Чему равен угол отражения света. Оптика

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается , а часть проникает во вторую среду и при этом преломляется . Луч АО носит название падающий луч , а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света .

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения .

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения .

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения . Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А 1 А и В 1 В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА 2 и ВВ 2 .

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ .

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение . Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

– это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность ). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим . Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO 1 .

Луч SO 1 падает на зеркало под углом α и отражается под углом γ (α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S 1 , которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S 1 , хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S 1 расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS 1 OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS 1 , то есть точка S 1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым , если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим . Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым . Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим .

Отраженный и падающий лучи лежат в плоскости, содержащей перпендикуляр к отражающей поверхности в точке падения, и угол падения равен углу отражения.

Представьте, что вы направили тонкий луч света на отражающую поверхность, — например, посветили лазерной указкой на зеркало или полированную металлическую поверхность. Луч отразится от такой поверхности и будет распространяться дальше в определенном направлении. Угол между перпендикуляром к поверхности (нормалью ) и исходным лучом называется углом падения , а угол между нормалью и отраженным лучом — углом отражения. Закон отражения гласит, что угол падения равен углу отражения. Это полностью соответствует тому, что нам подсказывает интуиция. Луч, падающий почти параллельно поверхности, лишь слегка коснется ее и, отразившись под тупым углом, продолжит свой путь по низкой траектории, расположенной близко к поверхности. Луч, падающий почти отвесно, с другой стороны, отразится под острым углом, и направление отраженного луча будет близким к направлению падающего луча, как того и требует закон.

Закон отражения, как любой закон природы, был получен на основании наблюдений и опытов. Можно его вывести и теоретически — формально он является следствием принципа Ферма (но это не отменяет значимости его экспериментального обоснования).

Ключевым моментом в этом законе является то, что углы отсчитываются от перпендикуляра к поверхности в точке падения луча. Для плоской поверхности, например, плоского зеркала, это не столь важно, поскольку перпендикуляр к ней направлен одинаково во всех точках. Параллельно сфокусированный световой сигнал — например, свет автомобильной фары или прожектора, — можно рассматривать как плотный пучок параллельных лучей света. Если такой пучок отразится от плоской поверхности, все отраженные лучи в пучке отразятся под одним углом и останутся параллельными. Вот почему прямое зеркало не искажает ваш визуальный образ.

Однако имеются и кривые зеркала. Различные геометрические конфигурации поверхностей зеркал по-разному изменяют отраженный образ и позволяют добиваться различных полезных эффектов. Главное вогнутое зеркало телескопа-рефлектора позволяет сфокусировать в окуляре свет от далеких космических объектов. Выгнутое зеркало заднего вида автомобиля позволяет расширить угол обзора. А кривые зеркала в комнате смеха позволяют от души повеселиться, разглядывая причудливо искаженные отражения самих себя.

Закону отражения подчиняется не только свет. Любые электромагнитные волны — радио, СВЧ, рентгеновские лучи и т. п. — ведут себя в точности так же. Вот почему, например, и огромные принимающие антенны радиотелескопов, и тарелки спутникового телевидения имеют форму вогнутого зеркала — в них используется всё тот же принцип фокусировки поступающих параллельных лучей в точку.

Следует отметить, что изображение, которое мы видим по ту сторону зеркала, создано не самими лучами, а их мысленным продолжением. Такое изображение называется мнимым. Его глазом видно, но на экране его невозможно получить, так как оно создано не лучами, а их мысленным продолжением.

При отражении также соблюдается принцип наименьшего времени распространения света. Для того, чтобы попасть после отражения в глаз наблюдателя, свет должен прийти именно тот путь, который указывает ему закон отражения. Именно распространяясь по такому пути, свет на свой путь потратит наименьшее время из всех возможных вариантов.

Закон преломления света

Как нам уже известно, свет может распространяться не только в вакууме, но и в других прозрачных средах. В этом случае свет будет испытать преломление. При переходе из менее плотной среды в более плотную, луч света при преломлении прижимается к перпендикуляру, проведённому к точке падения, а при переходе из более плотной среды в менее плотную, он наоборот: отклоняется от перпендикуляра.

