Что из чего состоит атом из молекулы. Молекула и атом: что это, что общего и в чем разница

По современным представлениям:

Атом – это электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.

Неправильно говорить, что «атом – наименьшая частица химического элемента, сохраняющая все его химические свойства», т. к. химический элемент – это вид частиц (атомов, ионов, ядер) с определенным зарядом ядра; поэтому элемент не состоит из атомов!

Кроме того, химические свойства – это энергетика и скорость химической реакции, а они зависят не только от состава реагирующей частицы, но и от ее энергетического состояния, геометрической формы и т. п., потому химическими свойствами обладают не атомы (и молекулы), а их совокупности – химические вещества.

Молекула – это электронейтральная наименьшая совокупность атомов, образующих определенную структуру посредством химических связей, определяющая состав вещества.

Согласно современным представлениям из молекул состоят вещества в газо- и парообразном состоянии. В твердом состоянии из молекул состоят лишь вещества, кристаллическая решетка которых имеет молекулярную структуру (большинство органических веществ; неметаллы, кроме бора, кремния, аллотропных модификаций углерода; углекислый газ СО 2 ; вода Н 2 О).

Большинство же твердых неорганических веществ не имеет молекулярной структуры: их решетка состоит не из молекул, а из других частиц (ионов, атомов); они существуют в виде макротел (кристалл NaCl, друза кварца, кусок железа и др.). К веществам немолекулярного строения относятся соли, оксиды металлов, алмаз, кремний, металлы и др.

Химическая связь между молекулами у веществ с молекулярной структурой менее прочная, чем между атомами в молекуле, поэтому их температуры плавления и кипения сравнительно низкие. У веществ с немолекулярной структурой химическая связь между частицами весьма прочная, поэтому их температуры плавления и кипения высокие.

1.3.2. Массы атомов и молекул. Моль

Массы атомов и молекул чрезвычайно малы, поэтому для них используют специальную единицу измерения – атомную единицу массы (сокращенное обозначение «а. е. м.»):

1 а. е. м. = 1,66·10 –27 кг.

Например, абсолютная масса атома алюминия:

m o (Al) = 4,482·10 –26 кг = 27 а. е. м.

Чаще используют безразмерные величины – относительные атомные и молекулярные массы.

Относительная атомная масса A r – число, показывающее, во сколько раз масса данного атома больше 1/12 массы атома углерода 12 С.

Например:

A r (Al) = = 27.

Относительная молекулярная масса M r – число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода 12 С.

Например:

M r (SO 2) = = 64.

Наряду с единицами массы и объема, в химии пользуются также единицей количества вещества, называемой молем (сокращенное обозначение – «моль»).

Моль – это количество вещества, содержащее столько же структурных единиц (атомов, молекул, ионов, ядер, электронов, радикалов), сколько содержится атомов в 0,012 кг (12 г) углерода 12 C.

В одном моле любого вещества содержится число Авогадро структурных единиц, а именно

N A = 6,02·10 23 моль –1 .

Моль вещества имеет определенную массу (молярную массу) и определенный объем (молярный объем).

Молярная (мольная) масса М – это масса 1 моль вещества, выраженная в единицах массы:

M(Al) = 27 г/моль; M(H 2 SO 4) = 98 г/моль.

Молярный (мольный) объем V m – объем 1 моль вещества, выраженный в единицах объема:

V m (CO 2) = 22,4 л/моль (н. у.) 1 ; V m (H 2 O) = 18 мл/моль.

Пример 1.1 . Во время войны во Вьетнаме (1962–1971 гг.) американские войска широко использовали дефолианты в борьбе с партизанами. Дефолиант «agent orange» (оранжевый реактив) вызывает ускоренное опадание листьев деревьев. Всего над джунглями было распылено 57 тыс. т этого препарата, в котором в виде примеси содержалось до 170 кг диоксина. Сейчас этот дефолиант известен под названием 2,4-D (2,4-дихлорфеноуксусная кислота).Рассчитайте массу одной молекулы дефолианта (молекулярная формула С 8 Н 6 O 3 Cl 2): а) в граммах; б) в атомных единицах массы.

Решение:

а). Для расчета массы молекулы 2,4-дихлорфеноуксусной кислоты необходимо знать ее молярную массу:

М(С 8 Н 6 O 3 Cl 2) = 8 · 12 + 6 · 1 + 3 · 16 + 2 · 35,5 = 221 (г/моль).

