой или ломанной, а потом полученные произведения складываются.

Затем перемножаются и складываются элементы, соединенные на схеме


т.е. получаем другую сумму произведений a 13 a 22 a 31 +a 12 a 21 a 33 +a 11 a 23 a 32 . И, наконец, чтобы вычислить определитель , из первой суммы вычитают вторую. Тогда окончательно получаем формулу вычисления определителя третьего порядка:

D=(a 11 a 22 a 33 +a 12 a 23 a 31 +a 21 a 13 a 32)-(a 13 a 22 a 31 +a 12 a 21 a 33 +a 11 a 23 a 32).

По правилу Саррюса к определителю справа дописывают два первых столбца, а затем считают сумму произведений элементов определителя в одном направлении и из нее вычитают сумму произведений элементов в другом направлении (см. схему):


Можно убедиться, что результат будет таким же, что и при вычислении определителя по правилу треугольника.

Пример . Вычислить определитель

Решение . Вычислим определитель по правилу звездочки

И по правилу Саррюса

Т.е. получаем одинаковый результат для обеих вычислительных схем, как и ожидалось.

Заметим, что все свойства, сформулированные для определителей второго порядка, справедливы для определителей третьего порядка, в чем можно убедиться самостоятельно. На основании этих свойств сформулируем общие свойства для определителей любого порядка.

Практическое занятие

Тема: Вычисление определителей.

Цели: закрепить понятия определителей и их свойств, сформировать и закрепить умения и навыки вычислять определители 2-го и 3-го порядков; развивать умения обобщать полученные знания, проводить анализ и сравнения, способствовать развитию логического мышления; воспитывать у обучающихся сознательное отношение к процессу обучения.

I. Общие теоретические положения

Определителем второго порядка называют число

Определителем третьего порядка называют число

Свойства определителей

Свойство 1.
Определитель не изменится, если все строки заменить соответствующими столбцами и наоборот.

Свойство 2.
При перестановке двух каких-либо строк или столбцов местами определитель изменяет знак.

Свойство 3.
Определитель равен нулю, если он имеет две равные строки (столбца).

Свойство 4.
Множитель, общий для всех элементов строки или столбца, можно выносить за знак определителя.

Свойство 5.
Если к элементам какой-либо строки или столбца прибавить соответствующие элементы другой строки или столбца, то определитель не изменится.

Следствие из свойств 4 и 5: Если к элементам какой-либо строки или столбца прибавить соответствующие элементы другой строки или столбца, умноженные на некоторое число, то определитель не изменится.

Контрольные вопросы:

1.Дать определение матрицы.
2. Что означает символ ?
3. Какая матрица называется транспонированной по отношению к матрице А?
4. Какую матрицу называют квадратной порядка n?
5. Дать определение определителя 2-го порядка.

6. Дать определение определителя 3-го порядка.

7. Чему равен определитель транспонированной матрицы?

8. Как изменится величина определителя, если в матрице поменять местами 2 строки (столбца)?

9. Можно ли вынести за знак определителя общий множитель строки или столбца?

10.Чему равен определитель, если все элементы некоторой строки (столбца) равны 0?

11.Чему равен определитель, если он имеет две одинаковых строки (столбца)?

12. Сформулируйте правило вычисления определителя 2-го порядка.

13. Сформулируйте правило вычисления определителя 3-го порядка.

II . Формирование умений и навыков.

Пример 1. Вы числить определитель: а) по правилу треугольника б) по правилу Саррюса;

в) методом разложения по элементам первой строки

Решение:

б) припишем два первых столбца и вычислим произведения из трех элементов по главной диагонали и параллельно к ней со знаком (+), а затем по побочной диагонали и параллельно к ней со знаком (-):


получаем:

Пример 2. Вычислить определитель двумя способами: с помощью разложения по первой строке и по правилу треугольника.

Решение:

Пример 3 . Вычислить определитель, используя свойства:

III .Закрепление изученного материала.

№1. Вычислить определители:

2. Решить уравнения:

№ 4. Вычислить определители, используя свойства:

1 .
. 2.
. 3.
. 4 .
.

Литература

1. Письменный, Д. Т. Конспект лекций по высшей математике: полный курс Д. Т. Письменный. – 9-е изд. – М.: Айрис-пресс, 2009. 608 с.: ил. – (Высшее образование).