При этом имеются два закона преломления:

Падающий луч, преломлённый луч и перпендикуляр, проведённый к точке падения, лежат в одной плоскости.

2. Отношение синусов углов падения и преломления равно обратному отношению показателей преломления:

sin a = n2

sin g n1

Представляет интерес прохождения луча света через трёхгранную призму. При этом, в любом случае наблюдается отклонение луча после прохождения через призму от первоначального направления:

У различных прозрачных тел показатель преломления различен. У газов он очень мало отличается от единицы. С повышением давления он возрастает, следовательно, показатель преломления газов зависит и от температуры. Вспомним, что если смотреть на отдалённые предметы сквозь горячий воздух, поднимающийся от костра, то видим, что всё, что вдали выглядит как колышащееся марево. У жидкостей показатель преломления зависит не только от самой жидкости, но и от концентрации растворённых в ней веществ. Ниже приводится небольшая таблица показателей преломления некоторых веществ.

Полное внутреннее отражение света.

Волоконная оптика

Следует отметить, что световой луч, распространяясь в пространстве, обладает свойством обратимости. Это значит, что по какому пути луч распространяется от источника в пространстве, по такому же пути он пойдёт обратно, если источник и точку наблюдения поменять местами.



Представим себе, что луч света распространяется из оптически более плотной среды в оптически менее плотную. Тогда, по закону преломления, он при преломлении должен выйти, отклонившись от перпендикуляра. Рассмотрим лучи, исходящие от точечного источника света, находящегося в оптически более плотной среде, например, в воде.

Из данного рисунка видно, что первый луч падает на поверхность раздела перпендикулярно. При этом луч от первоначального направления не отклоняется. Часто его энергии отражается от границы раздела и возвращается на источник. Остальная часть его энергии выходит наружу. Остальные лучи частично отражаются, частично выходят наружу. При увеличении угла падения растёт соответственно и угол преломления, что соответствует закону преломления. Но когда угол падения принимает такое значение, что, согласно закону преломления, угол выхода луча должен составить 90 градусов, то луч на поверхность вообще не выйдет: все 100% энергии луча отразятся от границы раздела. Все остальные лучи, падающие на поверхность раздела под углом, большим, чем этот, будут полностью отражены от поверхности раздела. Этот угол называется предельным углом , а явление называется полным внутренним отражением. То есть, поверхность раздела в данном случае выступает как идеальное зеркало. Значение предельного угла для границы с вакуумом или воздухом можно подсчитать по формуле:

Sin aпр = 1/n Здесь n – показатель преломления более плотной среды.

Явление полного внутреннего отражения широко используется в различных оптических приборах. В частности, используется в приборе для определения концентрации растворённых веществ в воде (рефрактометр). Там измеряется предельный угол полного внутреннего отражения, по которому определяется показатель преломления и потом по таблице определяют концентрацию растворённых веществ.



Особенно ярко проявляется явление полного внутреннего отражения в волоконной оптике. Ниже на рисунке изображено одно стекловолокно в разрезе:

Возьмём тонкое стеклянное волокно и в один из торцов запустим луч света. Поскольку волокно очень тонкое, то любой луч, вошедший в торец волокна, будет падать на его боковую поверхность под углом, значительно превышающий предельный угол и будет полностью отражён. Таким образом, вошедший луч будет многократно отражаться от боковой поверхности и выйдет из противоположного конца практически без потерь. Внешне это будет выглядеть так, как будто противоположный торец волокна ярко светится. К тому же совсем необязательно, чтобы стекловолокно было прямолинейным. Оно может изгибаться как угодно, причём, никакие изгибы не повлияют распространению света по волокну.

