Большая энциклопедия нефти и газа. Введение во фракталы

Фрактал

Фракта́л (лат. fractus -дроблёный,сломанный,разбитый) - геометрическая фигура,обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Фрактазм - самостоятельная точная наука изучения и составления фракталов.

Другими словами фракталы – геометрические объекты с дробной размерностью. К примеру, размерность линии – 1, площади – 2, объема – 3. У фрактала же значение размерности может быть между 1 и 2 или между 2 и 3. К примеру, фрактальная размерность скомканного бумажного шарика приблизительно равна 2,5. В математике существует специальная сложная формула для вычисления размерности фракталов. Разветвления трубочек трахей, листья на деревьях, вены в руке, река - это фракталы. Говоря простым языком, фрактал - это геометрическая фигура, определенная часть которой повторяется снова и снова, изменяясь в размерах - это и есть принцип самоподобия. Фракталы подобны самим себе, они похожи сами на себя на всех уровнях (т.е. в любом масштабе). Существует много различных типов фракталов. В принципе, можно утверждать, что всё, что существует в реальном мире, является фракталом, будь то облако или молекула кислорода.

Слово «хаос» наводит на мысли о чем-то непредсказуемом, но на самом деле хаос достаточно упорядочен и подчиняется определенным законам. Цель изучения хаоса и фракталов - предсказать закономерности, которые, на первый взгляд, могут казаться непредсказуемыми и абсолютно хаотическими.

Пионером в этой области познания был франко-американский математик, профессор Бенуа Б. Мандельброт. В середине 1960-х им разработана фрактальная геометрия, целью которой был анализ ломаных, морщинистых и нечетких форм. Множество Мандельброта (показано на рисунке) - первая ассоциация, возникающая у человека, когда он слышит слово «фрактал». К слову, Мандельброт определил, что фрактальная размерность береговой линии Англии составляет 1,25.

Фракталы находят всё большее применение в науке. Они описывают реальный мир даже лучше, чем традиционная физика или математика. Броуновское движение - это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий наибольшее практическое использование. Случайное броуновское движение имеет частотную характеристику, которая может быть использована для предсказания явлений, включающих большие количества данных и статистики. К примеру, Мандельброт предсказал при помощи броуновского движения изменение цен на шерсть.

Слово «фрактал» может употребляться не только как математический термин. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств:

    Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

    Является самоподобной или приближённо самоподобной.

    Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.

Наиболее полезным использованием фракталов в компьютерной технике является фрактальное сжатие данных. При этом картинки сжимаются гораздо лучше, чем это делается обычными методами - до 600:1. Другое преимущество фрактального сжатия в том, что при увеличении не наблюдается эффекта пикселизации, резко ухудшающего картинку. Мало того, фрактально сжатая картинка после увеличения часто выглядит даже лучше, чем до него. Cпециалистам в области компьютерной техники известно также, что фракталы бесконечной сложности и красоты могут быть сгенерированы простыми формулами. Индустрия кино для создания реалистичных элементов ландшафта (облака, скалы и тени) широко использует технологию фрактальной графики.

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Это позволяет лучше понять динамику сложных потоков. При помощи фракталов также можно смоделировать языки пламени. Пористые материалы хорошо представляются в фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес. Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

На рисунке слева в качестве простого примера приведен фрактал «пятиугольник Дарера», который выглядит, как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции (1.618033989 или 1/(2cos72°)) в качестве генератора. Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов, имеющих вид фракталов. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается наукой о предсказуемости даже в наиболее нестабильных системах. Учение о динамических системах показывает: простые уравнения могут порождать такое хаотическое поведение, при котором система никогда не возвращается в стабильное состояние и при этом не проявляется никакой закономерности. Часто такие системы ведут себя вполне нормально до некоторого определенного значения ключевого параметра, потом испытывают переход, в котором существует две возможности дальнейшего развития, потом четыре, и, наконец, хаотический набор возможностей.

Схемы процессов, протекающих в технических объектах, имеют четко выраженное фрактальное строение. Структура минимальной технической системы (ТС) подразумевает протекание в пределах ТС двух типов процессов – главного и обеспечивающих, причем это деление условно и относительно. Любой процесс может быть главным по отношению к обеспечивающим, а любой из обеспечивающих процессов может считаться главным по отношению к «своим» обеспечивающим процессам. Кружками на схеме обозначены физэффекты, обеспечивающие протекание тех процессов, для обеспечения которых не требуется специально создавать «свои» ТС. Эти процессы являются результатом взаимодействия между веществами, полями, веществами и полями. Если быть точным, то физэффект – это ТС, на принцип работы которой мы не можем повлиять, а в ее устройство не желаем или не имеем возможности вмешиваться.

