Что такое генетика кратко. Типы хромосомного определения пола

Согласно последним исследованиям в человеческом теле находится от 24 000 до 25 000 генов. Гены наследуются от биологических родителей и определяют такие вещи, как цвет кожи, наличие веснушек и скорость загара. Каждый ген вашего тела является сегментом ДНК и подает сигналы клеткам.

Ученые, врачи и диетологи в один голос утверждают, что гены играют важную роль в подверженности кожи различным заболеваниям. Мы постоянно слышим истории о людях с «хорошими» генами, которые могут литрами пить шоколадное молоко и при этом наслаждаться прекрасной кожей. В прошлом я проклинала свои «плохие» гены каждый раз, когда моя кожа покрывалась красной сыпью. Гены важны, и, без сомнения, они оказывают влияние на состояние кожи. Но стоит ли причину видеть только в них?

Исследователи по всему миру заметили, что наша определенная генами биология не в силах угнаться за коренными изменениями в питании, произошедшими на Западе за последнее время. Что это означает для вашего здоровья? Давайте подумаем о питании наших предков. Очевидно, что они проводили большую часть времени в поисках пищи и обустройстве жилья. О полуфабрикатах и газированных напитках никто и понятия не имел, а искусственные красители и ароматизаторы не существовали вовсе. Рацион наших предков зависел от региона проживания, но ученым удалось выявить основные характеристики их питания. Они перекусывали орехами, семенами, фруктами, овощами, охотились на дичь, ловили рыбу, шоколадного печенья в их рационе не было. Конечно, может быть, рацион ваших предков отличался от этого, особенно если они были эскимосами. Древние эскимосы питались морепродуктами и рыбой, поэтому они потребляли больше жира и омега-3 жирных кислот. Зерновые не были неотъемлемой частью их питания.

Какими бы ни были ваши предки, в современном мире вам не нужно собирать орехи и ловить кабанов. Сегодня вы просто идете в магазин и выбираете все необходимое.

Питание современного человека:

    обработанное мясо, например ветчина, салями и сосиски

    молочные продукты (жирное и обезжиренное молоко, сыр и масло)

    белый хлеб, мучные изделия, торты, печенье, рафинированный сахар и сиропы

    рафинированные масла и маргарин

    кофе, чай, алкогольные напитки

    фрукты, овощи, рыба, орехи, крупы и бобовые



Как правило, чем больше полуфабрикатов ест человек, тем меньше он в результате потребляет фруктов и овощей. Признайтесь, что полуфабрикаты - самый удобный вариант ужина в конце рабочего дня, когда вы слишком устали, чтобы готовить. Удобство - важная часть современного общества, но зачастую подобное питание негативно отражается на состоянии кожи.

В Американском журнале клинического питания Лорен Кордэйн и ее коллеги высказали свое мнение о том, что перемены в рационе человека произошли еще десять тысяч лет назад, с зарождением земледелия и животноводства, но последние изменения, связанные с потреблением слишком большого количества обработанной пищи и полуфабрикатов, произошли совсем недавно, чтобы генетика человека могла к ним адаптироваться. Возможно, многие из нас вообще не являются жертвами плохой генетики, просто мы запутываем наши бедные гены, потребляя пищу, которую наши тела не могут распознать.

Многие ученые предполагают, что медленная генетическая адаптация к современному рациону питания может стать причиной возникновения рака, сердечных болезней и акне. Исследования показали, что такое заболевание как акне встречается очень редко или вообще отсутствует в традиционных культурах, где люди едят необработанную пищу.

С возникновением обработки еды появились семь ключевых изменений в рационе человека:

1. Гликемическая нагрузка возросла. Обработанная пища отличается более высоким гликемическим индексом, поднимающим уровень глюкозы в крови. Это может повредить кровеносные сосуды и привести к развитию диабета II типа.

2. Изменилось соотношение жирных кислот. Животные, выращенные в искусственных условиях, не получают достаточной физической нагрузки, поэтому в их мясе практически нет омега-3 жирных кислот, но зато в нем содержится большое количество насыщенных жиров.