В связи с этим, учёным пришла идея: а что, если взять не одно волокно, а целый их пучок. Но при этом надо, чтобы все волокна в жгуте находились в строгом взаимном порядке и на обеих сторонах жгута торцы всех волокон находились в одной плоскости. И если при этом на один торец жгута с помощью линзы подать изображение, то каждое волокно в отдельности передаст на противоположный торец жгута одну маленькую частичку изображения. Все вместе волокна на противоположном торце жгута воспроизведут то же самое изображение, что было создано линзой. Причём, изображение будет в естественном свете. Таким образом, был создан прибор, названный позже фиброгастроскопом . Этим прибором можно осмотреть внутреннюю поверхность желудка, не производя оперативного вмешательства. Фиброгастроскоп вводят через пищевод в желудок и осматривают внутреннюю поверхность желудка. В принципе, данным прибором можно осмотреть не только желудок, но и другие органы изнутри. Данный прибор используется не только в медицине, но и в различных областях техники для осмотра недоступных областей. И при этом сам жгут может иметь всевозможные изгибы, которые при этом никак не влияют на качество изображения. Единственный недостаток данного прибора – это растровая структура изображения: то есть изображение состоит из отдельных точек. Для того, чтобы изображение было более чётким, нужно иметь ещё большее количество стекловолокон, причём они должны быть ещё более тонкими. А это значительно увеличивает стоимость прибора. Но с дальнейшим развитием технических возможностей данная проблема вскоре будет решена.

Линза

Для начала рассмотрим линзу. Линза – это прозрачное тело, ограниченное либо двумя сферическими поверхностями, либо сферической поверхностью и плоскостью.

Рассмотрим линзы в поперечном разрезе. Линза искривляет прошедший через неё световой пучок. Если пучок, после полхождения через линзу будет собираться в точку, то такая линза называется собирающей. Если же падающий параллельный световой пучок после прохождении через линзу будет расходиться, то такая линза называется рассеивающей.

Ниже изображены собирающие и рассеивающие линзы и их условные обозначения:

Из данного рисунка видно, что все параллельно падающие на линзу лучи сходятся в одной точке. Эта точка называется фокусом (F ) линзы. Расстояние от фокуса до самой линзы называется фокусным расстоянием линзы. Оно в системе СИ измеряется в метрах. Но существует ещё одна единица, характеризующая линзу. Эта величина называется оптической силой и является величиной, обратной фокусному расстоянию и называетсядиоптрией . (Дп ). Обозначается буквой D. D = 1/F. У собирающей линзы значение оптической силы имеет знак плюс. Если на линзу пустить свет, отражённый от какого-либо протяжённого объекта, то каждый элемент объекта отобразится в плоскости, проходящей через фокус в виде изображения. При этом изображение будет перевёрнутым. Поскольку это изображение будет создано самими лучами, то оно будет называться действительным.


Это явление используют в современных фотоаппаратах. Действительное изображение создаётся на фотоплёнке.

Рассеивающая линза действует противоположно собирающей линзе. Если на неё по нормали падает параллельный пучок света, то после прохождении через линзу, пучок света будет расходиться так, как будто все лучи выходят из некоторой мнимой точки, расположенной по другую сторону линзы. Эта точка называется мнимым фокусом и фокусное расстояние будет со знаком минус. Следовательно, оптическая сила такой линзы будет выражаться также в диоптрия, но её значение будет со знаком минус. При рассматривании окружающих предметов через рассеивающую линзу, все предметы, видимые через линзу, будут казаться уменьшенными в размерах

Введем несколько определений. Углом падения луча назовем угол между падающим лучом и перпендикуляром к отражающей поверхности в точке излома луча (угол a). Углом отражения луча назовем угол между отраженным лучом и перпендикуляром к отражающей поверхности в точке излома луча (угол b).

При отражении света всегда выполняются две закономерности: Первая. Луч падающий, луч отраженный и перпендикуляр к отражающей поверхности в точке излома луча всегда лежат в одной плоскости. Вторая. Угол падения равен углу отражения. Эти два утверждения выражают суть закона отражения света.

На левом рисунке лучи и перпендикуляр к зеркалу не лежат в одной плоскости. На правом рисунке угол отражения не равен углу падения. Поэтому такое отражение лучей нельзя получить на опыте.

Закон отражения является справедливым как для случая зеркального, так и для случая рассеянного отражения света. Обратимся еще раз к чертежам на предыдущей странице. Несмотря на кажущуюся беспорядочность в отражении лучей на правом чертеже, все они расположены так, что углы отражения равны углам падения. Взгляните, шероховатую поверхность правого чертежа мы «разрезали» на отдельные элементы и провели перпендикуляры в точках излома лучей.