Рассчитываем количество вещества по следующим формулам:

ν = m / M; ν = N / N A ,

где m – масса, M – молярная масса, N – число атомов или молекул, N A = 6,02·10 23 моль –1 – постоянная Авогадро.

Объединив эти формулы можно выразить массу через число молекул:

Подставляя в полученную формулу N = 1, M = 221 г/моль, N A , находим:

m(С 8 Н 6 O 3 Cl 2) = = 36,7·10 –23 (г).

б). Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на 1 а. е. м.

m(С 8 Н 6 O 3 Cl 2) = 1 а. е. м. · M r (С 8 Н 6 O 3 Cl 2)

Относительная молекулярная масса численно равна молярной массе:

M r (С 8 Н 6 O 3 Cl 2) = 221;

m(С 8 Н 6 O 3 Cl 2) = 1 а. е. м. · 221 = 221 а. е. м.

Пример 1.2. Сколько молекул содержится в 1 л воды?

Решение. 1. Массу 1 л воды можно вычислить, используя величину плотности (плотность воды при 4С равна 1 г/см 3):

m(H 2 O) = V(H 2 O) · ρ(H 2 O);

V(H 2 O) = 1 л = 1 дм 3 = 1000 см 3 ;

m(H 2 O) = 1000 см 3 · 1 г/см 3 = 1000 г.

2. Дальнейшие рассуждения можно вести двумя способами.

1 способ: по количеству вещества.

Пользуясь формулами ν = m / M и ν = N / N A , находим:

ν(Н 2 О) = m(Н 2 О) / M(Н 2 О); ν(Н 2 О) = 1000 г / 18 г/моль = 55,6 моль.

N(H 2 O) = ν(Н 2 О) · N A ; N(H 2 O) = 55,6 моль · 6,02·10 23 моль –1 = 334,7·10 23 = 3,35·10 25 .

2 способ: с помощью пропорции.

18 г (1 моль) H 2 O содержат 6,02·10 23 молекул;

1000 г Н 2 О содержат N молекул.

N(H 2 O) = 1000 · 6,02·10 23 / 18 = 3,35·10 25 .

Пример 1.3. Вычислите молярный объем алюминия, если его плотность составляет 2,7 г/см 3 .

Решение. Для вычисления молярного объема через плотность вещества необходимо знать его молярную массу:

ρ(Al) = ;V m (Al) = .

V m (Al) = = 10 см 3 /моль = 0,01 л/моль.

По которому молекула образуется из атомов. Из одного атома молекула образоваться не может. Обычно подразумевается, что молекулы нейтральны (не несут электрических зарядов) и не несут неспаренных электронов (все валентности насыщены); заряженные молекулы называют ионами , молекулы с мультиплетностью , отличной от единицы (то есть с неспаренными электронами и ненасыщенными валентностями) - радикалами .

Молекулы относительно высокой молекулярной массы, состоящие из повторяющихся низкомолекулярных фрагментов, называются макромолекулами .

Особенности строения молекул определяют физические свойства вещества , состоящего из этих молекул.

К веществам, сохраняющим молекулярную структуру в твердом состоянии, относятся, например, вода, оксид углерода (IV), многие органические вещества. Они характеризуются низкими температурами плавления и кипения. Большинство же твердых (кристаллических) неорганических веществ состоят не из молекул, а из других частиц (ионов, атомов) и существуют в виде макротел (кристалл хлорида натрия, кусок меди и т. д.) .

Состав молекул сложных веществ выражается при помощи химических формул .

История становления понятия

На международном съезде химиков в г. Карлсруе (Германия) в 1860 году были приняты определения понятий молекулы и атома. Молекула - наименьшая частица химического вещества, обладающая всеми его химическими свойствами.

Классическая теория химического строения

Шаро-стержневая модель молекулы диборана B 2 H 6 . Атомы бора показаны розовым, водорода - серым.
Центральные «мостиковые» атомы одновалентного водорода образуют с соседними атомами бора трёхцентровые связи

В классической теории химического строения молекула рассматривается как наименьшая стабильная частица вещества, обладающая всеми его химическими свойствами.

