Что крупнее молекула или атом. Классическая теория химического строения

Гипотеза о том, что все вещества состоят из отдельных мельчайших частиц, появилась очень давно, более двух тысяч лет назад. Но лишь на рубеже XIX - XX вв. было установлено, что это за частицы и какими свойствами они обладают.

Частицы, из которых состоят вещества, называют молекулами . Так, например, наименьшая частица воды - это молекула воды, наименьшая частица сахара - это молекула сахара и т. д.

Каковы размеры молекул?

Известно, что кусок сахара можно растолочь на очень маленькие крупинки, зерно пшеницы можно размолоть в муку. Капля масла, растекаясь по поверхности воды, может образовать пленку, толщина которой в десятки тысяч раз меньше диаметра человеческого волоса. Но в крупинке муки и в толще масляной пленки содержится не одна, а много молекул. Значит, размеры молекул этих веществ еще меньше, чем размеры крупинки муки и толщина пленки.

Можно привести следующее сравнение: молекула во столько же раз меньше яблока среднего размера, во сколько раз яблоко меньше земного шара. Если бы размеры всех тел увеличились в миллион раз (при этом толщина человеческого пальца стала бы равной 10 км), то и тогда молекула оказалась бы размером всего вполовину точки печатного шрифта этого учебника.

Молекулы невозможно увидеть невооруженным глазом. Они настолько малы, что их нельзя разглядеть даже с помощью микроскопа, дающего 1000-кратное увеличение.

Биологам известны микроорганизмы (например, бактерии) размером 0,001 мм. Молекулы же в сотни и тысячи раз меньше.

Для определения размеров молекул были проведены разные опыты. Опишем один из них.

В чисто вымытый большой сосуд налили воду и на ее поверхность поместили каплю масла. Масло начало растекаться по поверхности воды, образуя пленку. По мере растекания масла толщина пленки становилась все меньше и меньше. Через некоторое время растекание прекратилось. Если предположить, что это произошло из-за того, что все молекулы масла оказались на поверхности воды (образуя пленку толщиной в одну молекулу), то для определения диаметра молекулы достаточно найти толщину образовавшейся пленки.

Толщина пленки h равна отношению ее объема V к площади S :

Объем пленки - это объем той капли, которую поместили на поверхность воды. Его измеряют заранее; для этого пользуются измерительным цилиндром - мензуркой. При помощи пипетки в пустую мензурку капают несколько десятков капель масла и измеряют их общий объем; разделив затем этот объем на число капель, находят объем одной капли.

В описываемом опыте капля имела объем V = 0,0009 см 3 , а площадь образовавшейся из нее пленки была равна S = 5500 см 2 . Подставив эти значения в формулу (26.1), получим

h = 0,00000016 см.

Этим числом и выражается примерный размер молекулы масла.

Так как молекулы очень малы, то в каждом теле их содержится огромное количество. Чтобы создать представление об их числе, приведем пример: если в детском резиновом шарике, наполненном водородом, сделать такой тонкий прокол, что из него каждую секунду будет выходить по миллиону молекул, то для вылета всех молекул из шарика понадобится 30 миллиардов лет! И это при том, что масса водорода, наполнявшего шарик, составляла всего 3 г.

Хотя молекулы и очень маленькие частицы, но и они делимы. Частицы, из которых состоят молекулы, называют атомами .

Атомы каждого вида принято обозначать специальными символами. Например:

атом кислорода - О,
атом водорода - Н,
атом углерода - С.

Специальные символы (так называемые химические формулы) существуют и для обозначения молекул. Например, молекула кислорода состоит из двух одинаковых атомов кислорода, поэтому для ее обозначения применяют следующую химическую формулу: O 2 . Молекула воды состоит из трех атомов: одного атома кислорода и двух атомов водорода, поэтому ее обозначают H 2 O.