ТЕНЬ ПЛАМЕНИ

Осветите горящую свечу мощной электрической лампой. На экране из белого листа бумаги появится не только тень свечи, но и тень ее пламени

На первый взгляд кажется стран­ным, что сам источник света может иметь собственную тень. Объясняется это тем, что в пламени свечи есть непрозрачные раскаленные частицы и что очень велика разница в яр­кости пламени свечи и освещающего ее мощного источника света. Этот опыт очень хорошо наблюдать, когда свечу освещают яркие лучи Солнца.

ЗАКОН ОТРАЖЕНИЯ СВЕТА

Для этого опыта нам понадобятся: небольшое прямоугольное зеркало и два длинных карандаша.
Положите на стол лист бумаги и проведите на нем прямую линию. Поставьте на бумагу перпендикулярно проведенной линии зеркало. Что­бы зеркало не упало, позади него положите книги.


Для проверки строгой перпендикулярности нарисованной на бумаге линии к зеркалу проследите, чтобы
и эта линия и ее отражение в зеркале были прямолинейными, без излома у поверхности зеркала. Это мы с вами создали перпендикуляр.

В роли световых лучей в нашем опыте выступят карандаши. Положите карандаши на листок бумаги по разные стороны от начерченной линии концами друг к другу и к той точке, где линия упирается в зеркало.

Теперь проследите, чтобы отражения карандашей в зеркале и карандаши, лежащие перед зеркалом, образовывали прямые линии, без излома. Один из карандашей будет играть роль падающего луча, другой - луча отраженного. Углы между карандашами и начерченным перпендикуляром получаются равными друг другу.

Если теперь вы повернете один из карандашей (например, увеличивая угол падения), то обязательно нужно повернуть и второй карандаш, чтобы не было излома между первым карандашом и его продолжением в зеркале.
Всякий раз, изменяя угол между одним карандашом и перпендикуляром, нужно проделывать это и с другим карандашом, чтобы не нарушить прямолинейности светового луча, который карандаш изображает.


ЗЕРКАЛЬНОЕ ОТРАЖЕНИЕ

Бумага бывает разных сортов и отличается своей гладкостью. Но даже очень гладкая бумага не способна отражать, как зеркало, она совсем не похожа на зеркало. Если такую гладкую бумагу рассматривать через увеличительное стекло, то сразу можно увидеть ее волокнистое строение, разглядеть впадинки и бугорки на ее поверхности. Свет, падающий на бумагу, отражается и бугорками, и впадинками. Эта беспорядочность отражений создает рассеянный свет.

Однако и бумагу можно заставить отражать световые лучи по-другому, чтобы не получался рассеянный свет. Правда, даже очень гладкой бумаге далеко до настоящего зеркала, но все-таки и от нее можно добиться некоторой зеркальности.

Возьмите лист очень гладкой бумаги и, прислонив его край к переносице, повернитесь к окну (этот опыт надо делать в яркий, солнечный день). Ваш взгляд должен скользить по бумаге. Вы увидите на ней очень бледное отражение неба смутные силуэты деревьев, домов. И чем меньше будет угол между направлением взгляда и листом бумаги, тем яснее будет отражение. Подобным образом можно получить на бумаге зеркальное отражение свечи или электрической лампочки.

Чем же объяснить, что на бумаге, хоть и плохо, все-таки можно видеть отражение?
Когда вы смотрите вдоль листа, все бугорки бумажной поверхности загораживают впадинки и превращаются как бы в одну сплошную поверхность. Беспорядочных лучей от впадин мы уже не видим, они нам теперь не мешают видеть то, что отражают бугорки.


ОТРАЖЕНИЕ ПАРАЛЛЕЛЬНЫХ ЛУЧЕЙ


Положите на расстоянии двух метров от настольной лампы (на одном с ней уровне) лист плотной белой бумаги. На одном краю бумаги укрепите расческу с крупными зубьями. Сделайте так, чтобы свет от лампы проходил на бумагу сквозь зубья расчески. Около самой расчески получится полоска тени от ее «спинки». На бумаге от этой теневой полоски должны идти параллельные полоски света, прошедшие между зубьями расчески

Возьмите небольшое прямоугольное зеркало и поставьте его поперек светлых полосок. На бумаге появятся полоски отраженных лучей.