3. Изменились пропорции белков, жиров и углеводов. Люди стали потреблять больше насыщенных жиров и рафинированных углеводов.

4. Сократилось количество питательных микроэлементов. В таких прошедших обработку продуктах, как белый хлеб и пшеничная мука, практически нет витаминов и минералов.

5. Изменился кислотно-щелочной баланс. Ставший привычным рацион питания может вызвать метаболический ацидоз (смещение кислотно-щелочного баланса организма в сторону увеличения кислотности), который с возрастом будет лишь возрастать. Слишком большое содержание кислоты в организме пагубно сказывается на здоровье.

6. Изменился натриево-калиевый баланс. Большое содержание соли в продуктах и потребление фруктов и овощей в недостаточном количестве означает, что у большинства из нас наблюдается дефицит калия. Исследователи выяснили, что люди стали потреблять на 400% больше соли, но значительно меньше овощей и фруктов.

7. Сократилось содержание клетчатки. Рафинированные сахара и масла, алкогольные напитки и молочные продукты не содержат клетчатку. Чем меньше в мучных изделиях полезных веществ, тем белее они выглядят.

В настоящее время лишь небольшое число примитивных культур продолжают есть натуральные продукты, не потребляя фастфуд, белую муку и сахар. Изучать такие культуры невероятно интересно, так как они на своем примере демонстрируют зависимость здоровья кожи от питания.

    В современном обществе, где люди потребляют белую муку, молочные продукты и сахар, более 79% подростков страдают от акне.

    Удивительно, но более чем у 40% мужчин и женщин старше 25 лет, проживающих в странах Запада, есть акне.

    Эскимосы, чей рацион состоит из натуральных продуктов, не подвержены акне, однако эскимосы, чье питание приближено к западному, точно так же страдают от этого заболевания.

    Жители японского острова Окинава питаются натуральными продуктами и не страдают акне.

О генах

У вас может быть генетическая предрасположенность к экземе, псориазу, темным кругам под глазами и целлюлиту, но это не означает, что вам придется страдать ими всю жизнь. Здоровое питание и ежедневный правильный образ жизни оказывают влияние на гены. Оказывается, сбалансированный рацион может «выключить» проблемные гены. Ген псориаза может перестать быть активным и просто начать пребывание в спящем состоянии после прохождения программы против этого заболевания.

Если вы страдаете от акне, целлюлита, перхоти, экземы/дерматита, псориаза или розацеа, вам будет приятно узнать о том, что в этой книге есть специальные программы, которые помогут вам избавиться от этих проблем (см. Часть III). Если у вашего ребенка есть кожные заболевания, от которых вы хотите его избавить, обратитесь к Главе 16. Информацию о том, как лечить себорейный дерматит у новорожденных, вы найдете в Главе 14. Кроме того, вы можете незамедлительно обратиться к Части III «Специализированные программы», перед тем как начнете изучать главы Части II «Восемь правил здоровой кожи».

Если же вы страдаете другим кожным заболеванием или у вас отсутствуют явные проблемы (и вы просто хотите предотвратить преждевременное старение), то вам подойдет Часть II - «Восемь правил здоровой кожи». Там вы найдете основные рекомендации, которые следует соблюдать, чтобы стать обладателем красивой кожи.

ПРЕДУПРЕЖДЕНИЕ

Не занимайтесь самодиагностикой! Существует множество кожных заболеваний,в том числе и серьезных, требующих постоянного медицинского наблюдения.

Если вы еще не консультировались с врачом по поводу состояния вашей кожи, сделайте это перед тем, как приступать к Диете для здоровой кожи. Убедитесь в том, что рекомендации подойдут именно вам.

ВВЕДЕНИЕ В ГЕНЕТИКУ

    Генетика – наука о наследственности и изменчивости. Предмет, объекты и задачи генетики

    Генетическая информация; её свойства

    Разделы генетики. Генетика – фундамент современной биологии

    Методы генетики

    Краткая история генетики. Особенности развития отечественной генетики

1. Генетика – наука о наследственности и изменчивости.