Протекание главного процесса, изображенного на схеме, обеспечивается существованием трех обеспечивающих процессов, являющихся главными для порождающих их ТС. Справедливости ради отметим, что для функционирования даже минимальной ТС трех процессов явно недостаточно, т.е. схема очень и очень утрирована.

Всё далеко не так просто, как показано на схеме. Полезный (нужный человеку) процесс не может выполняться со стопроцентной эффективностью. Рассеиваемая энергия затрачивается на создание вредных процессов – нагрев, вибрации и т.п. В результате параллельно полезному процессу возникают вредные. Не всегда есть возможность заменить «плохой» процесс «хорошим», поэтому приходится организовывать новые процессы, направленные на компенсацию вредных для системы последствий. Характерный пример – необходимость борьбы с трением, вынуждающая организовывать хитроумные схемы смазки, применять дорогостоящие антифрикционные материалы или затрачивать время на смазку узлов и деталей или ее периодическую замену.

В связи с существованием неизбежного влияния переменчивой Среды полезный процесс может нуждаться в управлении. Управление может осуществляться как при помощи автоматических устройств, так и непосредственно человеком. Схема процессов фактически является набором специальных команд, т.е. алгоритмом. Сущность (описание) каждой команды составляет совокупность отдельно взятого полезного процесса, сопутствующих ему вредных процессов и набора необходимых управляющих процессов. В таком алгоритме набор обеспечивающих процессов является обычной подпрограммой – и здесь мы тоже обнаруживаем фрактал. Созданный четверть века назад метод Р.Коллера позволяет при создании систем обойтись достаточно ограниченным набором всего из 12 пар функций (процессов).

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

    множество Кантора - нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.

    треугольник Серпинского («скатерть») и ковёр Серпинского - аналоги множества Кантора на плоскости.

    губка Менгера - аналог множества Кантора в трёхмерном пространстве;

    примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.

    кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;

    кривая Пеано - непрерывная кривая, проходящая через все точки квадрата.

    траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум

Рекурсивная процедура получения фрактальных кривых

Построение кривой Коха

Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены четыре первых шага этой процедуры для кривой Коха.

Примерами таких кривых служат:

    кривая дракона,

    кривая Коха (снежинка Коха),

    кривая Леви,

    кривая Минковского,

    Кривая Гильберта,

    Ломаная (кривая) дракона (Фрактал Хартера-Хейтуэя),

    кривая Пеано.

С помощью похожей процедуры получается дерево Пифагора.

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть - сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:

Можно показать, что отображение является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения - отображения подобия, а - число звеньев генератора.

Для треугольника Серпинского и отображения , , - гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении .

В случае, когда отображения - преобразования подобия с коэффициентами , размерность фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем .

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике

Множество Жюлиа́

Ещё одно множество Жюлиа

Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу 20 века и связаны с именами Фату и Жюлиа.

Пусть F (z ) - многочлен, z 0 - комплексное число. Рассмотрим следующую последовательность: z 0 , z 1 =F (z 0), z 2 =F (F (z 0)) = F (z 1),z 3 =F (F (F (z 0)))=F (z 2), …

Нас интересует поведение этой последовательности при стремлении n к бесконечности. Эта последовательность может:

    стремиться к бесконечности,

    стремиться к конечному пределу,

    демонстрировать в пределе циклическое поведение, например: z 1 , z 2 , z 3 , z 1 , z 2 , z 3 , …

    вести себя хаотично, то есть не демонстрировать ни один из трёх упомянутых типов поведения.

Множества значений z 0 , для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа - множество точек бифуркации для многочлена F (z )=z 2 +c (или другой похожей функции), то есть тех значений z 0 , для которых поведение последовательности {z n } может резко меняться при сколь угодно малых изменениях z 0 .

Другой вариант получения фрактальных множеств - введение параметра в многочлен F (z ) и рассмотрение множества тех значений параметра, при которых последовательность {z n } демонстрирует определённое поведение при фиксированном z 0 . Так, множество Мандельброта - это множество всех , при которых {z n } для F (z )=z 2 +c и z 0 не стремится к бесконечности.

Ещё один известный пример такого рода - бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления {z n } к бесконечности (определяемой, скажем, как наименьший номер n , при котором |z n | превысит фиксированную большую величину A .