Молекула данного вещества имеет постоянный состав, то есть одинаковое количество атомов, объединённых химическими связями , при этом химическая индивидуальность молекулы определяется именно совокупностью и конфигурацией химических связей, то есть валентными взаимодействиями между входящими в её состав атомами, обеспечивающими её стабильность и основные свойства в достаточно широком диапазоне внешних условий. Невалентные взаимодействия (например, водородные связи), которые зачастую могут существенно влиять на свойства молекул и вещества, образуемого ими, в качества критерия индивидуальности молекулы не учитываются.

Центральным положением классической теории является положение о химической связи, при этом допускается наличие не только двухцентровых связей, объединяющих пары атомов, но и наличие многоцентровых (обычно трёхцентровых, иногда - четырёхцентровых) связей с «мостиковыми» атомами - как, например, мостиковых атомов водорода в боранах , природа химической связи в классической теории не рассматривается - учитываются лишь такие интегральные характеристики, как валентные углы , диэдральные углы (углы между плоскостями, образованными тройками ядер), длины связей и их энергии .

Таким образом, молекула в классической теории представляется динамической системой, в которой атомы рассматриваются как материальные точки и в которой атомы и связанные группы атомов могут совершать механические вращательные и колебательные движения относительно некоторой равновесной ядерной конфигурации, соответствующей минимуму энергии молекулы и рассматривается как система гармонических осцилляторов .

Молекула состоит из атомов, а если точнее, то из атомных ядер, окруженных определенным числом внутренних электронов, и внешних валентных электронов, образующих химические связи. Внутренние электроны атомов обычно не участвуют в образовании химических связей. Состав и строение молекул вещества не зависят от способа его получения.

Атомы объединяются в молекуле в большинстве случаев с помощью химических связей. Как правило, такая связь образуется одной, двумя или тремя парами электронов, находящихся в совместном владении двух атомов, образуя общее электронное облако, форма которого описывается типом гибридизации. Молекула может иметь положительно и отрицательно заряженные атомы (ионы).

Состав молекулы передается химическими формулами. Эмпирическая формула устанавливается на основе атомного соотношения элементов вещества и молекулярной массы .

Геометрическая структура молекулы определяется равновесным расположением атомных ядер. Энергия взаимодействия атомов зависит от расстояния между ядрами. На очень больших расстояниях эта энергия равна нулю. Если при сближении атомов образуется химическая связь, то атомы сильно притягиваются друг к другу (слабое притяжение наблюдается и без образования химической связи), при дальнейшем сближении начинают действовать электростатические силы отталкивания атомных ядер. Препятствием к сильному сближению атомов является также невозможность совмещения их внутренних электронных оболочек.

Каждому атому в определенном валентном состоянии в молекуле можно приписать определенный атомный, или ковалентный радиус (в случае ионной связи - ионный радиус), который характеризует размеры электронной оболочки атома (иона) образующего химическую связь в молекуле. Размер молекулы, то есть размер её электронной оболочки, является величиной до известной степени условным. Существует вероятность (хотя и очень малая) найти электроны молекулы и на большем расстоянии от её атомного ядра. Практические размеры молекулы определяются равновесным расстоянием, на которое они могут быть сближены при плотной упаковке молекул в молекулярном кристалле и в жидкости . На больших расстояниях молекулы притягиваются друг к другу, на меньших - отталкиваются. Размеры молекулы можно найти с помощью рентгеноструктурного анализа молекулярных кристаллов. Порядок величины этих размеров может быть определен из коэффициентов диффузии, теплопроводности и вязкости газов и с плотности вещества в конденсированном состоянии. Расстояние, на которое могут сблизиться валентно не связанные атомы одного и того же или разных молекул, может быть охарактеризована средними значениями так называемых ван дер ваальсовых радиусов (Ǻ).

Радиус Ван-дер-Ваальса существенно превышает ковалентный. Зная величины ван дер ваальсовых, ковалентных и ионных радиусов, можно построить наглядные модели молекул, которые бы отражали форму и размеры их электронных оболочек.

Ковалентные химические связи в молекуле расположены под определенными углами, которые зависят от состояния гибридизации атомных орбиталей. Так, для молекул насыщенных органических соединений характерно тетраэдральное (четырехгранное) расположение связей, образуемых атомом углерода, для молекул с двойной связью (С = С) - плоское расположение атомов углерода, для молекул соединений с тройной связью (С º С) - линейное расположение связей. Таким образом, многоатомная молекула имеет определенную конфигурацию в пространстве, то есть определенную геометрию расположения связей, которая не может быть изменена без их разрыва. Молекула характеризуется той или иной симметрией расположения атомов. Если молекула не имеет плоскости и центра симметрии, то она может существовать в двух конфигурациях, которые представляют собой зеркальные отражения друг друга (зеркальные антиподы, или стереоизомеры). Все важнейшие биологические функциональные вещества в живой природе существуют в форме одного определенного стереоизомера.