2. Лунгу, К. Н. Сборник задач по высшей математике. 1 курс / К. Н. Лунгу, Д. Т. Письменный, С. Н. Федин, Ю. А. Шевченко. – 7-е изд. – М.: Айрис-пресс, 2008. 576 с.: – (Высшее образование).

Тема 1. Матрицы и системы

Понятие матрицы

Определение 1. Матрицей

.

Здесь, a i j (i =1,2,...,m ; j =1,2,...n ) - элементы матрицы, i - номер строки, j m=n матрица называется квадратной матрицей порядка n.

i¹j равны нулю, называется диагональной :

единичной

нулевой и обозначается θ.

- матрица строка ; - матрица столбец .

определитель (или детерминант ).

Определители 2-го порядка

Определение 2 . Определителем второго порядка матрицы , то есть

. (3)

Другие обозначения: , .

Таким образом, понятие определителя предполагает одновременно и способ его вычисления. Числа называются элементами определителя. Диагональ, образованная элементами , называется главной, а элементами - побочной.

Пример 1. Определитель матрицы равен

.

Определители 3-го порядка

Определение 2 . Определителем третьего порядка называется число, обозначаемое символом

,

и определяемое равенством

Числа - элементы определителя. Элементы образуют главную диагональ, элементы - побочную .

При вычислении определителя чтобы запомнить, какие слагаемые в правой части равенства (4) берутся со знаком «+», а какие со знаком «-», пользуются символическим правилом треугольников (правилом Саррюса):

Со знаком «+» берутся произведения элементов главной диагонали и элементов, находящихся в вершинах треугольников с основаниями, параллельными главной диагонали; сл знаком «-» – произведения элементов побочной диагонали и элементов, расположенных в вершинах треугольников с основаниями, параллельными побочной диагонали.

Вычисление определителя по правилу приписывания столбцов.

1. Приписываем справа от определителя последовательно первый и второй столбцы.



2. Вычисляем произведения трех элементов по диагонали слева - направо, сверху - вниз от а 11 до а 13 и берем их со знаком «+». Затем вычисляем произведения трех элементов по диагонали слева - направо, снизу вверх от а 31 до а 13 и берем их со знаком «-».

(-) (-) (-) (+) (+) (+)

Пример 2 . Вычислить определитель по правилу приписывания столбцов.

3. Определители n -ого порядка. Миноры и алгебраические дополнения. Вычисление определителей разложением по строке (столбцу).

Рассмотрим понятие определителя n- ного порядка. Определителем n- ного порядка называется число, сопоставляемое матрице n- ного порядка и вычисляемое по определенному закону.

,

здесь - элементы определителя. Чтобы показать правило, по которому раскрывается определитель n -ного порядка, рассмотрим некоторые понятия.

Определение 4. Минором элемента определителя n -го порядка называется определитель (n - 1) порядка, полученный вычеркиванием строки и столбца определителя, на пересечении которых расположен этот элемент.

Определение 5. Алгебраическим дополнением некоторого элемента определителя n -го порядка называется минор этого элемента, умноженный на , то есть .

В определителе третьего порядка можно рассмотреть, например,

, .

, .

Определение 6.Определителем n- ного порядка называется число, равное сумме произведений элементов первой строки определителя, умноженных на их алгебраические дополнения.

Это правило вычисления определителя называется разложением по первой строке .

Теорема (о разложении определителя). Определитель можно вычислить разложением по любой строке или столбцу.

– сумма произведений элементов 1-го столбца на алгебраические дополнения 2-го столбца.

Пример 3 . Вычислить определитель четвертого порядка .

Решение. Умножаем третью строку на (-1) и прибавляем ее к четвертой, затем раскладываем определитель по четвертой строке:

Определитель третьего порядка разложили по первой строке.



Метод Гаусса.

Метод Гаусса заключается в том, что исходную систему путем исключения неизвестный преобразуют к ступенчатому виду. При этом преобразования выполняются над строками в расширенной матрице, так как преобразования, исключающие неизвестные эквивалентны элементарным преобразованиям строк матрицы.

Метод Гаусса состоит из прямого хода и обратного хода. Прямым ходом метода Гаусса является приведение расширенной матрицы системы (1) к ступенчатому виду путем элементарных преобразований над строками. После чего происходит исследование системы на совместность и определенность. Затем по ступенчатой матрице восстанавливается система уравнений. Решение этой ступенчатой системы уравнений является обратным ходом метода Гаусса, в котором, начиная с последнего уравнения, последовательно вычисляются неизвестные с большим порядковым номером, и их значения подставляются в предыдущее уравнение системы.

