Чем объясняется магнитное поле земли. Притягательная планета

Эти глобальные модели - такие как Международное геомагнитное аналитическое поле (International Geomagnetic Reference Field, IGRF) и Всемирная магнитная модель (World Magnetic Model, WMM) - создаются различными международными геофизическими организациями, и каждые 5 лет утверждаются и публикуются обновлённые наборы коэффициентов Гаусса, определяющих все данные о состоянии геомагнитного поля и его параметрах . Так, согласно модели WMM2015, северный геомагнитный полюс (по сути это южный полюс магнита) имеет координаты 80,37° с. ш. и 72,62° з. д., южный геомагнитный полюс - 80,37° ю. ш., 107,38° в. д., наклон оси диполя относительно оси вращения Земли - 9,63° .

Поля мировых аномалий

Реальные силовые линии магнитного поля Земли, хотя в среднем и близки к силовым линиям диполя, отличаются от них местными нерегулярностями, связанными с наличием намагниченных пород в коре , расположенных близко к поверхности. Из-за этого в некоторых местах на земной поверхности параметры поля сильно отличаются от значений в близлежащих районах, образуя так называемые магнитные аномалии . Они могут накладываться одна на другую, если вызывающие их намагниченные тела залегают на разных глубинах .

Существование магнитных полей протяжённых локальных областей внешних оболочек приводит к тому, что истинные магнитные полюса - точки (вернее, небольшие области), в которых силовые линии магнитного поля абсолютно вертикальны, - не совпадают с геомагнитными, при этом они лежат не на самой поверхности Земли, а под ней . Координаты магнитных полюсов на тот или иной момент времени также вычисляются в рамках различных моделей геомагнитного поля путём нахождения итеративным методом всех коэффициентов в ряду Гаусса. Так, согласно актуальной модели WMM, в 2015 г. северный магнитный полюс находился в точке 86° с. ш., 159° з. д., а южный - 64° ю. ш., 137° в.д . Значения актуальной модели IGRF12 немного отличаются: 86,3° с. ш., 160° з. д., для северного полюса, 64,3° ю. ш., 136,6° в.д для южного .

Соответственно, магнитная ось - прямая, проходящая через магнитные полюса, - не проходит через центр Земли и не является её диаметром .

Положения всех полюсов постоянно смещаются - геомагнитный полюс прецессирует относительно географического с периодом около 1200 лет .

Внешнее магнитное поле

Оно определяется источниками в виде токовых систем, находящимися за пределами земной поверхности в её атмосфере . В верхней части атмосферы (100 км и выше) - ионосфере - её молекулы ионизируются, формируя плазму , поэтому эта часть магнитосферы Земли, простирающаяся на расстояние до трёх её радиусов, называется плазмосферой . Плазма удерживается магнитным полем Земли, но её состояние определяется его взаимодействием с солнечным ветром - потоком плазмы солнечной короны .

Таким образом, на большем удалении от поверхности Земли магнитное поле несимметрично, так как искажается под действием солнечного ветра: со стороны Солнца оно сжимается, а в направлении от Солнца приобретает «шлейф», который простирается на сотни тысяч километров, выходя за орбиту Луны . Эта своеобразная «хвостатая» форма возникает, когда плазма солнечного ветра и солнечных корпускулярных потоков как бы обтекают земную магнитосферу - область околоземного космического пространства, ещё контролируемая магнитным полем Земли, а не Солнца и других межпланетных источников ; она отделяется от межпланетного пространства магнитопаузой , где динамическое давление солнечного ветра уравновешивается давлением собственного магнитного поля. Подсолнечная точка магнитосферы в среднем находится на расстоянии 10 земных радиусов * R ⊕ ; при слабом солнечном ветре это расстояние достигает 15-20 R ⊕ , а в период магнитных возмущений на Земле магнитопауза может заходить за геостационарную орбиту (6,6 R ⊕) . Вытянутый хвост на ночной стороне имеет диаметр около 40 R ⊕ и длину более 900 R ⊕ ; начиная с расстояния примерно 8 R ⊕ , он разделен на части плоским нейтральным слоем, в котором индукция поля близка к нулю .

Геомагнитное поле вследствие специфической конфигурации линий индукции создает для заряженных частиц - протонов и электронов - магнитную ловушку. Оно захватывает и удерживает огромное их количество, так что магнитосфера является своеобразным резервуаром заряженных частиц. Общая их масса, по различным оценкам, составляет от 1 кг до 10 кг. Они формируют так называемый радиационный пояс , охватывающий Землю со всех сторон, кроме приполярных областей. Его условно разделяют на два - внутренний и внешний. Нижняя граница внутреннего пояса находится на высоте около 500 км, его толщина - несколько тысяч километров. Внешний пояс находится на высоте 10-15 тыс. км. Частицы радиационного пояса под действием силы Лоренца совершают сложные периодические движения из Северного полушария в Южное и обратно, одновременно медленно перемещаясь вокруг Земли по азимуту. В зависимости от энергии они совершают полный оборот вокруг Земли за время от нескольких минут до суток .

Магнитосфера не подпускает к земле потоки космических частиц . Однако в её хвосте, на больших расстояниях от Земли напряженность геомагнитного поля, а следовательно, и его защитные свойства, ослабляются, и некоторые частицы солнечной плазмы получают возможность попасть вовнутрь магнитосферы и магнитных ловушек радиационных поясов. Хвост таким образом служит местом формирования потоков высыпающихся частиц, вызывающих полярные сияния и авроральные токи . В полярных областях часть потока солнечной плазмы вторгается в верхние слои атмосферы из радиационного пояса Земли и, сталкиваясь с молекулами кислорода и азота, возбуждает их или ионизирует, а при обратном переходе в невозбужденное состояние атомы кислорода излучают фотоны с λ = 0,56 мкм и λ = 0,63 мкм, ионизированные же молекулы азота при рекомбинации высвечивают синие и фиолетовые полосы спектра. При этом наблюдаются полярные сияния, особенно динамичные и яркие во время магнитных бурь . Они происходят при возмущениях в магнитосфере, вызванных увеличением плотности и скорости солнечного ветра при усилении солнечной активности .

Параметры поля

Наглядное представление о положении линий магнитной индукции поля Земли даёт магнитная стрелка, закреплённая таким образом, что может свободно вращаться и вокруг вертикальной, и вокруг горизонтальной оси (например, в кардановом подвесе), - в каждой точке вблизи поверхности Земли она устанавливается определённым образом вдоль этих линий.

Поскольку магнитные и географические полюса не совпадают, магнитная стрелка указывает направление с севера на юг только приблизительно. Вертикальную плоскость, в которой устанавливается магнитная стрелка, называют плоскостью магнитного меридиана данного места, а линию, по которой эта плоскость пересекается с поверхностью Земли, - магнитным меридианом . Таким образом, магнитные меридианы - это проекции силовых линий магнитного поля Земли на её поверхность, сходящиеся в северном и южном магнитных полюсах . Угол между направлениями магнитного и географического меридианов называют магнитным склонением . Оно может быть западным (часто обозначается знаком «-») или восточным (обозначается знаком «+»), в зависимости от того, к западу или востоку отклоняется северный полюс магнитной стрелки от вертикальной плоскости географического меридиана .

Далее, линии магнитного поля Земли, вообще говоря, не параллельны её поверхности. Это означает, что магнитная индукция поля Земли не лежит в плоскости горизонта данного места, а образует с этой плоскостью некий угол - он называется магнитным наклонением . Оно близко к нулю лишь в точках магнитного экватора - окружности большого круга в плоскости, которая перпендикулярна к магнитной оси .

Магнитное склонение и магнитное наклонение определяют направление магнитной индукции поля Земли в каждом конкретном месте. А численное значение этой величины можно найти, зная наклонение и одну из проекций вектора магнитной индукции B {\displaystyle \mathbf {B} } - на вертикальную или горизонтальную ось (последнее оказывается более удобным на практике). Таким образом, три этих параметра - магнитное склонение, наклонение и модуль вектора магнитной индукции B (либо вектора напряжённости магнитного поля H {\displaystyle \mathbf {H} } ) - полностью характеризуют геомагнитное поле в данном месте. Их точное знание для максимально большого числа пунктов на Земле имеет чрезвычайно важное значение . Составляются специальные магнитные карты, на которых нанесены изогоны (линии одинакового склонения) и изоклины (линии одинакового наклонения), необходимые для ориентации с помощью компаса .

В среднем интенсивность магнитного поля Земли колеблется от 25,000 до 65,000 нТл (0,25 - 0,65 Гс) и сильно зависит от географического положения . Это соответствует средней напряжённости поля около 0,5 (40 /) . На магнитном экваторе её величина - около 0,34 , у магнитных полюсов - около 0,66 Э. В некоторых районах (магнитных аномалий) напряжённость резко возрастает: в районе Курской магнитной аномалии она достигает 2 Э .

Природа магнитного поля Земли

Впервые объяснить существование магнитных полей Земли и Солнца попытался Дж. Лармор в 1919 году , предложив концепцию динамо , согласно которой поддержание магнитного поля небесного тела происходит под действием гидродинамического движения электропроводящей среды. Однако в 1934 году Т. Каулинг доказал теорему о невозможности поддержания осесимметричного магнитного поля посредством гидродинамического динамо-механизма. А поскольку большинство изучаемых небесных тел (и тем более Земля) считались аксиально-симметричными, на основании этого можно было сделать предположение, что их поле тоже будет аксиально-симметричным, и тогда его генерация по такому принципу будет невозможна согласно этой теореме. Позже было показано, что не у всех уравнений с аксиальной симметрией, описывающих процесс генерации магнитного поля, решение будет аксиально-симметричным, и в 1950-х гг. несимметричные решения были найдены .