На рисунке 68 дано условное изображение двух молекул воды. При делении двух молекул воды получаются два атома кислорода и четыре атома водорода. Каждые два атома водорода могут объединиться в молекулу водорода, а атомы кислорода - в молекулу кислорода, что схематически показано на рисунке 69. Современная техника позволяет получить фотографии отдельных атомов и молекул. На рисунке 70 приведен снимок молекулы фторида мышьяка, полученный с помощью электронно-голографического микроскопа, дающего увеличение в 70 миллионов раз. Фотографию отдельного атома можно увидеть на рисунке 71, это изображение атома аргона, увеличенное в 260 миллионов раз.
Атомы очень маленькие частицы, но и они имеют сложное строение. Существуют еще более мелкие частицы, о которых вы узнаете позже.

1. Как называются частицы, из которых состоят вещества? 2. Опишите опыт, с помощью которого можно определить размер молекулы. 3. Как называются частицы, из которых состоят молекулы? 4. Из каких атомов состоит молекула воды? Что означает формула Н 2 О? 5. Напишите химическую формулу молекулы водорода, если известно, что эта молекула состоит из двух одинаковых атомов водорода. 6. Из скольких (и каких) атомов состоит молекула углекислого газа, если ее химическая формула имеет вид СO 2 ?

Вода — главная составляющая всего живого на Земле. Она является и средой обитания организмов, и главным элементом в их строении, а, следовательно, и источником жизни. Ее применяют в промышленности всех направлений. Поэтому представить себе жизнь с отсутствием воды весьма непросто.

Что входит в состав воды

Все прекрасно осведомлены о том, что вода состоит из водорода и кислорода. Это действительно так. Но помимо этих двух элементов, вода в своем составе имеет еще огромный перечень химических компонентов.

Из чего состоит вода?

Ей свойственно преобразовываться, проходя при этом гидрологический цикл: испарение, конденсацию и выпадение в виде осадков. В процессе протекания этих явлений вода соприкасается со множеством соединений органической природы, с металлами, газами, в результате чего жидкость дополняется различными элементами.

Элементы, входящие в состав воды, подразделяются на 6 категорий:

  1. Ионы. К ним относятся: катионы Na, K, Mg, Ca, анионы: Cl, HCO 3 и SO 4. Эти компоненты находятся в воде в наибольшем, по сравнению с другими, количестве. В жидкость они поступают из почвенных слоев, природных минералов, горных пород, а также как элементы распада продуктов промышленной деятельности.
  2. Растворенные газы: кислород, азот, сероводород, углекислый газ и прочие. Количество каждого газа в воде напрямую зависит от ее температуры.
  3. Биогенные элементы. Главными из них являются фосфор и азот, которые поступают в жидкость из осадков, сточных и сельскохозяйственных вод.
  4. Микроэлементы. Их насчитывается около 30 видов. Показатели их в составе воды очень малы и колеблются от 0,1 до микрограмма на 1 литр. К ним относятся: бром, селен, медь, цинк и т. д.
  5. Органические вещества, растворенные в воде, и азотосодержащие вещества. Это спирты, углеводы, альдегиды, фенолы, пептиды и прочее.
  6. Токсины. Это в основном тяжелые металлы и продукты нефтепереработки.

Молекула воды

Итак, из каких молекул состоит вода?

Формула воды тривиальна — Н 2 О. И она показывает, что молекула воды состоит из атомов водорода и кислорода. Между ними установлена устойчивая связь.

Как же выглядит молекула воды в пространстве? Чтобы определить форму молекулы, соединяют прямыми линиями центры атомов, в результате чего вырисовывается объемная фигура - тетраэдр. Таково строение воды.

Форма молекулы воды способна изменяться в зависимости от ее агрегатного состояния. Для газообразного состояния характерен угол между атомами кислорода и водорода в 104,27 о, для твердого состояния - 109,5 о, для жидкого - 105,03 о.

Те молекулы, из которых состоит вода, занимают определенный объем в пространстве, при этом их оболочки покрыты электронным облаком в виде вуали. Вид водной молекулы, рассмотренной в плоскости, сравнивают с Х-образной хромосомой, которая служит для передачи генетической информации, а, следовательно, дает начало новой жизни. От такой формы проводится аналогия хромосомы и воды как источников жизни.