Биоморфы - фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Рандомизированный фрактал на основе множества Жюлиа

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

    траектория броуновского движения на плоскости и в пространстве;

    граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.

    эволюции Шрамма-Лёвнера - конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделяхстатистической механики, например, в модели Изинга и перколяции.

    различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма - пример использования такого фрактала в компьютерной графике.

В природе

Вид спереди на трахею и бронхи

    Бронхиальное дерево

    Сеть кровеносных сосудов

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

Радиотехника

Фрактальные антенны

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центреБостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Информатика

Сжатие изображений

Основная статья: Алгоритм фрактального сжатия

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован [ источник не указан 895 дней ] фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Ещё одно фрактальное дерево

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Как стало ясно в последние десятилетия (в связи с развитием теории самоорганизации), самоподобие встречается в самых разных предметах и явлениях. Например, самоподобие можно наблюдать в ветках деревьев и кустарников, при делении оплодотворенной зиготы, снежинках, кристаллах льда, при развитии экономических систем, в строении горных систем, облаков.

Все перечисленные объекты и другие, подобные им по своей структуре являются фрактальными. То есть они обладают свойствами самоподобия, или масштабной инвариантности. А это значит, что некоторые фрагменты их структуры строго повторяются через определенные пространственные промежутки. Очевидно, что эти объекты могут иметь любую природу, причем их вид и форма остаются неизменными независимо от масштаба. И в природе, и в обществе на достаточно больших масштабах происходит самоповторение. Так, облако повторяет свою клочковатую структуру от 10 4 м (10 км) до 10 -4 м (0,1 мм). Ветвистость повторяется у деревьев от 10 -2 до 10 2 м. Разрушающиеся материалы, порождающие трещины, также повторяют свое самоподобие на нескольких масштабах. Снежинка, упавшая на руку, тает. В период таяния, перехода от одной фазы к другой снежинка-капля также - фрактал.

Фрактал - это объект, обладающий бесконечной сложностью, позволяющий вблизи рассмотреть не меньше деталей, чем издалека. Классический пример тому - Земля. Из космоса она выглядит как шар. Приближаясь к ней, мы обнаружим океаны, континенты, побережья и цепи гор. Позднее взору предстанут более мелкие детали: кусочек земли на поверхности горы, столь же сложный и неровный, как сама гора. Потом покажутся крошечные частички грунта, каждая из которых сама является фрактальным объектом

Фрактал является нелинейной структурой, сохраняющей самоподобие при бесконечном увеличении или уменьшении масштаба. Только на малых длинах нелинейность переходит в линейность. Это особенно ярко проявляется в математической процедуре дифференцирования.

Таким образом, можно сказать, что фракталы как модели применяются в том случае, когда реальный объект нельзя представить в виде классических моделей. А это значит, что мы имеем дело с нелинейными связями и недетерминированной природой данных. Нелинейность в мировоззренческом смысле означает многовариантность путей развития, наличие выбора из альтернатив путей и определенного темпа эволюции, а также необратимость эволюционных процессов. В математическом смысле нелинейность - это определенный вид математических уравнений (нелинейные дифференциальные уравнения), содержащих искомые величины в степенях, больше единицы или коэффициенты, зависящие от свойств среды. То есть, когда мы применяем классические модели (например, трендовые, регрессионные и т. д.), мы говорим, что будущее объекта однозначно детерминированное. И мы можем предсказать его, зная прошлое объекта (исходные данные для моделирования). А фракталы применяются в том случае, когда объект имеет несколько вариантов развития и состояние системы определяется положением, в котором она находится на данный момент. То есть мы пытаемся смоделировать хаотичное развитие.

Когда говорят о детерминированности некой системы, имеют в виду, что ее поведение характеризуется однозначной причинно-следственной связью. То есть, зная начальные условия и закон движения системы, можно точно предсказать ее будущее. Именно такое представление о движении во Вселенной характерно для классической, ньютоновской динамики. Хаос же, напротив, подразумевает беспорядочный, случайный процесс, когда ход событий нельзя ни предсказать, ни воспроизвести.

Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий. При исследовании систем, которые, на первый взгляд, развиваются хаотически, часто пользуются теорией фракталов, т.к. именно этот подход позволяет увидеть некую закономерность в возникновении "случайных" отклонений в развитии системы.