С тех пор теория динамо успешно развивается, и на сегодняшний день общепринятым наиболее вероятным объяснением происхождения магнитного поля Земли и других планет является самовозбуждающийся динамо-механизм, основанный на генерации электрического тока в проводнике при его движении в магнитном поле, порождаемом и усиливаемом самими этими токами. Необходимые условия создаются в ядре Земли : в жидком внешнем ядре , состоящем в основном из железа при температуре порядка 4-6 тысяч кельвин, которое отлично проводит ток, создаются конвективные потоки, отводящие тепло от твёрдого внутреннего ядра (генерируемого благодаря распаду радиоактивных элементов либо освобождению скрытой теплоты при затвердевании вещества на границе между внутренним и внешним ядром по мере постепенного остывания планеты). Силы Кориолиса закручивают эти потоки в характерные спирали, образующие так называемые столбы Тейлора . Благодаря трению слоёв они приобретают электрический заряд, формируя контурные токи. Таким образом, создаётся система токов, циркулирующих по проводящему контуру в движущихся в (изначально присутствующем, пусть и очень слабом) магнитном поле проводниках, как в диске Фарадея . Она создает магнитное поле, которое при благоприятной геометрии течений усиливает начальное поле, а это, в свою очередь, усиливает ток, и процесс усиления продолжается до тех пор, пока растущие с увеличением тока потери на джоулево тепло не уравновесят притоки энергии, поступающей за счет гидродинамических движений .

Математически этот процесс описывается дифференциальным уравнением

∂ B ∂ t = η ∇ 2 B + ∇ × (u × B) {\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\eta \mathbf {\nabla } ^{2}\mathbf {B} +\mathbf {\nabla } \times (\mathbf {u} \times \mathbf {B})} ,

где u - скорость потока жидкости, B - магнитная индукция , η = 1/μσ - магнитная вязкость , σ - электропроводность жидкости, а μ - магнитная проницаемость , практически не отличающаяся при такой высокой температуре ядра от μ 0 - проницаемости вакуума.

Однако для полного описания необходимо записать систему магнитогидродинамических уравнений. В приближении Буссинеска (в рамках которого все физические характеристики жидкости полагаются постоянными, кроме силы Архимеда , при расчёте которой учитываются изменения плотности вследствие разности температур) это :

  • Уравнение Навье - Стокса , содержащее члены, выражающие совокупное действие вращения и магнитного поля:
ρ 0 (∂ u ∂ t + u ⋅ ∇ u) = − ∇ P + ρ 0 ν ∇ 2 u + ρ g ¯ − 2 ρ 0 Ω × u + J × B {\displaystyle \rho _{0}\left({\frac {\partial \mathbf {u} }{\partial t}}+\mathbf {u} \cdot \mathbf {\nabla } \mathbf {u} \right)=-\nabla \mathbf {P} +\rho _{0}\nu \mathbf {\nabla } ^{2}\mathbf {u} +\rho {\bar {\mathbf {g} }}-2\rho _{0}\mathbf {\Omega } \times \mathbf {u} +\mathbf {J} \times \mathbf {B} } .
  • Уравнение теплопроводности , выражающее закон сохранения энергии :
∂ T ∂ t + u ⋅ ∇ T = κ ∇ 2 T + ϵ {\displaystyle {\frac {\partial T}{\partial t}}+\mathbf {u} \cdot \mathbf {\nabla } T=\kappa \mathbf {\nabla } ^{2}T+\epsilon } ,

Прорыв в этом отношении был достигнут в 1995 году в работах групп из Японии и Соединённых Штатов . Начиная с этого момента, результаты ряда работ численного моделирования удовлетворительно воспроизводят качественные характеристики геомагнитного поля в динамике, в том числе инверсии .

Изменения магнитного поля Земли

Это подтверждается и текущим возрастанием угла раствора каспов (полярных щелей в магнитосфере на севере и юге), который к середине 1990-х годов достиг 45°. В расширившиеся щели устремился радиационный материал солнечного ветра, межпланетного пространства и космических лучей, вследствие чего в полярные области поступает большее количество вещества и энергии, что может привести к дополнительному разогреву полярных шапок [ ] .

Геомагнитные координаты (координаты Мак-Илвайна)

В физике космических лучей широко используются специфические координаты в геомагнитном поле, названные в честь учёного Карла Мак-Илвайна (Carl McIlwain ), первым предложившего их использование , так как они основаны на инвариантах движения частиц в магнитном поле. Точка в дипольном поле характеризуется двумя координатами (L, B), где L - так называемая магнитная оболочка, или параметр Мак-Илвайна (англ. L-shell, L-value, McIlwain L-parameter ), B - магнитная индукция поля (обычно в Гс). За параметр магнитной оболочки обычно принимается величина L, равная отношению среднего удаления реальной магнитной оболочки от центра Земли в плоскости геомагнитного экватора, к радиусу Земли. .

История исследований

Ещё несколько тысячелетий назад в Древнем Китае было известно, что намагниченные предметы располагаются в определённом направлении, в частности стрелка компаса всегда занимает определённое положение в пространстве. Благодаря этому человечество с давних пор получило возможность при помощи такой стрелки (компаса) ориентироваться в открытом море вдали от берегов. Однако до плавания Колумба из Европы в Америку (1492 г.) особого внимания к исследованию такого явления никто не проявлял, так как ученые того времени полагали, что оно происходит в результате притяжения стрелки Полярной звездой . В Европе и омывающих её морях компас в то время устанавливался почти по географическому меридиану. При пересечении же Атлантического океана Колумб заметил, что примерно на полпути между Европой и Америкой стрелка компаса отклонилась почти на 12° к западу. Этот факт сразу же породил сомнение в правильности прежней гипотезы о притяжении стрелки Полярной звездой, дал толчок к серьезному изучению вновь открытого явления: сведения о магнитном поле Земли были нужны мореплавателям. С этого момента и получила свое начало наука о земном магнетизме, начались повсеместные измерения магнитного склонения , то есть угла между географическим меридианом и осью магнитной стрелки, то есть магнитным меридианом. В 1544 году немецкий учёный Георг Хартман открыл новое явление: магнитная стрелка не только отклоняется от географического меридиана, но, будучи подвешена за центр тяжести, стремится встать под некоторым углом к горизонтальной плоскости, названным магнитным наклонением .

С этого момента наряду с изучением явления отклонения ученые начали также исследовать и наклонение магнитной стрелки. У Хосе де Акосты (одного из основателей геофизики , по словам Гумбольдта) в его Истории (1590) впервые появилась теория о четырёх линиях без магнитного склонения. Он описал использование компаса, угол отклонения, различия между Магнитным и Северным полюсом, а также колебание отклонений от одной точки до другой, идентифицировал места с нулевым отклонением, например, на Азорских островах .

В результате наблюдений было установлено, что как склонение, так и наклонение имеют различные значения в разных точках земной поверхности. При этом их изменения от точки к точке подчиняются некоторой сложной закономерности. Её исследование позволило придворному врачу английской королевы Елизаветы и натурфилософу Уильяму Гильберту выдвинуть в 1600 году в своей книге «О магните» («De Magnete») гипотезу о том, что Земля представляет собой магнит, полюсы которого совпадают с географическими полюсами. Другими словами, У. Гильберт полагал, что поле Земли подобно полю намагниченной сферы. Свое утверждение У. Гильберт основывал на опыте с моделью нашей планеты, представляющей собой намагниченный железный шар, и маленькой железной стрелкой. Главным аргументом в пользу своей гипотезы Гильберт считал, что магнитное наклонение, измеренное на такой модели, оказалось почти одинаковым с наклонением, наблюдавшимся на земной поверхности. Несоответствие же земного склонения со склонением на модель Гильберт объяснял отклоняющим действием материков на магнитную стрелку. Хотя многие факты, установленные позднее, не совпадали с гипотезой Гильберта, она не теряет своего значения и до сих пор. Основная мысль Гильберта о том, что причину земного магнетизма следует искать внутри Земли, оказалась правильной, равно как и то, что в первом приближении Земля действительно является большим магнитом, представляющим собой однородно намагниченный шар .

В 1634 году английский астроном Генри Геллибранд ?! установил, что магнитное склонение в Лондоне меняется со временем. Это стало первым зафиксированным свидетельством вековых вариаций - регулярных (от года к году) изменений средних годовых значений компонентов геомагнитного поля .

Углы склонения и наклонения определяют направление в пространстве напряженности магнитного поля Земли, но не могут дать её численного значения. До конца XVIII в. измерения величины напряженности не производились по той причине, что не были известны законы взаимодействия между магнитным полем и намагниченными телами. Лишь после того, как в 1785-1789 гг. французским физиком Шарлем Кулоном был установлен закон, названный его именем , появилась возможность таких измерений. С конца XVIII в., наряду с наблюдением склонения и наклонения, начались повсеместные наблюдения горизонтальной составляющей, представляющей собой проекцию вектора напряженности магнитного поля на горизонтальную плоскость (зная же склонение и наклонение, можно рассчитать и величину полного вектора напряженности магнитного поля) .

Первая теоретическая работа о том, что представляет собой магнитное поле Земли, то есть каковы величина и направление его напряженности в каждой точке земной поверхности, принадлежит немецкому математику Карлу Гауссу . В 1834 г. он дал математическое выражение для составляющих напряженности как функции координат - широты и долготы места наблюдения. Пользуясь этим выражением, можно для каждой точки земной поверхности найти значения любой из составляющих, которые носят названия элементов земного магнетизма. Эта и другие работы Гаусса стали фундаментом, на котором построено здание современной науки о земном магнетизме . В частности, в 1839 году он доказал, что основная часть магнитного поля выходит из Земли, а причину небольших, коротких отклонений его значений необходимо искать во внешней среде .

В 1831 году английским полярным исследователем Джоном Россом в Канадском архипелаге был открыт северный магнитный полюс - область, где магнитная стрелка занимает вертикальное положение, то есть наклонение равно 90°. А в 1841 г. Джеймс Росс (племянник Джона Росса) достиг другого магнитного полюса Земли , находящегося в Антарктиде .