В пространстве молекула выглядит как объемный треугольник, тетраэдр. Такая форма является очень устойчивой и изменяется только из-за влияния на воду внешних физических факторов.

Из чего состоит вода? Из тех атомов, которые подвержены влиянию Ван-дер-Ваальсовых сил, образовыванию водородных связей. В связи с этим между кислородом и водородом соседних молекул образуются случайные ассоциаты и кластеры. Первые - это неупорядоченные структуры, вторые - упорядоченные ассоциаты.

В привычном состоянии воды количество ассоциатов составляет 60%, кластеров - 40%.

Между соседними водными молекулами возможны образования водородных мостиков, которые способствуют образованию различных структур - кластеров.

Кластеры способны взаимодействовать между собой посредством водородных связей, а это приводит к появлению структур нового порядка - шестигранников.

Электронное строение молекулы воды

Атомы - это то, из чего состоит вода, и каждый атом имеет свое электронное строение. Так, графическая формула электронных уровней выглядит так: 8 О 1s 2 2s 2 2p 4 , 1 Н 1s 1 .

Когда происходит процесс формирования молекулы воды, происходит перекрывание электронных облаков: два неспаренных электрона кислорода перекрываются с 1 неспаренным электроном водорода. В результате перекрывания образуется угол между атомами в 104 о.

Агрегатное состояние воды

Как уже говорилось, молекулы воды - это диполи, и данный факт влияет на необычные Одним из таких свойств является то, что вода может присутствовать в природе в трех агрегатных состояниях: жидком, твердом и парообразном.

Переход от одного состояния в другое обусловлен следующими процессами:

  1. Кипение - из жидкости в пар.
  2. Конденсация - переход их пара в жидкость (осадки).
  3. Кристаллизация - когда жидкость превращается в лед.
  4. Плавление - процесс таяния льда и получения жидкости.
  5. Сублимация - превращение льда в парообразное состояние.
  6. Десублимация - обратная реакция сублимации, то есть переход пара в лед.

От состояния воды зависит и строение ее молекулярной решетки.

Заключение

Таким образом, можно сказать, что вода - это с простым строением, которое может меняться в зависимости от ее состояния. И нам стало понятно, из каких молекул состоит вода.

МОЛЕКУЛА (новолат. molecula, уменьшит. от лат. moles-масса), микрочастица, образованная из двух или большего числа и способная к самостоят. существованию. Имеет постоянный состав (качеств. и количеств.) входящих в нее и фиксир. число и обладает совокупностью св-в, позволяющих отличать одну молекулу от других, в т. ч. от молекул того же состава. Молекула как система, состоящая из взаимодействующих и ядер, может находиться в разл. состояниях и переходить из одного состояния в другое вынужденно (под влиянием внеш. воздействий) или самопроизвольно. Для всех молекул данного вида характерна нек-рая совокупность состояний, к-рая может служить для молекул. Как самостоят. образование молекула обладает в каждом состоянии определенным набором физ. св-в, эти св-ва в той или иной степени сохраняются при переходе от молекул к состоящему из них в-ву и определяют св-ва этого в-ва. При хим. превращениях молекулы одного в-ва обмениваются с молекулами др. в-ва, распадаются на молекулы с меньшим числом , а также вступают в хим. р-ции др. типов. Поэтому изучает в-ва и их превращения в неразрывной связи со строением и состоянием молекул.

Обычно молекулой наз. электрически нейтральную частицу; если молекула несет электрич. заряд (положит. или отрицат.), то говорят о мол. ( или соотв.). В в-ве положит. всегда сосуществуют вместе с отрицательными. Молекулы, находящиеся в состояниях с мультиплетпостью, отличной от единицы (как правило, в дублетных состояниях), наз. радикалами. Своб. радикалы в обычных условиях, как правило, не могут существовать длит. время. Известны, однако, своб. радикалы сравнительно сложного строения, к-рые являются достаточно стабильными и могут существовать при обычных условиях (см. ).