Квантохимическая теория химического строения

В квантохимической теории химического строения основными параметрами, определяющими индивидуальность молекулы, является её электронная и пространственная (стереохимическая) конфигурации. При этом в качестве электронной конфигурации, определяющей свойства молекулы принимается конфигурация с наинизшей энергией, то есть основное энергетическое состояние.

Представление структуры молекул

Молекулы состоят из электронов и атомных ядер, расположение последних в молекуле передаёт структурная формула (для передачи состава используется т. н. брутто-формула). Молекулы белков и некоторых искусственно синтезированных соединений могут содержать сотни тысяч атомов. Отдельно рассматриваются макромолекулы полимеров.

Молекулы являются объектом изучения теории строения молекул, квантовой химии , аппарат которых активно использует достижения квантовой физики , в том числе релятивистских её разделов. Также в настоящее время развивается такая область химии, как молекулярный дизайн. Для определения строения молекул конкретного вещества современная наука располагает колоссальным набором средств: электронная спектроскопия , колебательная спектроскопия , ядерный магнитный резонанс и электронный парамагнитный резонанс и многие другие, но единственными прямыми методами в настоящее время являются дифракционные методы, как то: рентгеноструктурный анализ и дифракция нейтронов.

Взаимодействие атомов в молекуле

Природа химических связей в молекуле оставалась загадкой до создания квантовой механики - классическая физика не могла объяснить насыщаемость и направленность валентных связей. Основы теории химической связи были созданы в 1927 году Гайтлером и Лондоном на примере простейшей молекулы Н 2 . Позже, теория и методы расчетов были значительно усовершенствованы.

Химические связи в молекулах подавляющего большинства органических соединений является ковалентными. Среди неорганических соединений существуют ионные и донорно-акцепторные связи, которые реализуются в результате обобществления пары электронов атома. Энергия образования молекулы из атомов во многих рядах подобных соединений приближенно аддитивна. То есть можно считать, что энергия молекулы - это сумма энергий её связей, имеющих постоянные значения в таких рядах.

Аддитивность энергии молекулы выполняется не всегда. Примером нарушения аддитивности являются плоские молекулы органических соединений с так называемыми сопряженными связями, то есть с кратными связями, которые чередуются с единичными. В таких случаях валентные электроны, определяющие кратность связей, так называемые p-электроны, становятся общими для всей системы сопряженных связей, делокализованимы. Такая делокализация электронов приводит к стабилизации молекулы. Выравнивание электронной плотности вследствие коллективизации p-электронов по связям выражается в укорочении двойных связей и удлинение одинарных. В правильном шестиугольнике межуглеродных связей бензола все связи одинаковы и имеют длину, среднюю между длиной одинарной и двойной связи. Сопряжение связей ярко проявляется в молекулярных спектрах.

Современная квантовомеханическая теория химических связей учитывает частичную делокализации не только p-, но и s-электронов, которая наблюдается в любых молекулах.

В подавляющем большинстве случаев суммарный спин валентных электронов в молекуле равна нулю, то есть спины электронов попарно насыщены. Молекулы, содержащие неспаренные электроны - свободные радикалы (например, атомный водород Н, метил ·CH 3), обычно неустойчивы, поскольку при их реакции друг с другом происходит значительное снижение энергии вследствие образования ковалентных связей .

Межмолекулярное взаимодействие

Спектры и строение молекул

Электрические, оптические, магнитные и другие свойства молекул связаны с волновыми функциями и энергиями различных состояний молекул. Информацию о состояниях молекул и вероятности перехода между ними дают молекулярные спектры.

Частоты колебаний в спектрах определяются массами атомов, их расположением и динамикой межатомных взаимодействий. Частоты в спектрах зависят от моментов инерции молекул, определение которых с спектроскопических данных позволяет получить точные значения межатомных расстояний в молекуле. Общее число линий и полос в колебательном спектре молекулы зависит от её симметрии.