См. также

  • Intermagnet (англ. )

Примечания

  1. Ученые в США выяснили, что магнитное поле Земли на 700 млн лет старше, чем считалось
  2. Эдвард Кононович. Магнитное поле Земли (неопр.) . http://www.krugosvet.ru/ . Энциклопедия Кругосвет: Универсальная научно-популярная онлайн-энциклопедия. Проверено 2017-04-26 .
  3. Geomagnetism Frequently Asked Questions (англ.) . https://www.ngdc.noaa.gov/ngdc.html . National Centers for Environmental Information (NCEI). Проверено 23 апреля 2017.
  4. А. И. Дьяченко. Магнитные полюса Земли . - Москва: Издательство Московского центра непрерывного математического образования, 2003. - 48 с. - ISBN 5-94057-080-1 .
  5. А. В. Викулин. VII. Геомагнитное поле и электромагнетизм Земли // Введение в физику Земли. Учебное пособие для геофизических специальностей вузов.. - Издательство Камчатского государственного педагогического университета, 2004. - 240 с. - ISBN 5-7968-0166-X .

Строение и характеристики магнитного поля Земли

На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.

По мере удаления от поверхности Земли усиливается воздействие солнечного ветра : со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».

Плазмосфера

Заметное влияние на магнитное поле на поверхности Земли оказывают токи в ионосфере . Это область верхней атмосферы, простирающаяся от высот порядка 100 км и выше. Содержит большое количество ионов . Плазма удерживается магнитным полем Земли, но её состояние определяется взаимодействием магнитного поля Земли с солнечным ветром, чем и объясняется связь магнитных бурь на Земле с солнечными вспышками.

Параметры поля

Точки Земли, в которых напряжённость магнитного поля имеет вертикальное направление, называют магнитными полюсами . Таких точек на Земле две: северный магнитный полюс и южный магнитный полюс .

Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Вектор магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.

Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца .

Магнитный меридиан

Магнитными меридианами называются проекции силовых линий магнитного поля Земли на её поверхность; сложные кривые, сходящиеся в северном и южном магнитных полюсах Земли .

Гипотезы о природе магнитного поля Земли

В последнее время получила развитие гипотеза, связывающая возникновение магнитного поля Земли с протеканием токов в жидком металлическом ядре. Подсчитано, что зона, в которой действует механизм «магнитное динамо », находится на расстоянии 0,25-0,3 радиуса Земли . Аналогичный механизм генерации поля может иметь место и на других планетах, в частности, в ядрах Юпитера и Сатурна (по некоторым предположениям, состоящих из жидкого металлического водорода).

Изменения магнитного поля Земли

Это подтверждается и текущим возрастанием угла раствора каспов (полярных щелей в магнитосфере на севере и юге), который к середине 1990-х годов достиг 45°. В расширившиеся щели устремился радиационный материал солнечного ветра, межпланетного пространства и космических лучей, вследствие чего в полярные области поступает большее количество вещества и энергии, что может привести к дополнительному разогреву полярных шапок.

Геомагнитные координаты (координаты Мак-Илвайна)

В физике космических лучей широко используются специфические координаты в геомагнитном поле, названные в честь учёного Карла Мак-Илвайна (Carl McIlwain ), первым предложившего их использование , так как они основаны на инвариантах движения частиц в магнитном поле. Точка в дипольном поле характеризуется двумя координатами (L, B), где L - так называемая магнитная оболочка, или параметр Мак-Илвайна (англ. L-shell, L-value, McIlwain L-parameter ), B - магнитная индукция поля (обычно в Гс). За параметр магнитной оболочки обычно принимается величина L, равная отношению среднего удаления реальной магнитной оболочки от центра Земли в плоскости геомагнитного экватора, к радиусу Земли. .

История исследований

О способности намагниченных предметов располагаться в определённом направлении было известно ещё китайцам несколько тысячелетий назад.

В 1544 году немецкий учёный Георг Гартман открыл магнитное наклонение . Магнитным наклонением называют угол, на который стрелка под действием магнитного поля Земли отклоняется от горизонтальной плоскости вниз или вверх. В полушарии севернее магнитного экватора (который не совпадает с географическим экватором) северный конец стрелки отклоняется вниз, в южном - наоборот. На самом магнитном экваторе линии магнитного поля параллельны поверхности Земли.

Впервые предположение о наличии магнитного поля Земли, которое и вызывает такое поведение намагниченных предметов, высказал английский врач и натурфилософ Уильям Гильберт (англ. William Gilbert ) в 1600 году в своей книге «О магните» («De Magnete»), в которой описал опыт с шаром из магнитной руды и маленькой железной стрелкой. Гильберт пришел к заключению, что Земля представляет собой большой магнит. Наблюдения английского астронома Генри Геллибранда (англ. Henry Gellibrand ) показали, что геомагнитное поле не постоянно, а медленно изменяется.

Угол, на который отклоняется магнитная стрелка от направления север - юг, называют магнитным склонением. Христофор Колумб открыл, что магнитное склонение не остается постоянным, а претерпевает изменения с изменением географических координат. Открытие Колумба послужило толчком к новому изучению магнитного поля Земли: сведения о нём были нужны мореплавателям. Русский ученый М. В. Ломоносов в 1759 г. в докладе «Рассуждение о большой точности морского пути» дал ценные советы, позволяющие увеличить точность показаний компаса. Для изучения земного магнетизма М. В. Ломоносов рекомендовал организовать сеть постоянных пунктов (обсерваторий), в которых производить систематические магнитные наблюдения; такие наблюдения необходимо широко проводить и на море. Мысль Ломоносова об организации магнитных обсерваторий была осуществлена лишь спустя 60 лет в России.

В 1831 г. английским полярным исследователем Джоном Россом в Канадском архипелаге был открыт магнитный полюс - область, где магнитная стрелка занимает вертикальное положение, то есть наклонение равно 90°. В 1841 г. Джеймс Росс (племянник Джона Росса) достиг другого магнитного полюса Земли, находящегося в Антарктиде.

Карл Гаусс (нем. Carl Friedrich Gauß ) выдвинул теорию о происхождении магнитного поля Земли и в 1839 году доказал, что основная его часть выходит из Земли, а причину небольших, коротких отклонений его значений необходимо искать во внешней среде.

См. также

  • Intermagnet (англ. )

Примечания

Литература

  • Сивухин Д. В. Общий курс физики. - Изд. 4-е, стереотипное. - М .: Физматлит ; Изд-во МФТИ, 2004. - Т. III. Электричество. - 656 с. - ISBN 5-9221-0227-3 ; ISBN 5-89155-086-5 .
  • Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. - М .: Наука, 1976.
  • Н. В. Короновский Магнитное поле геологического прошлого Земли. Соросовский образовательный журнал, N5, 1996, с. 56-63

Ссылки

Карты смещения магнитных полюсов Земли за период с 1600 по 1995 год

Прочая информация по теме

  • Инверсии магнитного поля в геологической истории Земли
  • Влияние инверсии магнитного поля на климат и эволюцию жизни на Земле

Wikimedia Foundation . 2010 .

Смотреть что такое "Магнитное поле Земли" в других словарях:

    До расстояний? 3R= (R= радиус Земли) соответствует приблизительно полю однородно намагниченного шара с напряженностью поля? 55 7 А/м (0,70 Э) у полюсов магнитных Земли и 33,4 А/м (0,42 Э) на магнитном экваторе. На расстояниях 3R магнитное поле… … Большой Энциклопедический словарь

    Пространство вокруг земного шара, в котором обнаруживается сила земного магнетизма. Магнитное поле Земли характеризуется вектором напряженности, магнитным наклонением и магнитным склонением. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

class="part1">

Подробно:

Планета Земля

© Владимир Каланов,
сайт
"Знания-сила".

Магнитное поле Земли

Это процессы, которые только в стадии зарождения недоступны для непосредственного наблюдения и исследования. Но когда эти процессы проявляют себя на поверхности земли, когда они, как говорится, развёртываются во всю мощь, тогда они становятся видимыми и весьма ощутимыми для всех, кто оказывается в зоне их действия.

Но на Земле действуют также невидимые процессы, которые человеком почти не ощущаются. Прежде всего - это земной магнетизм. Явление магнетизма известно людям очень давно. Своё название магнетизм получил от города Магнетия в Малой Азии, где были обнаружены залежи магнитного железняка - "камня, притя́гивающего железо". Первые письменные свидетельства о сво́йствах магнита мы находим, в частности, в поэме Тита Лукреция Ка́ра "О природе вещей", написанной в первом веке до нашей эры. Лукреций объяснял магнетизм "магнитными токами", истекающими из "камня-магнита".

Люди давно находили применение свойствам магнита. Одним из первых таких применений был компас как простейший навигационный прибор. Компас был изобретён в Китае примерно за тысячу лет до нашей эры. В Европе компас известен с XII века. Сегодня совершенно невозможно представить многие отрасли промышленности без использования магнитов и электромагнитов.

Область околозе́много пространства, в пределах которой обнаруживается земное магнитное поле, называется магнитосферой. Магнетизм является всеобъемлющим, глобальным сво́йством природы. Создание законченной теории земного и солнечного магнетизма - пока ещё дело будущего. Но уже и теперь наука во многом разобралась и даёт достаточно убедительные объяснения некоторым аспектам такого сложного явления как магнетизм. В частности, многих учёных и простых граждан волнуют возможные последствия такого явления, как постепенное ослабление магнитного поля Земли.

Действительно, со времён Карла Гаусса, который впервые замерил напряжё́нность магнитного поля Земли, т.е. на протяжении вот уже более 170 лет, магнитное поле Земли неуклонно ослабевает. А ведь магнитное поле является своеобразным щитом, прикрывающим Землю и всё живое на ней от губительного радиационного воздействия так называемого солнечного ветра, т.е. излучаемых Солнцем электронов, протонов и других частиц. Магнитосфера Земли отклоняет поток этих и других частиц, летящих из космоса, к полюса́м, лиша́я их начальной энергии. На полюсах Земли потоки этих космических частиц задерживаются в верхних слоях атмосферы, превращаясь в фантастически красивые явления полярных сияний.

Не будь солнечного ветра, магнитное поле Земли было бы симметричным относительно планеты, как на рисунке 1. На рисунке 2 изображена реальная магнитосфера Земли, деформированная солнечным ветром. Третий рисунок показывает несовпадение магнитных и географических полюсов.