Поверните зеркало, чтобы лучи падали на него под некоторым углом. Отражен­ные лучи тоже повернутся. Если мысленно провести перпендикуляр к зеркалу в месте падения какого-ни­будь луча, то угол между этим перпендикуляром и падающим лучом будет равен углу отраженного луча. Как бы вы ни изменяли угол падения лучей на отражающую поверхность, как бы ни поворачивали зеркало, всегда отраженные лучи будут выходить под таким же углом.

Если нет маленького зеркала, его можно заменить блестящей стальной линейкой или лезвием безопасной бритвы. Результат будет несколько хуже, чем с зеркалом, но все-таки опыт провести можно.

С бритвой или линейкой возможно проделать еще и такие опыты. Согните линейку или бритву и поставьте на пути параллельных лучей. Если лучи попадут на вогнутую поверхность, то они, отразившись, соберутся в одной точке.

Попав на выпуклую поверхность, лучи отразятся от нее веером. Для наблюдения этих явлений очень пригодится та тень, которая получилась от «спинки» расчески.

ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ

Интересное явление происходит с лучом света, который выходит из более плотной среды в менее плотную, например, из воды в воздух. Лучу света не всегда удается это сделать. Все зависит от того, под каким углом он пытается выйти из воды. Здесь угол - это угол, который луч образует с перпендикуляром к поверхности, через которую он хочет пройти. Если этот угол равен нулю, то он свободно выходит наружу. Так, если положить на дно чашки пуговицу и смотреть на нее точно сверху, то пуговица хорошо видна.

Если же увеличивать угол, то может наступить момент, когда нам будет казаться, что предмет исчез. В этот момент лучи полностью отразятся от поверхности, уйдут в глубину и до наших глаз не дойдут. Такое явление называется полным внутренним отражением или полным отражением.

Опыт 1

Сделайте из пластилина шарик диаметром 10- 12 мм и воткните в него спичку. Из плотной бумаги или картона вырежьте кружок диаметром 65 мм. Возьмите глубокую тарелку и натяните на ней параллельно диаметру две нитки на расстоянии трех сантиметров друг от друга. Концы ниток закрепите на краях тарелки пластилином или лейкопластырем.


Затем, проткнув шилом кружок в самом центре, вставьте в отверстие спичку с шариком. Расстояние между шариком и кружком сделайте около двух миллиметров. Положите кружок шариком вниз на натянутые нитки в центре тарелки. Если посмотреть сбоку, шарик должен быть виден. Теперь налейте в тарелку воду до самого кружка. Шарик исчез. Световые лучи с его изображением уже не дошли до наших глаз. Они, отразившись от внутрен­ней поверхности воды, ушли в глубь тарелки. Произошло полное отражение.


Опыт 2

Надо найти шарик из металла с ушком или отверстием, подвесить его на кусочке проволоки и покрыть копотью (лучше всего поджечь кусочек ваты, смоченный скипидаром, машинным или растительным маслом). Дальше налейте в тонкий стакан воды и, когда шарик остынет, опустите его в воду. Виден будет блестящий шарик с «черной косточкой». Это происходит потому, что частицы сажи удерживают воздух, который создает вокруг шарика газовую оболочку.

Опыт 3

Налейте в стакан воду и погрузите в нее стеклянную пипетку. Если ее рассматривать сверху, немного наклонив в воде, чтобы хорошо была видна ее стеклянная часть, она будет так сильно отражать световые лучи, что станет словно зеркальной, будто сделана из серебра. Но стоит нажать на резинку пальцами и набрать в пипетку воду, как сразу же иллюзия исчезнет, и мы увидим только стеклянную пипетку - без зеркального наряда. Зеркальной ее делала поверхность воды, соприкасавшаяся со стеклом, за которым был воздух. От этой границы между водой и воздухом (стекло в данном случае не учитывается) отражались полностью световые лучи и создавали впечатление зеркальности. Когда же пипетка наполнилась водой, воздух в ней исчез, полное внутреннее отражение лучей прекратилось, потому что они просто стали проходить в воду, заполнившую пипетку.

Обратите внимание на пузырьки воздуха, которые иногда бывают в воде на внутренней стороне стакана. Блеск этих пузырьков тоже результат полного внутреннего отражения света от границы воды и воздуха в пузырьке.