Электронные переходы в молекулах характеризуют структуру их электронных оболочек и состояние химических связей . Спектры молекул, которые имеют большее количество связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Вещества, которые построены из таких молекул, характеризуются окраской; к таким веществам относятся все органические красители.

Молекулы в химии, физике и биологии

Понятия молекулы является основным для химии, и большей частью сведений о строении и функциональность молекул наука обязана химическим исследованиям. Химия определяет строение молекул на основе химических реакций и, наоборот, на основе строения молекулы, определяет каким будет ход реакций.

Строению и свойствам молекулы определяются физические явления, которые изучаются молекулярной физикой. В физике понятия молекулы используется для объяснения свойств газов, жидкостей и твердых тел. Подвижностью молекул определяется способность вещества к диффузии , её вязкость, теплопроводность и т. д.. Первое прямое экспериментальное доказательство существования молекул было получено французским физиком Ж. Перреном в 1906 году при изучении броуновского движения .

Поскольку все живые организмы существуют на основе тонко сбалансированной химической и нехимической взаимодействия между молекулами, изучение строения и свойств молекул имеет фундаментальное значение для биологии и естествознания в целом.

Развитие биологии, химии и молекулярной физики привели к возникновению молекулярной биологии , которая исследует основные явления жизни, исходя из строения и свойств биологически функциональных молекул.

См. также

  • Теория молекулярных орбиталей

Примечания

Литература

  • Татевский В. М. Квантовая механика и теория строения молекул. - М.: Изд-во МГУ , . - 162 с.
  • Бейдер Р. Атомы в молекулах. Квантовая теория. - М.: Мир, . - 532 c. ISBN 5-03-003363-7
  • Минкин В. И. , Симкин Б. Я., Миняев Р. М. Теория строения молекул. - М.: Высшая школа, . - 408 с.
  • Кук Д., Квантовая теория молекулярных систем. Единый подход. Пер с англ. М.: Интеллект, 2012. - 256с. ISBN: 978-6-91559-096-9

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Молекулы (видеурок, программа 7 класса)
  • Шредингер Э. Волновая теория механики атомов и молекул. УФН 1927

Все вещества в природе состоят из очень маленьких частиц, называемых молекулами. Эти частички в веществе постоянно взаимодействуют между собой. Невооруженным взглядом нельзя их увидеть. Понятие, основные свойства и характеристики молекул мы и рассмотрим в статье.

Молекулами называются частицы, имеющие нейтральный электрический заряд и состоящие из различного количества атомов. Число их, как правило, всегда больше двух, и связаны эти атомы между собой ковалентной связью. Впервые о существовании молекул стало известно во Франции. За это нужно отдать должное физику Жану Перрену, который и совершил это великое открытие в 1906 году. Состав молекулы постоянен. Она не меняет его на протяжении всего своего существования. Строение этой маленькой частички зависит от того, какими физическими свойствами обладает образуемое ею вещество. Каждая молекула индивидуальна тем, что атомы в ее составе наделены различными химическими взаимодействиями и конфигурациями, характерными для конкретного вещества. Связываются атомы валентно и невалентно. Благодаря валентности связей, частица обеспечивается базовыми характеристиками и постоянством. Невалентность связей оказывает большое влияние на характеристики молекул. Происходит это благодаря свойству вещества, состоящему из них. Кроме того, в молекуле существуют двухцетровые связи и многоцентровые. Из последних наиболее распространены трех- и четырехцентровые. Молекулы, по сути, являются подвижными системами, в них атомы вращаются вокруг ядра конфигурации, прибывающего в состоянии равновесия. А сами молекулы движутся хаотично. Если расстояние между ними большое, то они друг к другу притягиваются, а если интервал маленький, то тогда одна молекула отталкивает от себя другую. В состав молекул входят частицы, называемые атомами . То, как они располагаются в этой частице, можно зафиксировать определенной структурной формулой. Передается молекулярный состав формулой брутто. К примеру, Н2О – это формула воды. Молекула этого вещества содержит в себе 2 атома водорода и 1 атом кислорода. O2 – это кислород, Н2CO3 – это угольная кислота. Встречаются и такие типы молекул, преобладание атомов в которых вычисляется ни единицами, ни десятками и даже ни сотнями, а тысячами. Эта особенность свойственна белковым частицам. Изучением молекул в веществе занимается квантовая химия, теория о строении молекул. В ходе реакций, проводимых химиками между веществами, получаются сведения о строении и особенностях молекул. Не обходится здесь и без открытий в области квантовой физики, которые благотворно используются при исследовании этих частиц в науке. При определении, из чего же состоит молекула, учеными применяются методики дифракционного типа. К ним относятся методики рентгеновского структурного исследования и нейтроновой дифракции. Это прямые формы методов. Также предполагается изучение молекул и другими научными способами.