Если магнитного поля не будет

Но если магнитного поля не будет, или оно станет очень слабым, то всё живое на Земле окажется под прямым воздействием солнечного и космического излучения. А это, как можно предположить, приведёт к радиационному поражению живых организмов, следствием чего будет их мутация в неопределённом направлении или гибель. К счастью, такая перспектива маловероятна. Учёным-палеомагнитологам, т.е. тем, кто занимается изучением древних магнитных полей, удалось установить с достаточной степенью достоверности, что магнитное поле Земли постоянно испытывает колебания с разными периодами. Когда сложили все кривые колебаний, то результирующая кривая получилась по форме близкой к синусоиде, имеющей период 8 тысяч лет. Отрезок этой кривой, соответствующий нашему времени (начало 2000-х годов), находится на ниспадающей ветви этой кривой. И это снижение будет продолжаться ещё примерно две тысячи лет. После этого магнитное поле вновь начнёт усиливаться. Это усиление поля будет продолжаться четыре тысячи лет, потом снова наступит спад. Предыдущий максимум пришелся на начало нашей эры. Существенным при этом является то, что амплитуда сумми́рующей синусоиды составляет менее половины средней величины напряжённости поля, т.е. эти колебания не могут свести к нулю напряженность магнитного поля Земли.

Здесь, на нашем сайте, мы не можем по условиям краткости подробно рассматривать методику исследований, которые привели к столь оптимистичным выводам. О причинах колебаний магнитного поля учёными высказываются разные суждения, но определённой теории по этой проблеме не существует. Добавим, что наукой доказано наличие такого явления, как инверсия, т.е. переодический взаимообмен магнитных полюсо́в Земли местами: северный полюс перемещается на место южного, южный - на место северного. Такие перемещения длятся от 5 до 10 тысяч лет. В истории нашей планеты такие "переско́ки" полюсо́в происходили сотни раз. Последнее такое перемещение произошло 700 тысяч лет назад. Какой-либо определённой периодичности или регулярности этого явления не выявлено. Причины этих переполюсо́вок скрываются в сложных взаимодействиях жидкой части ядра Земли с космосом. Палеомагнитологи установили, что на Земле происходили также смещения магнитных полюсо́в от географических на большие расстояния, которые заканчивались, однако, возвращением полюсо́в к своему прежнему месту.

Существуют предположения, что при переполюсовках магнитное поле Земли исчезает, и планета остаётся на какое-то время без своей невидимой защитной брони́. Но эти предположения не находят надёжного научного обоснования и остаются не более чем предположениями.

Некоторые учёные вообще считают, что резкие перемены в магнитосфере Земли не являются опасными, т.к., по их мнению, основной защитой от космических излучений служит всем живым существам всё-таки не магнитное поле, а атмосфера. Такого мнения придерживается, в частности, биолог-эволюционист профессор МГУ Б.М. Медников. Другими словами, проблема взаимодействия магнитного поля с процессами жизни на Земле пока далека от полной ясности, и для исследователей здесь ещё хватит работы.

Влияние магнитного поля на живые организмы

Давно известно, что магнитные поля отрицательно влияют на живые организмы. Опыты на животных показали, что внешнее магнитное поле задерживает их развитие, замедляет рост клеток, изменяет состав крови. Во время так называемых магнитных бурь, т.е. при резких колебаниях напряженности магнитного поля, метеозависимые, больные люди испытывают ухудшение самочувствия.

Напряженность магнитного поля измеряется в эрсте́дах (Э). Названа эта единица в честь датского физика Ганса Эрстеда (1777-1851) , открывшего связь между электрическими и магнитными явлениями.

Поскольку на производстве и в быту́ человек может подвергаться воздействию магнитных полей, были разработаны допустимые уровни напряженности магнитного поля. По разным оценкам для человека считается безопасным магнитное поле напряженностью 300-700 эрстед. Если выражаться точнее, то на производстве и в быту́ на человека воздействуют не магнитные, а электромагнитные поля. Дело в том, что при работе любого электрического или радиоустройства и магнитное, и электрическое поле могут проявляться только в виде единого целого, которое называется электромагнитным полем. Это объясняется единой природой магнитных и электрических явлений.

Нужно отметить, что физическая сторона процесса воздействия магнитного поля на человеческий организм пока не совсем ясна. Магнитное поле влияет и на растения. По результатам некоторых опытов получается, что всхожесть и рост семян зависят от того, как первоначально они были ориентированы относительно магнитного поля Земли. Изменение внешнего магнитного поля может или ускорять или угнетать развитие растений. Может быть, это явление будет как-то использоваться в практике сельского хозяйства.

Итак, вокруг нас магнитные поля, порожденные само́й природой и создаваемые источниками техногенного происхождения - от генераторов переменного тока и трансформаторов до СВЧ-печей и мобильных телефонов.

Напряженность магнитного поля Земли

Какова́ же напряженность магнитного поля Земли? Она не везде одинакова и варьирует от 0,24 Э (в Бразилии) до 0,68 Э (в Антарктиде). Считается, что в среднем напряженность геомагнитного поля равна 0,5 эрстеда. В местах, где встречаются большие залежи ферромагнитных материалов (железных руд), возникают магнитные аномалии. В России широко известна Курская магнитная аномалия, где напряженность поля равна 2 Э. Для сравнения: Напряженность магнитного поля Меркурия равна 1/500 Э , Луны - 10 -5 Э , а межзвёздной среды́ ещё меньше - 10 -8 Э . Но напряженность магнитного поля солнечных пятен огромна и равна 10 3 Э . Ещё более сильные поля имеют звёзды типа "белый карлик" - до 10 7 Э . Самые сильные магнитные поля, зарегистрированные во Вселенной, создаются нейтронными звёздами и пульсарами. Напряженность магнитного поля этих космических объектов достигает 10 12 эрстед! В лабораторных условиях удаётся достигнуть магнитной напряженности в сотни тысяч раз более слабой, да и то на время, измеряемое до́лями секунды. Специалисты предполагают, что если можно было бы в лабораторных условиях получить магнитные поля́, сравнимые по напряженности с теми, что действуют на нейтронных звездах, то с предметами, подвергшимися воздействию таких немыслимых полей, произошли бы удивительные превращения. Например, железо, плотность которого в нормальных условиях равна 7,87 г/см³, под действием таких полей превратилось бы в вещество с плотностью 2700 г/см³ . Кубик с ребром 10 см из такого вещества весил бы 2,7 тонны, и для его перемещения потребовался бы мощный подъёмный кран.

Большинство планет Солнечной системы в той или иной степени обладают магнитными полями.
Специальный раздел геофизики, изучающий происхождение и природу магнитного поля Земли называется геомагнетизмом. Геомагнетизм рассматривает проблемы возникновения и эволюции основной, постоянной составляющей геомагнитного поля, природа переменной составляющей (примерно 1% от основного поля), а так же структура магнитосферы – самых верхних намагниченных плазменных слоев земной атмосферы, взаимодействующих с солнечным ветром и защищающих Землю от космического проникающего излучения. Важной задачей является изучение закономерностей вариаций геомагнитного поля, поскольку они обусловлены внешними воздействиями, связанными в первую очередь с солнечной активностью.

Это может быть удивительно, но сегодня нет единой точки зрения на механизм возникновения магнитного поля планет, хотя почти общепризнанной является гипотеза магнитного гидродинамо, основанная на признании существования токопроводящего жидкого внешнего ядра. Тепловая конвекция, то есть перемешивание вещества во внешнем ядре, способствует образованию кольцевых электрических токов. Скорость перемещения вещества в верхней части жидкого ядра будет несколько меньше, а нижних слоев – больше относительно мантии в первом случае и твердого ядра – во втором. Подобные медленные течения вызывают формирование кольцеобразных (тороидальных) замкнутых по форме электрических полей, не выходящих за пределы ядра. Благодаря взаимодействию тороидальных электрических полей с конвективными течениями во внешнем ядре возникает суммарное магнитное поле дипольного характера, ось которого примерно совпадает с осью вращения Земли. Для “запуска” подобного процесса необходимо начальное, хотя бы очень слабое, магнитное поле, которое может генерироваться гиромагнитным эффектом, когда вращающееся тело намагничивается в направлении оси его вращения.

Не последнюю роль играет и солнечный ветер – поток заряжённых частиц, в основном протонов и электронов, идущих от Солнца. Для Земли солнечный ветер представляет собой поток заряженных частиц постоянного направления, а это не что иное, как электрический ток.

Согласно определению направления тока он направлен в сторону, противоположную движению отрицательно заряженных частиц (электронов), т.е. от Земли к Солнцу. Частицы образующие солнечный ветер, обладающие массой и зарядом, увлекаются верхними слоями атмосферы в сторону вращения Земли. В 1958 году был открыт радиационный пояс Земли. Это огромная зона в космосе, охватывающая Землю в области экватора. В радиационном поясе основными носителями зарядов являются электроны. Их плотность на 2 – 3 порядка превышает плотность других носителей зарядов. И таким образом существует электрический ток вызванный направленным круговым движением частиц солнечного ветра, увлекаемых круговым движением Земли, порождающий электромагнитное “вихревое” поле.

Следует отметить, что магнитный поток, вызванный током солнечного ветра, пронизывает и вращающийся вместе с Землей поток раскаленной лавы внутри нее. В результате этого взаимодействия в ней наводится электродвижущая сила, под действием которой течет ток, который так же создает магнитное поле. Вследствие этого магнитное поле Земли является результирующим полем от взаимодействия тока ионосферы и тока лавы.

Реально существующая картина магнитного поля Земли зависит не только от конфигурации токового слоя, но и от магнитных свойств земной коры, а так же от относительного расположения магнитных аномалий. Здесь можно провести аналогию с контуром с током при наличии ферромагнитного сердечника и без него. Известно, что ферромагнитный сердечник не только меняет конфигурацию магнитного поля, но и значительно усиливает его.

Достоверно установлено что магнитное поле Земли реагирует на солнечную активность, однако если связывать возникновение магнитного поля планет только с токовыми слоями в жидком ядре, взаимодействующими с солнечным ветром, то можно сделать заключение, что планеты солнечной системы, имеющие одинаковое направление вращения, должны иметь одинаковое направление магнитных полей. Однако, например, Юпитер опровергает это утверждение.