Изучение естественных фрактальных структур дает нам возможность глубже понять процессы самоорганизации и развития нелинейных систем. Мы уже выяснили, что естественные фракталы самых различных, извилистых линий встречаются повсюду вокруг нас. Это берег моря, деревья, облака, разряд молнии, структура металла, нервная или сосудистая система человека. Эти замысловатые линии и шероховатые поверхности оказались в поле зрения научных исследований, потому что природа демонстрировала нам совершенно другой уровень сложности, нежели в идеальных геометрических системах. Изучаемые структуры в пространственно-временном отношении оказались самоподобными. Они бесконечно самовоспроизводились и повторяли себя в различных масштабах длин и времени. Любой нелинейный процесс в конечном итоге приводит к развилке. Система в таком случае, в точке ветвления, выбирает тот или иной путь. Траектория развития системы будет выглядеть в виде фрактала, то есть ломаной линии, форма которой может быть описана в виде ветвистого, запутанного пути, имеющего свою логику и закономерность.

Ветвление системы можно сравнить с ветвлением дерева, где каждая ветвь соответствует трети всей системы. Ветвление позволяет линейной структуре заполнить объемное пространство или, говоря точнее: фрактальная структура согласовывает различные пространства. Фрактал может расти, заполняя окружающее пространство, так же, как растет кристалл в пересыщенном растворе. При этом характер ветвления будет связан не со случайностью, а с определенной закономерностью.

Фрактальная структура самоподобно повторяется и на других уровнях, на более высоком уровне организации жизни человека, например на уровне самоорганизации коллектива или команды. Самоорганизация сетей и форм переходит с микроуровня на макроуровень. В совокупности они представляют собой целостное единство, где по части можно судить о целом. В данной курсовой работе как пример рассматриваются фрактальные свойства социальных процессов, что говорит об универсальности теории фракталов и ее лояльности к разным областям науки.

Делается вывод, что фрактал - это способ организованного взаимодействия пространств различной размерности и природы. К вышесказанному следует добавить, что не только пространственного, но и временного. Тогда даже человеческий мозг и нейронные сети будут представлять собой фрактальную структуру.

Природа очень любит фрактальные формы. Фрактальный объект обладает расползающейся, разряженной структурой. При наблюдении таких объектов с возрастающим увеличением можно видеть, что они проявляют повторяющийся на разных уровнях рисунок. Мы уже говорили о том, что фрактальный объект может выглядеть совершенно одинаково независимо от того, наблюдаем ли мы его в метровом, миллиметровом или микронном (1:1 000 000 доли метра масштабе). Свойство симметрии фрактальных объектов проявляется в инвариантности по отношению к масштабу. Фракталы симметричны относительно центра растяжения или изменения масштаба так же, как круглые тела симметричны относительно оси вращения.

Сегодня разработки в рамках теории фракталов ведутся в любой частной науке - физике, социологии, психологии, лингвистике и т.п. Тогда и общество, и социальные институты, и язык, и даже мысль - фракталы.

Современная наука достаточно успешно адаптировала теорию фракталов для разных областей знания. Так, в экономике теория фракталов используется при техническом анализе финансовых рынков, которые существуют в развитых странах мира уже не одну сотню лет. Впервые возможность прогнозировать дальнейшее поведение цены на акции, если известно ее направление за какой-то последний период, заметил Ч. Доу. В девяностых годах XIX в, опубликовав ряд статей, Доу заметил, что цены на акции подвержены циклическим колебаниям: после продолжительного роста следует продолжительное падение, потом опять рост и падение.

В середине XX века, когда весь научный мир увлекался только что появившейся теорией фракталов, другой известный американский финансист Р. Эллиот предложил свою теорию поведения цен на акции, которая была основана на использовании теории фракталов. Эллиот исходил из того, что геометрия фракталов имеет место быть не только в живой природе, но и в общественных процессах. К общественным процессам он относил и торговлю акциями на бирже.

Основой теории служит так называемая волновая диаграмма. Эта теория позволяет прогнозировать дальнейшее поведение тренда цены, основываясь на знании предыстории его поведения и следуя правилам развития массового психологического поведения.

Теория фракталов нашла применение и в биологии. Фрактальную природу, некоторое ее подобие, имеют многие, если не все, биологические структуры и системы растений, животных и человека: нервная система, система легких, кровеносная и лимфатическая системы и т.д. Появились данные, что развитие злокачественной опухоли так же идет по фрактальному принципу. Для фрактальных объектов так же характерна такая особенность, как проявление комплементарности. Комплементарность в биохимии - взаимное соответствие в химическом строении двух макромолекул, обеспечивающее их взаимодействие - спаривание двух нитей ДНК, соединение фермента с субстратом, антигена с антителом. Комплементарные структуры подходят друг к другу как ключ к замку. Этим свойством обладают полинуклеотидные цепи ДНК.