Исследование системы в конце прямого хода происходим по теореме Кронекера-Капелли сравнением рангов матрицы системы А и расширенной матрицы А´. При этом возможны следующие случаи.

1) Если , то система несовместна (по теореме Кронекера-Капелли).

2) Если , то система (1) является определенной, и наоборот (без доказательства).

3) Если , то система (1) является неопределенной, и наоборот (без доказательства).

Неравенство не имеет места, так как матрица А является частью матрицы А´, неравенство не имеет места, так как число столбцов матрицы А равно п . Кроме того, для системы с квадратной матрицей, то есть если п = т , равенства равносильны тому, что .

Если система является неопределенной, то есть выполняется , то некоторые ее неизвестные объявляются свободными, а остальные через них выражаются. Количество свободных неизвестных равно . При выполнении обратного хода метода Гаусса, если в очередном уравнении после подстановки найденных ранее переменных, неизвестных осталось более одного, то свободными неизвестными объявляются любые неизвестные, кроме одного.

Рассмотрим реализацию метода Гаусса на примерах.

Пример 4. Решить систему уравнений

Решение. Решим систему методом Гаусса. Выпишем расширенную матрицу системы и приведем ее к ступенчатому виду элементарными преобразованиями строк (прямой ход).

~ ~ ~

~ ~ .

Поэтому система совместна и имеет единственное решение, т.е. является определенной.

Составим систему ступенчатого вида и решим ее (обратный ход).

Проверку легко сделать подстановкой.

Ответ : .

Тема 2. Векторная алгебра.

Проекция вектора на ось.

Определение 2. Проекцией вектора на ось l называется число равное длине отрезка АВ этой оси, заключенного между проекциями начала и конца вектора , взятое со знаком «+», если отрезок АВ ориентирован (считая от А к В ) в положительную сторону оси l и знаком «-» – в противном случае (см. рис.2).

Обозначение: .

Теорема 1. Проекция вектора на ось равна произведению его модуля на косинус угла между вектором и положительным направлением оси (рис. 3):

. (1)

Рис.3. Рис.4.

Доказательство . Из (рис. 3) получаем . Направление отрезка совпадает с положительным направлением оси , поэтому справедливо равенство . В случае противоположной ориентации (рис.4) имеем . Теорема доказана.

Рассмотрим свойства проекций.

Свойство 1. Проекция суммы двух векторов и на ось равна сумме их проекций на ту же ось, то есть .

Рис.5.

Доказательство в случае одного из возможных расположений векторов следует из рисунка 5. Действительно, по определению 2

Свойство 1 справедливо для любого конечного числа слагаемых векторов.

Свойство 2. При умножении вектора на число l его проекция умножается на это число

. (2)

Докажем равенство (2). При векторы и образуют с осью один и тот же угол. По теореме 1

При векторы и образуют с осью соответственно углы и . Потеореме 1

При , получаем очевидное равенство

Следствие из свойств 1 и 2. Проекция линейной комбинации векторов равна такой же линейной комбинации проекций этих векторов, т.е.

Тема 1. Матрицы и системы

Понятие матрицы

Определение 1. Матрицей размером называется прямоугольная таблица чисел или буквенных выражений , записанных в виде

.

Здесь, a i j (i =1,2,...,m ; j =1,2,...n ) - элементы матрицы, i - номер строки, j - номер столбца. Матрицы обычно обозначаются большими буквами латинского алфавита A, B, Cи т.д., а также или . При m=n матрица называется квадратной матрицей порядка n.

Квадратная матрица, у которой все элементы с неравными индексами i¹j равны нулю, называется диагональной :

Если все отличные от нуля элементы диагональной матрицы равны единице, то матрица называется единичной . Единичную матрицу принято обозначать буквой E.

Матрица, все элементы которой равны нулю, называется нулевой и обозначается θ.

Существуют также матрицы, состоящие из одной строки или из одного столбца.

- матрица строка ; - матрица столбец .

Числовой характеристикой квадратной матрицы является определитель (или детерминант ).

Определители 2-го порядка и 3-го порядка, их свойства.

Определители 2-го порядка

Определение 2 . Определителем второго порядка матрицы (или просто определителем второго порядка) называется число, обозначаемое символом и определяемое равенством , то есть

. (3)

Другие обозначения: , .



Понравилась статья? Поделитесь с друзьями!