Интересно, что при взаимодействии солнечного ветра с возбужденным магнитным полем Земли, на Землю действует вращающий момент, направленный в сторону вращения Земли. Таким образом, Земля относительно солнечного ветра проявляет себя аналогично двигателю постоянного тока с самовозбуждением. Источником энергии (генератором) в данном случае является Солнце. Поскольку и магнитное поле, и вращающий момент, действующий на землю, зависят от тока Солнца, а последний от степени солнечной активности, то при увеличении солнечной активности должен увеличиваться вращающий момент, действующий на Землю и увеличиваться скорость ее вращения.

Составляющие геомагнитного поля

Собственное магнитное поле Земли (геомагнитное поле) можно разделить на cледующие три основные части – основное (внутреннее) магнитное поле Земли , включая мировые аномалии, магнитные поля локальных областей внешних оболочек, переменное (внешнее) магнитное поле Земли.

1. ОСНОВНОЕ МАГНИТНОЕ ПОЛЕ ЗЕМЛИ (внутреннее) , испытывающее медленные изменения во времени (вековые вариации) с периодами от 10 до 10 000 лет, сосредоточенными в интервалах 10–20, 60–100, 600–1200 и 8000 лет. Последний связан с изменением дипольного магнитного момента в 1,5–2 раза.

Магнитные силовые линии, созданные на компьютерной модели геодинамо, показывают, насколько структура магнитного поля Земли проще за ее пределами, чем внутри ядра (спутанные трубочки в центре). На поверхности Земли большая часть линий магнитного поля выходит изнутри (длинные желтые трубочки) у Южного полюса и входит внутрь (длинные голубые трубочки) около Северного.

Большинство людей обычно не задумываются, почему стрелка компаса показывает на север или юг. Но магнитные полюса планеты не всегда располагались так, как сегодня.

Исследования минералов показывают, что магнитное поле Земли за 4-5 млрд. лет существования планеты меняло свою ориентацию с севера на юг и обратно сотни раз. Однако в течение последних 780 тыс. лет ничего подобного не происходило, несмотря на то, что средний период смены магнитных полюсов – 250 тыс. лет. Кроме того, геомагнитное поле ослабло почти на 10% с тех пор, как оно впервые было измерено в 30-х гг. XIX в. (т.е. почти в 20 раз быстрее, чем если бы, лишившись источника энергии, оно снизило свою силу естественным путем). Грядет ли следующая смена полюсов?

Источник колебаний магнитного поля спрятан в центре Земли. Наша планета, подобно другим телам Солнечной системы, создает свое магнитное поле с помощью внутреннего генератора, принцип работы которого такой же, как и обычного электрического, преобразующего кинетическую энергию своих движущихся частиц в электромагнитное поле. В электрогенераторе движение происходит в витках катушки, а внутри планеты или звезды – в проводящей жидкой субстанции. Огромная масса расплавленного железа объемом в 5 раз больше Луны циркулирует в сердцевине Земли, образуя так называемое геодинамо.

За последние десять лет ученые разработали новые подходы к исследованию работы геодинамо и его магнитных свойств. Спутники передают четкие моментальные фотоснимки геомагнитного поля на поверхности Земли, а современные методы компьютерного моделирования и созданные в лабораториях физические модели помогают интерпретировать данные орбитальных наблюдений. Проведенные эксперименты натолкнули ученых на новое объяснение того, как происходила переполяризация в прошлом и как она может начаться в будущем.

Во внутреннем строении Земли выделяется расплавленное внешнее ядро, где сложная турбулентная конвекция генерирует геомагнитное поле.

Энергия геодинамо

Что же приводит в действие геодинамо. К 40-м гг. прошлого столетия физики признавали три необходимых условия образования магнитного поля планеты, и последующие научные построения исходили из данных положений. Первое условие – большой объем электропроводящей жидкой массы, насыщенной железом, образующей внешнее ядро Земли. Под ним расположено внутреннее ядро Земли, состоящее почти из чистого железа, а над ним – 2900 км твердых пород плотной мантии и тонкой земной коры, образующей континенты и ложе океана. Давление на ядро, создаваемое земной корой и мантией, в 2 млн. раз выше, чем на поверхности Земли. Температура ядра также крайне высока – около 5000о по Цельсию, как и температура поверхности Солнца.

Вышеописанные параметры экстремальной среды предопределяют второе требование к работе геодинамо: необходимость источника энергии для приведения в движение жидкой массы. Внутренняя энергия отчасти термального, отчасти химического происхождения создает внутри ядра условия выталкивания. Ядро больше разогревается внизу, чем наверху. (Высокие температуры “замурованы” внутри него со времен образования Земли.) Это означает, что более разогретая, менее плотная металлическая составляющая ядра стремится вверх. Когда жидкая масса достигает верхних слоев, она теряет часть своего тепла, отдавая его вышележащей мантии. Затем жидкое железо остывает, становясь плотнее, чем окружающая масса, и опускается. Процесс перемещения тепла путем поднятия и опускания жидкой массы получил название тепловой конвекции.

Третье необходимое условие поддержания магнитного поля – вращение Земли. Возникающая при этом сила Кориолиса отклоняет движение поднимающейся жидкой массы внутри Земли так же, как она поворачивает океанические течения и тропические циклоны, вихри перемещения которых видны на космических снимках. В центре Земли сила Кориолиса закручивает поднимающуюся жидкую массу в штопор или спираль, подобно оторвавшейся пружине.

Земля обладает насыщенной железом жидкой массой, сосредоточенной в ее центре, энергией, достаточной для поддержания конвекции, и силой Кориолиса, закручивающей конвекционные потоки. Данный фактор крайне важен для поддержания работы геодинамо на протяжении миллионов лет. Но нужны новые знания, чтобы ответить на вопрос о том, как образуется магнитное поле и почему время от времени полюса меняются местами.

Переполяризация

Ученые давно задавались вопросом, почему магнитные полюса Земли время от времени меняются местами. Последние исследования вихревых перемещений расплавленных масс внутри Земли позволяют понять, как происходит переполяризация.

Магнитное поле, значительно интенсивнее и сложнее поля ядра, внутри которого и образуются магнитные колебания, было обнаружено на границе мантии и ядра. Возникающие в сердцевине электротоки препятствуют непосредственным измерениям его магнитного поля.

Важно, что большая часть геомагнитного поля образуется только в четырех обширных областях на границе ядра и мантии. Хотя геодинамо продуцирует очень сильное магнитное поле, только 1% его энергии распространяется за пределами ядра. Общая конфигурация магнитного поля, измеренного на поверхности, носит название диполя, который большую часть времени ориентирован по земной оси вращения. Как и в поле линейного магнита, основной геомагнитный поток направлен от центра Земли в Южном полушарии и к центру – в Северном. (Стрелка компаса указывает на северный географический полюс, поскольку рядом находится южный магнитный полюс диполя.) Космические наблюдения показали, что магнитный поток имеет неравномерное глобальное распределение, наибольшая напряженность прослеживается на Антарктическом побережье, под Северной Америкой и Сибирью.

Ульрих Кристенсен (Ulrich R. Christensen) из Научно-исследовательского института Солнечной системы Макса Планка в Катленбурге-Линдау, Германия, считает, что эти обширные участки земли существуют тысячи лет и поддерживаются постоянно развивающейся конвекцией внутри ядра. Могут ли аналогичные явления быть причиной смены полюсов? Историческая геология свидетельствует, что смены полюсов происходили в относительно короткие промежутки времени – от 4 тыс. до 10 тыс. лет. Если бы геодинамо прекратило свою работу, то диполь существовал бы еще 100 тыс. лет. Быстрая же смена полярности дает основание полагать, что некое неустойчивое положение нарушает первоначальную полярность и вызывает новую смену полюсов.

В отдельных случаях таинственная неустойчивость может объясняться некоторым хаотическим изменением структуры магнитного потока, которое лишь случайно приводит к переполяризации. Однако частота смены полярности, проявляющаяся все более устойчиво за последние 120 млн. лет, говорит о возможности внешнего регулирования. Одной из причин его может быть перепад температуры в нижнем слое мантии, и вследствие этого – изменение в характере излияний ядра.

Некоторые симптомы переполяризации были выявлены при анализе карт, которые были сделаны со спутников Magsat и Oersted. Готье Гюло (Gauthier Hulot) и его коллеги из Парижского геофизического института отметили, что длительные изменения геомагнитного поля возникают на границе ядра и мантии в тех местах, где направление геомагнитного потока обратно нормальному для данного полушария. Наибольший из так называемых участков обратного магнитного поля протянулся из южной оконечности Африки на запад к Южной Америке. На данном участке магнитный поток направлен внутрь, к ядру, в то время как большая часть его в Южном полушарии направлена из центра.

Районы, где магнитное поле направлено в противоположную для данного полушария сторону, возникают при случайном прорыве закрученных и петляющих линий магнитного поля за пределы ядра Земли. Участки обратного магнитного поля могут существенно ослабить магнитное поле на поверхности Земли, называемое диполем, и свидетельствовать о начале смены земных полюсов. Они появляются, когда поднимающаяся жидкая масса проталкивает горизонтальные магнитные линии вверх в расплавленном внешнем ядре. Такое конвективное излияние иногда закручивает и выдавливает магнитную линию (а). Одновременно силы вращения Земли вызывают винтовую циркуляцию расплава, которая может затянуть петлю на выдавленной магнитной линии (б). Когда выталкивающая сила достаточно велика, чтобы выбросить петлю из ядра, на границе ядро-мантия образуется пара участков магнитного потока.

Самое серьезное открытие, сделанное при сравнении последних измерений, полученных с Oersted, и проведенных в 1980 г., заключалось в том, что новые участки обратного магнитного поля продолжают формироваться, например, на границе ядро-мантия под восточным побережьем Северной Америки и Арктикой. Более того, ранее выявленные участки выросли и немного сдвинулись в сторону полюсов. В конце 80-х гг. XX в. Дэвид Габбинс (David Gubbins) из Лидского университета в Англии, изучая старые карты геомагнитного поля, отметил, что распространение, рост и смещение в сторону полюсов участков обратного магнитного поля объясняет снижение силы диполя в историческом времени.