Надеемся, что из этой статьи вы получили для себя много полезной и интересной информации о молекулах. Теперь вы точно знаете, что это за частица, и имеете представление о ее составе, основных свойствах и способах исследования молекул учеными в области химии.

Очень часто можно услышать мнение, что атом будучи составной частью молекулы, обладает теми же свойствами и имеет аналогичную структуру. Такая позиция лишь отчасти имеет право на существование, поскольку частицы имеют общие и отличительные признаки. Для начала достаточно рассмотреть свойства двух объектов, и на их основе делать дальнейшие выводы.

Атом можно рассматривать как элементарную частицу однородного вещества . Такое вещество, по определению, состоит только из одного химического элемента (С, N, O и другие с периодической таблицы Менделеева). Именно наименьшая часть таких элементов, которая может быть носителем их свойств, и называется атомом. Согласно последним современным представлениям, атом состоит из трех составляющих: протонов, нейтронов и электронов.

Первые две субчастицы вместе составляют базовое ядро , которое имеет положительный заряд. Двигающиеся вокруг ядра электроны привносят компенсационный заряд с противоположным знаком. Таким образом, делается первый вывод, что большинство атомов — электрически нейтральны. Что касается оставшейся части, то в силу различных физико-химических процессов, атомы могут либо присоединять, либо отпускать электроны, что приводит к появлению заряда. Атом имеет массу и размер (определяется размерами ядра) и определяет химические свойства вещества.

Молекула

Молекула является минимальной структурной единицей вещества . Такое вещество может состоять из нескольких химических элементов. Однако, молекулой можно считать и одноатомное вещество одного химического элемента — инертный газ аргона. Как и атомы, является электрически нейтральной. Ионизировать молекулу можно, но уже значительно сложнее: атомы внутри молекулы связаны между собой ковалентной, либо ионной связью. Поэтому присоединить или забрать электрон становится значительно сложнее. Большинство молекул имеет сложную архитектурную постройку, где каждый атом заранее занимает отведенное ему место.

Атом и молекула: общие свойства

Строение . Обе частицы являются структурными единицами вещества. При этом под атомом подразумевается один определенный элемент, молекула же включает в себя уже несколько химически связанных атомов, но структура (положительное ядро с отрицательными электронами) остается той же.

Электрическая нейтральность . При отсутствии внешних факторов — взаимодействия с другим химическим веществом, направленного электрического поля и других раздражителей, — атомы и молекулы не имеют заряда.

Замещение . Атом может выступать как молекула в одном случае — при работе с инертными газами. Также молекулой может считаться одноатомная ртуть.

Наличие массы . Обе частицы имеют свою четкую массу. В случае атома масса зависит от химического элемента и определяется весом ядра (протон почти в 1500 раз тяжелее электрона, поэтому вес отрицательной частицы часто не берется во внимание). Масса молекулы определяется исходя из ее химической формулы — элементов, входящих в ее состав.

Атом и молекула: отличные свойства

Неделимость . Атом является мельчайшим элементом, из которого нельзя выделить еще меньшую частицу. (Получение иона влияет только на заряд, но не на вес). Молекулу, в свою очередь, можно разделить на более мелкие молекулы или можно разложить на атомы. Процесса распада легко добиться с использованием химических катализаторов. Иногда достаточно просто нагреть вещество.

Свободное существование . Молекула может свободно существовать в природе. Атом существует в вольной форме лишь в двух случаях:

  1. Как одноатомная ртуть или инертный газ.
  2. В условиях космоса — как отдельные атомы могут находиться любые химические элементы.

В остальных случаях атом всегда входит в состав молекулы.

Образование заряда . Взаимодействие между ядром и электроном в атоме можно легко преодолеть даже мельчайшим электрическим полем. Таким образом, — из атома легко получить положительный или отрицательный ион. Наличие химических связей между атомами внутри молекулы требует приложения гораздо большего электрического поля или взаимодействия с другим химически активным веществом.



Понравилась статья? Поделитесь с друзьями!