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике. Во-первых, это фрактальное сжатие изображений, и во-вторых построение ландшафтов, деревьев, растений и генерирование фрактальных текстур. При этом для сжатия, записи информации необходимо самоподобное уменьшение фрактала, а для ее считывания соответственно - самоподобное увеличение.

Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации. Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших частей изображения подобных некоторым маленьким частям. И в выходной файл записывается только информация о подобии одной части другой. При сжатии обычно используют квадратную сетку, что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

Всем здравствуйте! Меня зовут,Рибенек Валерия, г.Ульяновск и сегодня я выложу несколько своих научных статей на сайте ЛКИ.

Первая моя научная статья в этом блоге будет посвящена фракталам . Скажу сразу, что мои статьи рассчитаны почти на любую аудиторию. Т.е. они, надеюсь, будут интересны, как школьникам, так и студентам.

Недавно я узнала о таких интереснейших объектах математического мира как фракталы. Но существуют они не только в математике. Они окружают нас повсюду. Фракталы бывают природные. О том, что такое фракталы, о видах фракталов, о примерах этих объектов и их применении я и расскажу в этой статье. Для начала кратко расскажу, что такое фрактал.

Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — это сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Для примера я вставлю картинку с изображением четырех разных фракталов.

Расскажу немного об истории фракталов. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово «фрактал» было введено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта The Fractal Geometry of Nature. В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Примеров фракталов можно привести массу, потому что, как и говорила, они окружают нас повсюду. По-моему, даже вся наша Вселенная — это один огромный фрактал. Ведь все в ней, от строения атома до строения самой Вселенной, в точности повторяет друг друга. Но есть, конечно, и более конкретные примеры фракталов из разных областей. Фракталы, к примеру, присутствуют в комплексной динамике. Там они естественным образом появляются при изучении нелинейных динамических систем . Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функцией комплекса переменных на плоскости. Одними из самых известных фракталов такого вида являются множество Жюлиа, множество Мандельброта и бассейны Ньютона. Ниже по порядку на картинки изображены каждый из вышеперечисленных фракталов.

Еще одним примером фракталов являются фрактальные кривые. Объяснить, как строиться фрактал лучше всего именно на примере фрактальных кривых. Одной из таких кривых является, так называемая, Снежинка Коха. Существует простая процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. Ниже показана Снежинка (или кривая) Коха.

Фрактальных кривых так же существует огромное множество. Самые известные из них — это, уже упомянутая, Снежинка Коха, а также кривая Леви, кривая Минковского, ломанная Дракона, кривая Пиано и дерево Пифагора. Изображение данных фракталов и их историю, я думаю, при желании вы легко сможете найти в Википедии.

Третьим примером или видом фракталов являются стохастические фракталы. К таким фракталам можно отнести траекторию броуновского движения на плоскости и в пространстве, эволюции Шрамма-Лёвнера, различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр.

Существуют так же чисто математические фракталы. Это, например, канторово множество, губка Менгера, Треугольник Серпинского и другие.

Но самые, пожалуй, интересные фракталы — это природные. Природные фракталы — это такие объекты в природе, которые обладают фрактальными свойствами. И тут уже список большой. Я не буду перечислять все, потому что, наверное, всех и не перечислить, но о некоторых расскажу. Вот, к примеру, в живой природе к таким фракталам относятся наша кровеносная система и легкие. А еще кроны и листья деревьев. Так же сюда можно отнести морских звезд, морских ежей, кораллы, морские раковины, некоторые растения, такие как капуста или брокколи. Ниже наглядно показаны несколько таких природных фракталов из живой природы.

Если же рассматривать неживую природу, то там интересных примеров гораздо больше, нежели в живой. Молнии, снежинки, облака, всем известные, узоры на окнах в морозные дни, кристаллики, горные хребты — все это является примерами природных фракталов из неживой природы.