Согласно теоретическим положениям о силовых магнитных линиях, возникающие в жидкой среде ядра под действием силы Кориолиса малые и большие вихри закручивают силовые линии в узел. Каждый поворот собирает все больше силовых линий в ядре, усиливая таким образом энергию магнитного поля. Если процесс продолжается беспрепятственно, то магнитное поле усиливается бесконечно. Однако электрическое сопротивление рассеивает и выравнивает витки силовых линий настолько, чтобы остановить самопроизвольный рост магнитного поля и продолжить воспроизводство внутренней энергии.

Участки с интенсивным магнитным нормальным и обратным полем формируются на границе ядро-мантия, где малые и большие завихрения взаимодействуют с магнитными полями восточно-западного направления, описываемыми как тороидальные, которые проникают внутрь ядра. Турбулентные жидкостные перемещения могут закручивать линии тороидальных полей в петли, называемые полоидальными полями, имеющими ориентацию север-юг. Иногда закручивание происходит при поднятии текучей массы. Если такое излияние достаточно мощно, то вершина полоидальной петли выталкивается из ядра (см. врезку слева). В результате такого выталкивания образуются два участка, на которых петля пересекает границу ядро-мантия. На одном из них возникает направление магнитного потока, совпадающее с общим направлением поля диполя в данном полушарии; на другом же участке поток направлен противоположно.

Когда вращение относит участок обратного магнитного поля ближе к географическому полюсу, чем участок с нормальным потоком, наблюдается ослабление диполя, который наиболее уязвим вблизи своих полюсов. Таким образом можно объяснить обратное магнитное поле на юге Африки. При глобальном наступлении смены полюсов участки обратного магнитного поля могут разрастаться по всему региону вблизи географических полюсов.

Контурные карты магнитного поля Земли на границе ядро-мантия, составленные по измерениям, сделанным со спутника, показывают, что большая часть магнитного потока направлена от центра Земли в Южном полушарии и к центру в Северном. Но в некоторых районах складывается обратная картина. Участки обратного магнитного поля росли в числе и размерах между 1980 и 2000 г. Если они заполонят все пространство у обоих полюсов, то может произойти переполяризация.

Модели cмены полюсов

На картах магнитного поля представлено, как при нормальной полярности большая часть магнитного потока направлена от центра Земли (желтый цвет) в Южном полушарии и к ее центру (голубой цвет) в Северном (а). Начало переполяризации отмечается появлением нескольких ареалов обратного магнитного поля (голубой цвет в Южном полушарии и желтый в Северном), напоминающих об образовании его участков на границе ядро-мантия. Приблизительно за 3 тыс. лет они уменьшили напряженность поля диполя, которое сменилось более слабым, но более сложным переходным полем на границе ядро-мантия (б). Смена полюсов стала частым явлением через 6 тыс. лет, когда на границе ядро-мантия стали преобладать участки обратного магнитного поля (в). К этому времени полная смена полюсов проявилась и на поверхности Земли. Но только еще через 3 тыс. лет произошла полная замена диполя, включая ядро Земли (г).

Что же происходит с внутренним магнитным полем сегодня?

Большинство из нас знает, что географические полюса постоянно совершают сложные петлеобразные движения в направлении суточного вращения Земли (прецессия оси с периодом периодом в 25776 лет). Обычно эти перемещения протекают вблизи воображаемой оси вращения Земли и не приводят к заметному изменению климата. Подробнее о смещении полюсов. Hо мало кто обратил внимание, что в конце 1998 года общая составляющая этих перемещений сместилась. В течении месяца полюс сместился в сторону Канады на 50 километров. В настоящее время северный полюс “ползет” вдоль 120 параллели западной долготы. Можно предположить, что если нынешняя тенденция в перемещении полюсов продолжится до 2010, то северный полюс может сместиться на 3-4 тысячи километров. Конечная точка дрейфа – Большие Медвежьи озера в Канаде. Южный полюс, соответственно, сместится из центра Антарктиды к Индийскому океану.

Смещение магнитных полюсов регистрируется с 1885 г. За последние 100 лет магнитный полюс в южном полушарии переместился почти на 900 км и вышел в Индийский океан. Новейшие данные по состоянию арктического магнитного полюса (движущегося по направлению к Восточно-Сибирской мировой магнитной аномалии через Ледовитый океан): показали что с 1973 по 1984 гг.его пробег составил 120 км, с 1984 по 1994 гг. – более 150 км. Характерно, что эти данные расчетные, но они подтвердились конкретными замерами и северного магнитного полюса По данным на начало 2002-го года скорость дрейфа северного магнитного полюса увеличилась с 10 км/год в 70-х годах, до 40 км/год в 2001-м году.

Кроме того, падает напряжённость земного магнитного поля, причём весьма неравномерно. Так, за последние 22 года она уменьшилась в среднем на 1,7 процента, а в некоторых регионах – например, в южной части Атлантического океана, – на 10 процентов. Впрочем кое-где на нашей планете напряжённость магнитного поля, вопреки общей тенденции, даже слегка возросла.

Подчеркнем, что ускорение движения полюсов (в среднем на 3 км/год за десятилетие) и движение их по коридорам инверсии магнитных полюсов (более 400 палеоинверсий позволили выявить эти коридоры) заставляет подозревать нас о том, что в данном перемещении полюсов следует усматривать не экскурс, а переполюсовку магнитного поля Земли.

Ускорение может довести перемещение полюсов до 200 км в год, так что инверсия осуществится гораздо быстрее, чем это предполагается исследователями далекими от профессиональных оценок реальных процессов переполюсовки.

В истории Земли изменения положения географических полюсов происходили неоднократно, и с этим явлением, в первую очередь, связывают оледенение обширных областей суши и кардинальные перемены климата всей планеты. Но отголоски в человеческой истории получила только последняя катастрофа, скорее всего связанная со сдвигом полюсов, произошедшая около 12-ти тысяч лет назад. Все мы знаем – Мамонты вымерли. Но всё было гораздо серьёзнее.

Исчезновении сотен видов животных не подлежит сомнению. О Всемирном Потопе и Гибели Атлантиды ведутся дискуссии. Но одно несомненно – отголоски величайшей катастрофа на памяти человечества имеют под собой реальную основу. И вызвана, скорее всего, смещением полюсов всего на 2000 км.

На модели ниже представлены магнитное поле внутри ядра (пучок силовых линий в центре) и появление диполя (длинные изогнутые линии) за 500 лет (а) до середины переполяризации (б) магнитного диполя и спустя 500 лет на этапе ее завершения (в).

Магнитное поле геологического прошлого Земли

За последние 150 млн. лет переполяризация происходила сотни раз, о чем свидетельствуют минералы, намагниченные полем Земли во время разогрева горных пород. Затем породы остыли, а минералы сохранили прежнюю магнитную ориентацию.

Шкалы инверсий магнитного поля: I – за последние 5 млн. лет; II – за последние 55 млн. лет. Черный цвет – нормальная намагниченность, белый цвет – обратная намагниченность (по У.У. Харленду и др., 1985)

Инверсии магнитного поля – это смена знака осей симметричного диполя. В 1906 году Б. Брюн, измеряя магнитные свойства неогеновых, сравнительно молодых лав в центральной Франции, обнаружил, что их намагниченность противоположна по направлению современному геомагнитному полю, то есть Северный и Южный магнитные полюса как бы поменялись местами. Наличие обратно намагниченных горных пород является следствием не каких-то необычных условий в момент ее образования, а результатом инверсии магнитного поля Земли в данный момент. Обращение полярности геомагнитного поля – важнейшее открытие в палеомагнитологии, позволившее создать новую науку магнитостратиграфию, изучающую расчленение отложений горных пород на основе их прямой или обращенной намагниченности. И главное здесь заключается в доказательстве синхронности этих обращений знака в пределах всего земного шара. В таком случае в руках геологов оказывается весьма действенный метод корреляции отложений и событий.

В реальном магнитном поле Земли время, в течение которого происходит изменение знака полярности, может быть как коротким, вплоть до тысячи лет, так и составлять миллионы лет.
Временные интервалы преобладания какой-либо одной полярности получили название геомагнитных эпох, и части из них присвоены имена выдающихся геомагнитологов Брюнесса, Матуямы, Гаусса и Гильберта. В пределах эпох выделяются меньшие по длительности интервалы той или иной полярности, называемые геомагнитными эпизодами. Наиболее эффектно выявление интервалов прямой и обратной полярности геомагнитного поля было проведено для молодых в геологическом смысле лавовых потоков в Исландии, Эфиопии и других местах. Недостаток этих исследований заключается в том, что процесс излияния лав был прерывистым процессом, поэтому вполне возможен пропуск какого-либо магнитного эпизода.

Когда появилась возможность по отобранным породам одного возраста, но взятым на разных континентах, определять положение палеомагнитных полюсов интересующего нас временного интервала, то оказалось, что вычисленный осредненный полюс, скажем, по верхнеюрским породам (170 – 144 млн. лет) Северной Америки и такой же полюс по таким же породам Европы будут находиться в разных местах. Получалось как бы два Северных полюса, чего при дипольной системе быть не может. Для того чтобы Северный полюс был один,следовало изменить положение континентов на поверхности Земли. В нашем случае это означало сближение Европы и Северной Америки до совпадения их бровок шельфа, то есть до глубин океана примерно в 200 м. Иными словами, двигаются не полюсы, а континенты.

Применение палеомагнитного метода позволило осуществить детальные реконструкции раскрытия относительно молодых Атлантического, Индийского, Северного Ледовитого океанов и понять историю развития более древнего Тихого океана. Современное расположение континентов – это результат раскола суперконтинента Пангея, начавшегося около 200 млн. лет тому назад. Линейное магнитное поле океанов дает возможность определить скорость движения плит, а его рисунок дает наилучшую информацию для проведения геодинамического анализа.

Благодаря палеомагнитным исследованиям установили, что раскол Африки и Антарктиды произошел 160 млн. лет назад. Наиболее древние аномалии с возрастом 170 млн. лет (средняя юра) обнаружены по краям Атлантики у берегов Северной Америки и Африки. Это и есть время начала распада суперматерика. Южная Атлантика возникла 120 – 110 млн. лет назад, а Северная значительно позже (80 – 65 млн. лет назад) и т.д. Подобные примеры можно привести по любому из океанов и, как бы “читая” палеомагнитную летопись, реконструировать историю их развития и перемещение литосферных плит.