По числу входящих в молекулу различают молекулы двухатомные, трехатомные и т.д. Если число в молекуле превосходит сотни и тысячи, молекуле наз. . Сумма масс всех , входящих в состав молекулы, рассматривается как (см. также , ). По величине мол. массы все в-ва условно делят на низко- и высокомолекулярные.

Классическая рассматривает молекулу как стабильную наименьшую (по массе и размерам) частицу в-ва, определяющую его основные св-ва. Эта частица образована из химически связанных друг с другом (одинаковых или разных). Понятие в молекуле при этом не детализируется; он, вообще говоря, отличается от изолир. , так что говорят об эффективном , поведение и св-ва к-рого различны в разных молекулах.

Из всех возможных взаимод. в молекулах выделяют главные взаимод., или , к-рые обеспечивают стабильное существование молекулы и сохранение ею своих основных характеристик в достаточно широкой области изменения внеш. условий. Все прочие (неглавные) взаимод. между в молекуле не определяют ее существования как целого, хотя и влияют, подчас значительно, на те или иные св-ва. О неглавных взаимод. говорят как о взаимном влиянии непосредственно не связанных , или . Энергетически главные взаимод. в данной молекуле, как правило, более значительны, чем неглавные. Вопрос о том, является ли взаимод. выделенной в молекуле главным или неглавным, решается на анализа многих физ. и физ.-хим. св-в в-ва, образованного из этих молекул.

Квантовомеханическая теория представляет молекулу как систему, состоящую из и и находящуюся в определенном , из к-рого молекула может перейти в др. . Каждое состояние и его изменение во времени () определяется либо волновой ф-цией, к-рую находят как решение ур-ния Шрё-дингера (стационарного или временного), либо , удовлетворяющей квантовому ур-нию Лиувилля (см. ). Для изолированных молекул ур-ние Шрёдингера решается обычно в такой системе координат, начало к-рой находится в центре масс (молекулы или системы ). Это позволяет отделить поступат. движение молекулы от всех др. видов движений. Для стационарного состояния изолированной молекулы волновая ф-ция либо существенно локализована в нек-рой конечной области пространства и описывает связанное (связное, стабильное) состояние системы , либо такой локализацией не обладает, описывая отталкивательное (несвязанное) состояние системы. В отталкиват. состоянии молекулы как таковой фактически нет, а есть ее фрагменты, взаимодействующие друг с другом, на к-рые молекула, будучи переведенной в такое состояние, распадается. Возможны и нестационарные состояния молекулы, к-рые, однако, меняются во времени настолько медленно, что молекула может находиться в этих состояниях достаточно длительно (в сравнении с характеристич. временем эксперимента или временем наблюдения за системой). Подобные состояния молекулы обычно наз. метастабильными (или квазисвязанными).

Для изолированной молекулы направления осей системы координат, начало к-рой находится в центре масс, выбираются так, чтобы по возможности полнее исключить из рассмотрения вращение молекулы как целого (напр., оси координат м. б. направлены по главным осям эллипсоида инерции молекулы или связаны с к.-л. выделенной конфигурацией ядер). Согласно , для каждой фик-сир. конфигурации можно определить электронное состояние и соответствующие ему электронную волновую ф-цию и собств. значение электронного гамильтониана - электронную энергию (см. ). Электронная энергия Е e зависит от набора переменных R, определяющих конфигурацию ядер. Она включает потенциал межъядерного отталкивания и изображается графически Е е = Е е {R} (или просто потенц. пов-стью) молекулы в данном электронном состоянии. В частности, для двухатомных молекул электронная энергия изображается потенц. кривой Е e = E e (R), где R -расстояние между ядрами .