Примеры и виды фракталы мы рассмотрели. Что же касается применения фракталов, то они применяются в самых разных областях знаний. В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать ее при вычислении протяженности береговой линии. Так же фракталы активно используются в радиотехнике, в информатике и компьютерных технологиях, телекоммуникациях и даже экономике. Ну и, конечно же, фрактальное видение, активно используется в современном искусстве и архитектуре. Вот один из примеров фрактальных картин:

И так, на этом я думаю завершить свой рассказ о таком необычном математическом явлении как фрактал. Сегодня мы узнали о том, что такое фрактал, как он появился, о видах и о примерах фракталов. А так же я рассказала о их применении и продемонстрировала некоторые из фракталов наглядно. Надеюсь, вам понравилась эта небольшая экскурсия в мир удивительных и завораживающих фрактальных объектов.


Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации .

2.1 Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором . За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триадной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триадную кривую Кох . Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент , обозначенный на рис.1 через n=1 . В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3 . Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n -го поколения при любом конечном n называется предфракталом . На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным обьектом .


Рис 2. Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рис.2 представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Предельная фрактальная кривая (при n стремящемся к бесконечности) называется драконом Хартера-Хейтуэя .

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности обьекта) .

2.2 Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n -мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоватся терминологией теории этих систем: фазовый портрет , установившийся процесс , аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несолькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

Z = Z [i] * Z [i] + C ,

где Z i и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z [i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z [i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z [i] оставалась внутри окружности, можно установить цвет точки C (если Z [i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

2.3 Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря .

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).


Наткнулся тут на упоминание "Теории фракталов" в сериале "Иеремия" и заинтресовался этой довольно изящной теорией, которые современные метафизики применяют для доказательства существования Бога. Теория фракталов имеет совсем небольшой возраст. Она появилась в конце шестидесятых годов на стыке математики, информатики, лингвистики и биологии. В то время компьютеры все больше проникали в жизнь людей, ученые начинали применять их в своих исследованиях, росло число пользователей вычислительных машин. Для массового использования компьютеров необходимо стало облегчить процесс общения человека с машиной. Если в самом начале компьютерной эры немногочисленные программисты-пользователи самоотверженно вводили команды в машинных кодах и получали результаты в виде бесконечных лент бумаги, то при массовом и загруженном режиме использования компьютеров возникла необходимость в изобретении такого языка программирования, который был бы понятен для машины, и в то же время, был бы прост в изучении и применении. То есть пользователю требовалось бы ввести только одну команду, а компьютер разложил бы ее на более простые, и выполнил бы уже их. Чтобы облегчить написание трансляторов, на стыке информатики и лингвистики возникла теория фракталов, позволяющая строго задавать взаимоотношения между алгоритмическими языками. А датский математик и биолог А. Линденмеер придумал в 1968 году одну такую грамматику, названную им L-системой, которая, как он полагал, моделирует также рост живых организмов, в особенности образование кустов и веток у растений.

Фрактал (лат. fractus — дробленый, сломанный, разбитый) — сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, строго большую топологической. Фрактальная форма подвида цветной капусты (Brassica cauliflora). Фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Отцом фракталов по праву можно считать Бенуа Мандельброта. Мандельброт является изобретателем термина «фрактал». Мандельброт
писал: « Я придумал слово «фрактал», взяв за основу латинское прилагательное «fractus», означающее нерегулярный, рекурсивный,
фрагментный». Первое определение фракталам также дал Б. Мандельброт. На рисунке как раз классическая модель фрактала - Множество Мандельброта.

Если излагать примтивно, то теория фрактала - это сопособность хаотичгных стукртур самоорагнизовываться в систему. Аттра́ктор (англ. attract — привлекать, притягивать) — множество состояний (точнее — точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотическими всегда, но в большинстве случаев хаотическое поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор — это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник — пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

Большинство типов движения описывается простыми аттракторами, являющиеся ограниченными циклами. Хаотическое движение описывается странными аттракторами, которые очень сложны и имеют много параметров. Например, простая трехмерная система погоды описывается известным аттрактором Лоренца (Lorenz)- одной из самых известных диаграмм хаотических систем, не только потому, что она была одной из первых, но и потому, что она одна из самых сложных. Другим таким аттрактором является — отображение Рёслера (Rössler), котороя имеет двойной период, подобно логистическому отображению. Странные аттракторы появляются в обеих системах, и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например отображения Хенона (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы и системы Жулиа имеют типичную рекурсивную, фрактальную структуру. Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений. Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел, испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением.

Так вот, свойство хаотических систем самоорганизовываться с помощью неправильных аттракторов, по мнению некоторых математиков, и явялется недоказуемым доказательством существования Бога и Его энергии творения всего сущего. Загадка!



Понравилась статья? Поделитесь с друзьями!