Мировые аномалии – отклонения от эквивалентного диполя до 20% напряженности отдельных областей с характерными размерами до10 000 км. Эти аномальные поля испытывают вековые вариации, приводящие к изменениям со временем в течение многих лет и столетий. Примеры аномалий: Бразильская, Канадская, Сибирская, Курская. В ходе вековых вариаций мировые аномалии смещаются, распадаются и возникают вновь. На низких широтах имеется западный дрейф по долготе со скоростью 0,2° в год.

2. МАГНИТНЫЕ ПОЛЯ ЛОКАЛЬНЫХ ОБЛАСТЕЙ внешних оболочек с протяженностью от нескольких до сотен км. Они обусловлены намагниченностью горных пород в верхнем слое Земли, слагающих земную кору и расположенных близко к поверхности. Одна из наиболее мощных – Курская магнитная аномалия.

3. ПЕРЕМЕННОЕ МАГНИТНОЕ ПОЛЕ ЗЕМЛИ (так же называемое внешним) определяется источниками в виде токовых систем, находящимися за пределами земной поверхности и в ее атмосфере. Основными источниками таких полей и их изменений являются корпускулярные потоки замагниченной плазмы, приходящие от Солнца вместе с солнечным ветром, и формирующие структуру и форму земной магнитосферы.

Прежде всего видно, что эта структура имеет «слоистую» форму. Однако иногда можно наблюдать «разрыв» верхних слоев, очевидно, происходящий под влиянием усиления солнечного ветра. Например как здесь:

При этом от скорости и плотности Солнечного ветра в такой момент зависит степень величины «нагрева», отражается в цветовой гамме от желтого до фиолетового, что в действительности отражает величину давления на магнитное поле в этой зоне (правый верхий рисунок).

Структура магнитного поля земной атмосферы (внешнего магнитного поля Земли)

Земное магнитное поле находится под воздействием потока намагниченной солнечной плазмы. В результате взаимодействия с полем Земли образуется внешняя граница околоземного магнитного поля, называемая магнитопаузой . Она ограничивает земную магнитосферу. Из-за воздействия солнечных корпускулярных потоков размеры и форма магнитосферы постоянно меняются, и возникает переменное магнитное поле, определяемое внешними источниками. Его переменность обязана своим происхождением токовым системам, развивающимся на различных высотах от нижних слоев ионосферы до магнитопаузы. Изменения магнитного поля Земли во времени, вызванные различными причинами, называются геомагнитными вариациями, которые различаются как по своей длительности, так и по локализации на Земле и в ее атмосфере.

Магнитосфера – область околоземного космического пространства, контролируемая магнитным полем Земли. Магнитосфера формируется в результате взаимодействия солнечного ветра с плазмой верхних слоев атмосферы и магнитным полем Земли. По форме магнитосфера представляет собой каверну и длинный хвост, которые повторяют форму магнитных силовых линий. Подсолнечная точка в среднем находится на расстоянии 10 земных радиусов, а хвост магнитосферы простирается за орбиту Луны. Топология магнитосферы определяется областями вторжения солнечной плазмы внутрь магнитосферы и характером токовых систем.

Хвост магнитосферы образован силовыми линиями магнитного поля Земли, выходящими из полярных областей и вытянутых под действием солнечного ветра на сотни земных радиусов от Солнца в ночную сторону Земли. В итоге плазма солнечного ветра и солнечных корпускулярных потоков как бы обтекают земную магнитосферу, придавая ей своеобразную хвостатую форму.
В хвосте магнитосферы, на больших расстояниях от Земли, напряженность магнитного поля Земли, а следовательно и их защитные свойства, ослабляются, и некоторые частицы солнечной плазмы получают возможность проникнуть и попасть во внутрь земной магнитосферы и магнитных ловушек радиационных поясов. Проникая в головную часть магнитосферы в область овалов полярных сияний под действием изменяющегося давления солнечного ветра и межпланетного поля, хвост служит местом формирования потоков высыпающихся частиц, вызывающих полярные сияния и авроральные токи. Магнитосфера отделена от межпланетного пространства магнитопаузой. Вдоль магнитопаузы частицы корпускулярных потоков обтекают магнитосферу. Влияние солнечного ветра на земное магнитное поле иногда бывает очень сильным. Магнитопауза – внешняя граница магнитосферы Земли (или планеты), на которой динамическое давление солнечного ветра уравновешивается давлением собственного магнитного поля. При типичных параметрах солнечного ветра подсолнечная точка удалена от центра Земли на 9–11 земных радиусов. В период магнитных возмущений на Земле магнитопауза может заходить за геостационарную орбиту (6,6 радиусов Земли). При слабом солнечном ветре подсолнечная точка находится на расстоянии 15–20 радиусов Земли.

Геомагнитные вариации

Изменение магнитного поля Земли во времени под действием различных факторов называются геомагнитными вариациями. Разность между наблюдаемой величиной напряженности магнитного поля и средним ее значением за какой-либо длительный промежуток времени, например, месяц или год, называется геомагнитной вариацией. Согласно наблюдениям, геомагнитные вариации непрерывно изменяются во времени, причем такие изменения часто носят периодический характер.

Cуточные вариации геомагнитного поля возникают регулярно в основном за счет токов в ионосфере Земли, вызванных изменениями освещенности земной ионосферы Солнцем в течение суток.

Суточная геомагнитная вариация за период 19.03.2010 12:00 по 21.03.2010 00:00

Магнитное поле Земли описывается семью параметрами. Для измерения земного магнитного поля в любой точке, мы должны измерить направление и напряжённость поля. Параметры, описывающие направление магнитного поля: склонение (D), наклонение (I). D и I измеряются в градусах. Напряженность общего поля (F) описывается горизонтальной компонентой (H), вертикальной компонентой (Z) и северной (X) и восточной (Y) компонентами горизотальной напряженности. Эти комопненты могут быть измерены в Эрстедах (1 Эрстед=1 гауссу), но обычно – в наноТеслах (1нТ х 100 000 = 1 эрстеду).

Нерегулярные вариации магнитного поля возникают вследствие воздействия потока солнечной плазмы (солнечного ветра) на магнитосферу Земли, а так же изменений внутри магнитосферы и взаимодействия магнитосферы с ионосферой.

На рисунке ниже видны (слева направо) изображения текущих – магнитного поля, давления, конвекционных потоков в ионосфере, а также графики изменения величин скорости и плотности солнечного ветра (V, Dens) и величин вертикальной и восточной компонент внешнего магнитного поля Земли.

27-дневные вариации существуют как тенденция к повторению увеличения геомагнитной активности через каждые 27 дней, соответствующих периоду вращения Солнца относительно земного наблюдателя. Эта закономерность связана с существованием долгоживущих активных областей на Солнце, наблюдаемых в течении нескольких оборотов Солнца. Эта закономерность проявляется в виде 27-дневной повторяемости магнитной активности и магнитных бурь.

Сезонные вариации магнитной активности уверенно выявляются на основании среднемесячных данных о магнитной активности, полученных путем обработки наблюдений за несколько лет. Их амплитуда увеличивается с ростом общей магнитной активности. Найдено, что сезонные вариации магнитной активности имеют два максимума, соответствующие периодам равноденствий, и два минимума, соответствующие периодам солнцестояний. Причиной этих вариаций является образование активных областей на Солнце, которые группируются в зонах от 10 до 30° северной и южной гелиографических широт. Поэтому в периоды равноденствий, когда плоскости земного и солнечного экваторов совпадают, Земля наиболее подвержена действию активных областей на Солнце.

11-летние вариации. Наиболее ярко связь между солнечной активностью и магнитной активностью проявляется при сопоставлении длинных рядов наблюдений, кратных 11 летним периодам солнечной активности. Наиболее известной мерой солнечной активности является число солнечных пятен. Найдено, что в годы максимального количества солнечных пятен магнитная активность также достигает наибольшей величины, однако возрастание магнитной активности несколько запаздывает по отношению к росту солнечной, так что в среднем это запаздывание составляет один год.

Вековые вариации – медленные вариации элементов земного магнетизма с периодами от нескольких лет и более. В отличии от суточных, сезонных, и других вариаций внешнего происхождения, вековые вариации связаны с источниками, лежащими внутри земного ядра. Амплитуда вековых вариаций достигает десятков нТл/год, изменения среднегодовых значений таких элементов, названы вековым ходом. Изолинии вековых вариаций концентрируются вокруг нескольких точек – центры или фокусы векового хода, в этих центрах величина векового хода достигает максимальных значений.

Магнитная буря – влияние на организм человека

Локальные характеристики магнитного поля изменяются и колеблются иногда в течение многих часов, а потом восстанавливаются до прежнего уровня. Это явление называется магнитной бурей. Магнитные бури часто начинаются внезапно и одновременно по всему земному шару.

Ударная волна солнечного ветра через сутки после вспышки на Солнце достигает орбиты Земли и начинается магнитная буря. Тяжелобольные явно реагируют с первых часов после вспышки на Солнце, остальные – с момента начала бури на Земле. Общее для всех – изменение биоритмов в эти часы. Число случаев инфаркта миокарда увеличивается на следующий день после вспышки (примерно в 2 раза больше по сравнению с магнитоспокойными днями). В этот же день начинается магнитосферная буря, вызванная вспышкой. У абсолютно здоровых – активируется иммунная система, может быть увеличение работоспособности, улучшение настроения.

Примечание: геомагнитный штиль, продолжающийся подряд несколько дней или больше, действует на организм городского жителя, по многим параметрам, как и буря – угнетающе, вызывая депрессию и ослабление иммунитета. Лёгкий “дребезг” магнитного поля в пределах Кр = 0 – 3 помогает легче переносить перепады атмосферного давления и других метеофакторов.