Потенц. пов-сть наглядно представляет тот потенциал, в к-ром движутся ядра рассматриваемой молекулы; решениями ур-ния Шрёдингера с этим потенциалом являются колебат. волновые ф-ции, квадрат модуля к-рых определяет плотность вероятности обнаружить у данной молекулы ту или иную ядерную конфигурацию. Потенц. пов-сть для молекулы, находящейся в связанном электронном состоянии, м. б. достаточно простой, напр. иметь один минимум, отвечающий т. наз. равновесной геом. конфигурации ядер. При увеличении межъядерных расстояний потенц. энергия молекула увеличивается до определенного предельного значения, при к-ром молекула диссоциирует на два (или большее число) мол. фрагмента (напр., ). Для многоатомных молекул потенц. пов-сти обычно имеют более сложный вид с неск. локальными минимумами, разделенными потенц. барьерами, а также с точками перевала, разл. долинами, складками и т. п. К тому же потенц. пов-сти для разл. электронных состояний молекулы могут достаточно близко подходить друг к другу, пересекаться, совпадать в отдельных точках. В таких областях подчас невозможно использовать адиабатич. приближение и наглядная картина изменения состояний молекулы как движений по потеиц. пов-сти утрачивается. Если колебат. волновая ф-ция, характеризующая плотность распределения ядер, локализована вблизи к.-л. минимума на потенц. пов-сти, причем по энергии этот минимум лежит ниже диссоциац. пределов для данной молекулы, то можно говорить о наличии у молекулы в рассматриваемом электронно-колебат. состоянии структурного с равновесной конфигурацией, отвечающей минимуму потенц. энергии. Разным минимумам, если они не переводятся обычными операциями друг в друга, соответствуют разные структурные , причем большая или меньшая легкость перевода одного в другой определяется потенц. барьерами, к-рые разделяют эти минимумы. Так, н-бутан и в основном электронном состоянии, с точки зрения квантовомех. теории, суть одна и та же молекула С 4 Н 10 , на потенц. пов-сти к-рой имеются по крайней мере два минимума: один-абс. минимум, к-рому отвечает равновесная конфигурация изо-бутана, и второй-локальный минимум, к-рому отвечает равновесная конфигурация н-бутана. Вероятность спонтанного перехода из потенц. ямы вблизи одного минимума в потенц. яму вблизи др. минимума для низших колебат. состояний очень мала, что и определяет раздельное существование молекул н-бутана и .

В др. случаях на потенц. пов-сти имеются минимумы, разделенные сравнительно невысокими барьерами (от неск. десятых до неск. кДж/), либо пологие долины или желоба, при движении вдоль к-рых энергия молекулы меняется примерно в тех же пределах. Так, у NaAlF 4 имеется четыре эквивалентных минимума, разделенных невысокими барьерами. Минимумы отвечают симметричной координации Na у каждой из четырех граней тетраэдра AlF 4 (тридентантная координация); каждый из барьеров отвечает геом. конфигурации ядер с координацией Na у ребра тетраэдра AlF 4 (бидентантная координация). Na может относительно свободно перемещаться вокруг тетраэдрич. остова. Подобные молекулы получили название политопич. молекул, или молекул с распределенным характером связи. У KCN К может относительно свободно перемещаться по желобу потенц. пов-сти вокруг остова CN, так что в одних колебат. состояниях эта молекула имеет наиб. вероятную конфигурацию, близкую к треугольной, в других-к линейной KNC, в третьих-к линейной KCN. Молекулы такого типа, как и молекулы с распределенным характером связи, относятся к .

Полная волновая ф-ция молекулы в определенном при использовании адиабатич. приближения представляет собой произведение электронной волновой ф-ции на колебат. волновую ф-цию. Если учесть и то, что молекула в целом вращается, в произведение войдет еще один сомножитель - вращат. волновая ф-ция. Знание электронной, колебат. и вращат. волновых ф-ций позволяет вычислить для каждого молекулы физически наблюдаемые средние величины: средние положения ядер, а также средние межъядерные расстояния и средние углы между направлениями от данного ядра к др. ядрам, в т. ч. к ближайшим (); средние электрич. и магн. дипольные и , средние смещения электронного заряда при переходе от системы разделенных к молекуле и др. Волновые ф-ции и энергии разл. состояний молекулы используют и для нахождения величин, связанных с переходами из одного в другое: частот переходов, вероятностей переходов, силы линий и т. п. (см. ).