ХОД СВЕТОВЫХ ЛУЧЕЙ В СВЕТОВОДЕ

Хотя световые лучи распространяются от источника света по прямым линиям, можно заставить их идти и по кривому пути. Сейчас изготовляют тончайшие световоды из стекла, по которым световые лучи проходят большие расстояния с различными поворотами.

Простейший световод можно сделать довольно просто. Это будет струя воды. Свет, идя по такому световоду, встретив поворот, отражается от внутренней поверхности струи, не может вырваться наружу и идет дальше внутри струи до самого ее конца. Частично вода рассеивает небольшую долю света, и поэтому в темноте мы все-таки увидим слабо светящуюся струю. Если вода слегка забелена краской, светиться струя будет сильнее.
Возьмите шарик для настольного тенниса и проделайте в нем три отверстия: для крана, для короткой резиновой трубки и против этого отверстия третье - для лампочки от карманного фонаря. Лампочку вставьте внутрь шарика цоколем наружу и прикрепите к нему два провода, которые потом присоедините к батарейке от карманного фонаря. Шарик укрепите на кране с помощью изоляционной ленты. Все места соединений промажьте пластилином. Затем обмотайте шарик темной материей.

Откройте кран, но не очень сильно. Струя воды, вытекающая из трубки, должна, изгибаясь, падать недалеко от крана. Свет погасите. Присоедините провода к батарейке. Лучи света от лампочки пройдут через воду в отверстие, из которого вытекает вода. Свет пойдет по струе. Вы увидите лишь ее слабое свечение. Основной поток света идет по струе, не вырывается из нее даже там, где она изгибается.


ОПЫТ С ЛОЖКОЙ

Возьмите блестящую ложку. Если она хорошо отполирована, то даже кажется немножко зеркальной, что-то отражает. Закоптите ее над пламенем свечи, да почернее. Теперь ложка ничего уже не отражает. Копоть поглощает все лучи.

Ну, а теперь опустите закопченную ложку в стакан с водой. Смотри: заблестела, как серебро! Куда же копоть-то девалась? Отмылась, что ли? Вынимаешь ложку - черна по-прежнему...

Дело здесь в том, что частички копоти плохо смачиваются водой. Поэтому вокруг закопченной ложки образуется как бы пленка, как бы «водяная кожа». Словно мыльный пузырь, натянутый на ложку, как перчатка! Но мыльный пузырь ведь блестит, он отражает свет. Вот и этот пузырь, окружающий ложку, тоже отражает.
Можете, например, закоптить над свечой яйцо и погрузить его в воду. Оно будет там блестеть, как серебряное.

Чем чернее, тем светлее!

ПРЕЛОМЛЕНИЕ СВЕТА

Вы знаете, что луч света прямолинеен. Вспомните хотя бы луч, пробившийся сквозь щелку в ставне или в занавесе. Золотой луч, полный кружащихся пылинок!

Но… физики привыкли все проверять на опыте. Опыт со ставнями, конечно, очень нагляден. А что вы скажите об опыте с гривенником в чашке? Не знаете, этого опыта? Сейчас мы с вами его сделаем. Положите гривенник в пустую чашку и присядьте так, чтобы он перестал быть виден. Лучи от гривенника шли бы прямо в глаз, да край чашки загородил им дорогу. Но я сейчас устрою так, что вы снова увидите гривенник.

Вот я наливаю в чашку воду… Осторожно, потихоньку, чтобы гривенник не сдвинулся… Больше, больше…

Смотрите, вот он, гривенник!
Появился, словно бы всплыл. Или, вернее, он лежит на дне чашки. Но дно это будто бы поднялось, чашка «обмелела». Прямые лучи от гривенника к вам не доходили. Теперь лучи доходят. Но как же они огибают край чашки? Неужели гнутся или ломаются?

Можно в ту же чашку или в стакан наклонно опустить чайную ложечку. Смотрите, сломалась! Конец, погруженный в воду, переломился вверх! Вынимаем ложечку - она и целая, и прямая. Значит, лучи действительно ломаются!

Источники: Ф. Рабиза "Опыты без приборов", "Здравствуй физика" Л.Гальперштейн



Понравилась статья? Поделитесь с друзьями!