Принята следущая градация величин Kp-индекса:

Kp = 0-1 – геoмaгнитнaя oбстaнoвкa спoкoйнaя (штиль);

Kp = 1-2 – геoмaгнитнaя oбстaнoвкa oт спoкoйнoй дo слaбoвoзмущеннoй;

Kp = 3-4 – oт слaбoвoзмущеннoй дo вoзмущеннoй;

Kp = 5 и выше – слабая магнитная буря (уровень G1);

Kp = 6 и выше – средняя магнитная буря (уровень G2);

Kp = 7 и выше – сильная магнитная буря (уровень G3); возможны аварии, ухудшение самочувствия у метеозависимых людей

Kp = 8 и выше – очень сильная магнитная буря (уровень G4);

Kp = 9 – экстремально сильная магнитная буря (уровень G5) – максимально возможная величина.

Он-лайн наблюдение за состоянием магнитосферы и магнитными бурями здесь:

В результате многочисленных исследований, проводившихся в Институте космических исследований (ИКИ), Институте земного магнетизма, ионосферы и распространения радиоволн (ИЗМИРАН), Медицинской академии им. И.М. Сеченова и Института медико-биологических проблем РАН, выяснилось, что во время геомагнитных бурь у пациентов с патологией сердечно- сосудистой системы, особенно у перенесших инфаркт миокарда, подскакивало артериальное давление, заметно увеличивалась вязкость крови, замедлялась скорость ее течения в капиллярах, изменялся сосудистый тонус и активизировались стрессорные гормоны.

В организме некоторых здоровых людей тоже происходили изменения, но они вызывали в основном усталость, ослабление внимания, головные боли, головокружения и серьезной опасности не представляли. Несколько сильнее на изменения реагировал организм космонавтов: у них возникали аритмии и изменялся сосудистый тонус. Эксперименты на орбите также показали, что на состояние человека негативно влияют именно электромагнитные поля, а не другие факторы, которые действуют на Земле, но исключены в космосе. Кроме того, была выявлена еще одна “группа риска” – здоровые люди с перенапряженной адаптационной системой, связанной с воздействием дополнительного стресса (в данном случае – невесомости, также влияющей на сердечно-сосудистую систему).

Исследователи пришли к выводу, что геомагнитные бури вызывают такой же адаптационный стресс, как и резкая смена часовых поясов, сбивающая биологические суточные ритмы человека. Внезапные вспышки на Солнце и прочие проявления солнечной активности резко меняют относительно регулярные ритмы геомагнитного поля Земли, что вызывает у животных и у людей сбой их собственных ритмов и порождает адаптационный стресс.

Здоровые люди с ним справляются относительно легко, но для людей с патологией сердечно-сосудистой системы, с перенапряженной адаптационной системой и для новорожденных он потенциально опасен.

Предвидеть ответную реакцию невозможно. Все зависит от многих факторов: от состояния человека, от характера бури, от частотного спектра электромагнитных колебаний и т.д. Пока неизвестно, как изменения геомагнитного поля влияют на биохимические и биофизические процессы, происходящие в организме: что представляют собой приемники геомагнитных сигналов-рецепторов, реагирует ли человек на воздействие электромагнитное излучение всем организмом, отдельными органами или даже отдельными клетками. В настоящее время с целью изучения влияния солнечной активности на людей открывается лаборатория гелиобиологии в Институте космических исследований.

9. Н.В.Короновский. МАГНИТНОЕ ПОЛЕ ГЕОЛОГИЧЕСКОГО ПРОШЛОГО ЗЕМЛИ // Московский государственный университет им. М.В.Ломоносова. Соросовский Образовательный Журнал, N5, 1996, cтр. 56-63

Справка

Гаусс (русское обозначение Гс, международное - G) - единица измерения магнитной индукции в системе СГС. Названа в честь немецкого физика и математика Карла Фридриха Гаусса.

1 Гс = 100 мкТл;

1 Тл = 104 Гс.

Может быть выражена через основные единицы измерения системы СГС следующим образом: 1 Гс = 1 г 1/2 .см −1/2 .с −1 .

Опыт

Источник: учебники физики по магнетизму, берклиевский курс.

Тема: м агнитные поля в веществе.

Цель: выяснить, как различные вещества реагируют на магнитное поле.

Представим себе некоторые опыты с очень сильным полем. Предположим, что мы сделали соленоид с внутренним диаметром 10 см и длиной 40 см.

1. Конструкция катушки, создающей сильное магнитное поле. Показано поперечное сечение обмотки, по которой течет охлаждающая вода. 2. Кривая величины поля В 2 на оси катушки.

Его внешний диаметр равен 40 см и большая часть пространства заполнена медной обмоткой. Такая катушка обеспечит постоянное поле в 30 000 гс в центре, если к ней подвести 400 квт электрической мощности и снабжать водой около 120 л в минуту для отвода тепла.

Эти конкретные данные приводятся с целью показать, что хотя прибор и не представляет собой ничего необыкновенного, он является все же довольно почтенным лабораторным магнитом.

Величина поля в центре магнита приблизительно в 10 5 раз больше магнитного поля Земли и, вероятно, в 5 или 10 раз сильнее поля вблизи любого магнитного железного стержня или подковообразного магнита!

Вблизи центра соленоида поле довольно однородно и уменьшается приблизительно вдвое на оси вблизи концов катушки.

Выводы

Итак, как показывают опыты, у подобных магнитов величина поля (то есть индукция или напряженность) как внутри магнита, так и снаружи чуть ли не на пять порядков превышает величину поля Земли.

Также, всего в два раза - не «в разы!» - она меньше снаружи магнита.

И в то же время в 5-10 раз больше силы обычного постоянного магнита.

Средняя напряженность поля земли на поверхности составляет около 0,5Э (5.10 -5 Тл)

Тем не менее, уже в нескольких сотнях метров (если не десятков) от такого магнита магнитная стрелка компаса не реагирует ни на включение, ни на выключение тока.

При этом она хорошо реагирует на поле земли или его аномалии при малейшем изменении положения. О чем это говорит?

Прежде всего, о явно заниженной цифре индукции магнитного поля земли - то есть не саму индукцию, а то, как мы ее измеряем.

Мы измеряем реакцию рамки с током, угол ее поворота в магнитном поле земли.

Любой магнитометр построен на принципе измерения не напрямую, а косвенно:

Только по характеру изменения значения напряженности;

Только на поверхности земли, возле нее в атмосфере и в ближнем космосе.

Источника поля с конкретным максимумом мы не знаем. Мы измеряем всего лишь разницу величины поля в различных точках, причем градиент напряженности не слишком сильно изменяется с высотой. Никакие математические выкладки с определением максимума при использовании классического подхода здесь не работают.

Влияние магнитного поля - эксперименты

Известно, что даже сильные магнитные поля не имеют практически никакого влияния на химические и биохимические процессы. Вы можете поместить руку (без ручных часов!) в соленоид с полем в 30 кгс без каких-либо заметных последствий. Трудно сказать, к какому классу веществ относится ваша рука - к парамагнетикам или диамагнетикам, но сила, действующая на нее, будет составлять, в любом случае, не больше нескольких граммов. Целые поколения мышей выводились и выращивались в сильных магнитных полях, которые не оказывали на них заметного влияния. Другие биологические эксперименты также не обнаружили достойных внимания магнитных воздействий на биологические процессы.

Важно помнить!

Будет не верно считать, что слабые эффекты всегда проходят без последствий. Подобные рассуждения могли бы привести к выводу, что тяжесть не имеет энергетического значения в молекулярном масштабе, но, тем не менее, деревья на склоне холма растут вертикально. Объяснение, по-видимому, заключается в суммарной силе, действующей на биологический объект, размеры которого много больше размеров молекулы. Действительно, аналогичное явление («тропизм») было экспериментально продемонстрировано в случае сеянцев, произрастающих в присутствии очень неоднородного магнитного поля.

Между прочим, если вы поместите голову в сильное магнитное поле и покачаете ею, то вы почувствуете «вкус» электролитического тока во рту, что является доказательством присутствия индуцированной электродвижущей силы.

При взаимодействии с веществом роли магнитного и электрического полей различны. Поскольку атомы и молекулы состоят из медленно движущихся электрических зарядов, электрические силы при молекулярных процессах доминируют над магнитными.

Выводы

Воздействие магнитного поля такого магнита на биологические объекты не более чем укус комара. Любое живое существо или растение постоянно находятся под воздействием земного магнетизма куда более сильного.

Поэтому и не заметно действие неверно измеряемого поля.

Расчеты

1 гаусс=1 10 -4 тесла.

Единицей напряженности геомагнитного поля (Т) в системе Си является ампер на метр (А/м). В магниторазведке применялась и другая единица Эрстед (Э) или гамма (Г), равная 10 -5 Э. Однако практически измеряемым параметром магнитного поля является магнитная индукция (или плотность магнитного потока). Единицей магнитной индукции в системе Си является тесла (Тл). В магниторазведке используется более мелкая единица нанотесла (нТл), равная 10 -9 Тл. Так как для большинства сред, в которых изучается магнитное поле (воздух, вода, абсолютное большинство немагнитных осадочных пород), то количественно магнитное поле Земли можно измерять либо в единицах магнитной индукции (в нТл), либо в соответствующей ей напряженности поля - гамма.

На рисунке представлена полная напряженность магнитного поля Земли для эпохи 1980 г. Изолинии Т проведены через 4 мкТл (из книги П.Шарма "Геофизические методы в региональной геологии").

Таким образом

На полюсах вертикальные составляющие магнитной индукции примерно равны 60 мкТл, а горизонтальные - нулю. На экваторе горизонтальная составляющая приблизительно равна 30 мкТл, а вертикальная - нулю.

Именно таким образом современная наука о геомагнетизме давно отказалась от основного принципа магнетизма, два магнита, расположенные плашмя друг к другу, стремятся соединиться разноименными полюсами.

То есть, судя по последней фразе на экваторе силы (вертикальной составляющей), притягивающей магнит к земле нет! Как и отталкивающей!

Такие два магнита не притягиваются? То есть, нет силы притяжения, а есть сила растяжения? Нонсенс!

Зато на полюсах при таком расположении магнита она есть, но горизонтальная сила пропадает.

Причем разница всего-то в 2 раза, между этими составляющими!

Попросту берем два магнита и убеждаемся, что при подобном положении магнит сначала разворачивает, а затем притягивает. Южный ПОЛЮС к северному ПОЛЮСУ!



Понравилась статья? Поделитесь с друзьями!