Если в систему ядер, образующих молекулу, входят тождественные, то среди всех конфигураций ядер будут и такие, к-рые обладают определенной пространств. . Потенц. пов-сти молекулы симметричны относительно операций , к-рые отвечают таким конфигурациям. По этой причине симметричные конфигурации ядер всегда отвечают экстремальным точкам на потенц. пов-стях (минимумам, максимумам, точкам перегиба). Если равновесная не обладает самой высокой , возможной для данной системы ядер, или вовсе несимметрична, то должна быть и эквивалентная ей равновесная конфигурация, получающаяся из исходной теми операциями , к-рые допускают симметричные ядерные конфигурации данной молекулы (см. ).

Квантовая теория дает более богатую и полную картину молекулы в ее разл. состояниях по сравнению с классич. теорией хим. строения. Она позволяет прежде всего провести хим. связей в молекулах на основе того или иного характера распределения (ковалент-ные связи отвечают примерно симметричному распределению валентных между , образующими такие связи; отвечают сильному смещению этой плотности к одному из ), либо исходя из представлений о происхождении той или иной связи (напр., ), либо по др. признакам (напр., молекула с сопряженными связями или молекула с распределенным характером связи). Квантовая теория позволяет также учесть изменения состояний, к-рые возникают при переходе от отдельной изолированной молекулы к в-ву, состоящему из множества взаимодействующих друг с другом молекул при заданных внеш. условиях. И хотя строгие исходные положения квантовой теории требуют, чтобы рассмотрение, напр., двух взаимодействующих молекул (N 2 + N 2 , N 2 + Н 2 О и т.п.) велось для единой системы, включающей все ядра и этих двух молекул одновременно (в силу требований перестановочной для , подсистем тождеств. ядер и др.), все же методы квантовой теории позволяют во мн. случаях сохранять представления об отдельных молекулах, возмущенных взаимным влиянием, но сохраняющих в значит. степени свою индивидуальность.

Таковы, в частности, представления о молекулах (преим. с ко-валентными связями), сохраняющих при переходе в кон-денсир. фазу в значит. степени равновесные межъядерные расстояния и валентные утлы, осн. частоты колебаний и др. Подобные конденсир. фазы обычно наз. мол. или мол. . С другой стороны, у молекул с индивидуальность подчас не сохраняется и весь или представляет собой своего рода единую молекулу. Как правило, сохраняют свои осн. характерные особенности и молекулы в адсорбир. состоянии, а также в .

Отдельные молекулы в системе приобретают смысл эффективных структурных фрагментов, аналогично эффективным в молекулах в рамках классич. теории. В целом модель молекулы или системы взаимодействующих молекул в квантовой теории по возможности строится обычно таким образом, чтобы сохранить наглядные представления классич. теории.

Строение и свойства молекул. Классич. и квантовомех. теоретич. представления о молекулах подтверждаются и уточняются обширным эксперим. материалом об их св-вах и связи этих св-в со строением. Понятие включает при этом два аспекта: геом. строение равновесной ядерной конфигурации в рассматриваемом состоянии (либо ядерной конфигурации, усредненной по колебат. движению) и электронное строение, характеризуемое прежде всего распределением при разл. геом. конфигурациях ядер, изменением этого распределения при переходе от одной области ядерных конфигураций к другой, а также распределением др. физ. величин (напр., двухэлектронной плотности). Характеристиками геом. являются: д л и н ы с в я з е й (межъядерные расстояния для , соединенных хим. связями), в а л е н т н ы е у г л ы (углы между направлениями от данного ядра к ядрам двух соседних , соединенных с рассматриваемым хим. связью), т о р с и о н н ы е, или д и-э д р а л ь н ы е, у г л ы (двугранные углы между двумя плоскостями, проходящими через к.-л. выделенные тройки ядер). Как правило, геом. аспект включает информацию о входящих в молекулу , последовательности и кратности хим. связей между ними, возможных конформац. и т.д. На основе классич. теории такое представление о структуре молекул позволяет классифицировать близкие по строению структурные фрагменты по типам, проводить корреляцию св-в молекул с числами имеющихся в них структурных фрагментов определенных типов и сопоставлять св-ва молекул, построенных из однотипных наборов структурных фрагментов. Наглядно при таком подходе молекулу в каждом состоянии можно изобразить либо системой (колеблющихся) материальных точек, либо в общем случае системой перекрывающихся сфер, радиусы к-рых задаются по определенным правилам (см., напр., ).

Знание распределения дает возможность вычислить мн. св-ва при фиксир. ядерных конфигурациях для каждого состояния, напр. электрич. св-ва ( , ), диа- и парамагнитные составляющие магн. восприимчивости и т.п.

Объединение обоих аспектов приводит к наиб. полному представлению о и его изменении при переходе из одного состояния в другое, особенностях отдельных классов и гомологич. рядов и их поведении во внеш. полях и при взаимод. друг с другом.

Спектроскопич. методы основаны на индивидуальности спектров хим. соединений, к-рая обусловлена характерным для каждой молекулы набором состояний и отвечающих им энер-гетич. уровней. Эти методы позволяют проводить качественный и количественный в-в. Спектры поглощения или испускания в микроволновой области спектра позволяют изучать переходы между вращат. состояниями, определять моменты инерции молекул, а на их основе-длины связей, и др. геом. параметры молекул. исследует, как правило, переходы между колебательно-вращат. состояниями и широко используется для спектрально-аналит. целей, поскольку мн. частоты колебаний определенных структурных фрагментов молекул являются характеристическими и слабо меняются при переходе от одной молекулы к другой. В то же время позволяет судить и о равновесной геом. конфигурации (качественно-по соблюдению тех или иных в спектре, количественно - на основе решения обратной коле-бат. задачи, по крайней мере для малоатомных молекул; см.

Строение вещества - одна из самых распространенных тем для спор древних философов. С древнейших времен люди строили предположения по поводу того, как устроена окружающая нас материя, из чего сделаны все предметы. Были очень распространены точки зрения, будто материя состоит из огня, воды, воздуха или же земли - 4 элемента.

Теория Демокрита о строении вещества

Среди прочих была и точка зрения древнегреческого ученого Демокрита о том, что материя состоит из мельчайших неделимых частиц. Частицы эти называли атомами, поскольку атом с древнегреческого переводится как "неделимый". Это предположение Демокрита долгое время не привлекало к себе внимания, а в некоторые времена и вовсе считалось богохульством.

Лишь в XVIII веке с развитием физики и химии, ученым удалось подтвердить и развить идеи Демокрита. Вот только простейшим представителем такого или иного вида метрии был уже не атом, а молекула. А вот молекула уже в свою очередь состоит из атомов.

Так, например, молекула воды H2O является мельчайшим представителем такого вещества как вода. А состоит молекула воды из двух атомов водорода и одного атома кислорода. Сами по себе водород и кислород не несут свойств воды. Наоборот, вода только и становится водой, когда образуется такая связь.

Итак, материя состоит из молекул. Но почему мы этого не замечаем? Ответ прост: молекулы так малы, что для человеческого глаза просто незаметны. Лишь только в электронные микроскопы можно рассмотреть отдельные молекулы.

Что меньше молекул?

Молекулы в свою очередь, как мы выяснили, состоят из атомов. Однако, в отличие от времен Демокрита, атомы больше не считаются неделимыми (что, впрочем, не помешало сохраниться названию). В начале XXвека ученым удалось "разрезать" атом и изучить внутреннее строение атома .

Выяснилось, что атом состоит из ядра и вращающегося вокруг ядра электрона. Позже выяснилось, что ядро в свою очередь состоит из протона и нейтрона. Физика XXIвека идет дальше и пытается выяснить, из чего же сделаны протоны, нейтроны и электроны. И те результаты, которых добиваются современные ученые, безусловно, порадовали бы Демокрита.

Роль Адронного Коллайдера в изучении строения вещества

Так, полным ходом идут эксперименты на Большом Адронном Коллайдере - огромном сооружение, построенном под землей на границе между Францией и Швейцарией. Большой Адронный Коллайдер представляет собой 30 километровую замкнутую трубу, по которой разгоняются протоны. Разогнавшись почти до скорости света, протоны сталкиваются.

Сила удара так велика, что протоны "разламываются" на части. Предполагается, что таким путем можно изучить внутреннее строение адронов (так называется протон, нейтрон или электрон). Очевидно, что чем дальше человек заходит в изучении внутреннего строения вещества, тем с большими трудностями он сталкивается.

Примечательно еще и то, что чем меньше размер искомой частицы, тем более массивное сооружение для изучения необходимо построить. Ирония, однако... Не исключено, что неделимой частицы, которую воображал себе Демкорит, вообще не существует и делить частицы можно до бесконечности. Исследования в данной области являются одной из самых бурно развивающихся тем в современной физике.

Может содержать положительно и отрицательно заряженные , т. е. ; в этом случае реализуются . Помимо указанных, в существуют и более слабые взаимодействия между . Между валентно не связанными действуют силы отталкивания.

Развитие учения о структуре неразрывно связано с успехами прежде всего . Теория строения , созданная в 60-х гг. 19 в. трудами А. М. Бутлерова, Ф. А. Кекуле, А. С. Купера и др., позволила представить или формулами строения, выражающими последовательность валентных в . При одной и той же эмпирической формуле могут существовать разного строения, обладающие различными свойствами (явление ). Таковы, например, С 5 Н 5 ОН и (СН 3) 2 О. этих соединений разнятся:

В некоторых случаях изомерные быстро превращаются одна в другую и между ними устанавливается динамическое (см. ). В дальнейшем Я. Х. Вант-Гофф и независимо французский химик А. Ж. Ле Бель пришли к пониманию пространственного расположения в и к объяснению явления . А. Вернер (1893) распространил общие идеи теории строения на неорганические . К началу 20 в. располагала подробной теорией , исходящей из изучения только их химических свойств. Замечательно, что прямые физические методы исследования, развитые позднее, в подавляющем большинстве случаев полностью подтвердили , установленные путём исследования макроскопических количеств , а не отдельных .

Равновесные межъядерные расстояния r 0 и энергии D (при 25° С) некоторых двухатомных

r 0, Ǻ

r 0 , Ǻ

C-Br…………….

Cº C……………...

C-I………………

C-H……………..

C-S……………..

C-O……………..

O-H…………….

C=O……………...

N-H……………..

C-N……………..

S-H……………..

В подавляющем большинстве случаев суммарный валентных в равен нулю, т. е. попарно насыщены. , содержащие неспаренные - (например, атомный Н · · , метил CH· · 3), обычно неустойчивы, т. к. при их соединении друг с другом происходит значительное понижение энергии вследствие образования валентных связей. Наиболее эффективным методом изучения строения является ().

Электрические и оптические свойства . Поведение в электрическом поле определяется основными электрическими характеристиками - постоянным и . означает несовпадение центров тяжести положительных и отрицательных зарядов в , т. е. электрическую асимметрию . Соответственно , имеющие центр , например H 2 , лишены постоянного ; напротив, в HCl смещены к Cl и равен 1,03 D (1,03× 10 -18 ед. СГС). характеризуется способность электронной оболочки любой смещаться под действием электрического поля, в результате чего в создаётся индуцированный . Значения и находят экспериментально с помощью измерений диэлектрической проницаемости. В случае аддитивности свойств может быть представлен суммой связей (с учётом их направления), то же относится к .

Элементов, у которых или нечётны, обладают ядерным спиновым парамагнетизмом. Для таких ядер характерен



Понравилась статья? Поделитесь с друзьями!