Предмет, объекты и задачи генетики

Способность к воспроизведению с изменением – это одно из основных свойств биологических систем. Принцип Франческо Реди – «подобное порождает подобное» – проявляется на всех уровнях организации жизни:

Генетика – это наука о наследственности и изменчивости живых организмов и методах управления ими; это наука, изучающая наследственность и изменчивость признаков.

Понятия «наследственность» и «изменчивость» неразрывно связаны между собой.

Изменчивость – это…

1) существование признаков в различных формах (вариантах);

2) появление различий между организмами (частями организма или группами организмов) по отдельным признакам.

Наследственность – это…

1) способность организмов порождать себе подобных;

2) способность организмов передавать (наследовать) свои признаки и качества из поколения в поколение;

3) сохранение определенных вариантов признаков при смене поколений.

2. Генетическая информация; её свойства

Существует множество подходов к определению понятия «информация». Мы будем рассматривать информацию как некоторую программу, при выполнении которой можно получить определенный результат.

Генетическая информация – это такая наследственная информация, носителем которой является ДНК (у части вирусов – РНК).

Минимальный набор хромосом и одновременно минимальный объем ДНК определенного биологического вида называется геномом (имен. падеж, ед. число – геном).

Участок ДНК, который несет информацию о некотором элементарном признаке – фене, называется геном. Многие гены могут существовать в виде двух и более вариантов – аллелей.

АЛЛЕЛЬ (от греч. allelon - друг друга, взаимно), аллеломорфа, одно из возможных структурных состояний гена. Любое изменение структуры гена в результате мутаций или за счёт внутригенных рекомбинаций у гетерозигот по двум мутантным аллелям приводит к появлению новых аллелей этого гена (число аллелей каждого гена практически неисчислимо).

Аллели одного гена могут обусловливать существование отличающихся друг от друга форм одного и того же заболевания, например, различные аллели гена, контролирующего синтез бета-цепи гемоглобина, вызывают различные формы анемий.

Совокупность всех генов (точнее, аллелей) определенного организма называется генотипом (имен. падеж, ед. число – генотип).

ФЕНОТИП (от греч. phaino - являю, обнаруживаю и typos - отпечаток, форма, образец), особенности строения и жизнедеятельности организма, обусловленные взаимодействием его генотипа с условиями среды.

Термин “Фенотип” предложен датским биологом В. Иогансеном в 1909 и обозначает совокупность проявления генотипа (общий облик организма), в узком - совокупность отдельных признаков (фенов), контролируемых определенными генами.

Термин геном (нем. Genom) предложил немецкий ботаник Ганс Винклер в 1920 г. для обозначения минимального набора хромосом. Такое представление о геноме сохраняется и в современной цитогенетике. Однако вскоре было доказано, что в состав хромосом входит ДНК (Фёльген, 1924), а к середине XX в. было установлено, что именно ДНК является носителем наследственной информации (О.Эвери с сотр., 1944; Дж.Уотсон и Ф.Крик, 1953). Поэтому в настоящее время в молекулярной генетике термином геном все чаще обозначают минимальную упорядоченную совокупность всех молекул ДНК в клетке.

3. Разделы генетики.

Вся генетика (как и любая наука) подразделяется на фундаментальную и прикладную.

Фундаментальная генетика изучает общие закономерности наследования признаков у лабораторных, или модельных видов: вирусов (например, Т-чётных фагов), прокариот (например, кишечной палочки), плесневых и дрожжевых грибов, дрозофилы, мышей и некоторых других.

К фундаментальной генетике относятся следующие разделы:

– классическая (формальная) генетика,

– цитогенетика,

– молекулярная генетика (в т.ч., генетика ферментов и иммуногенетика),

– генетика мутагенеза (в т. ч., радиационная и химическая генетика),

– эволюционная генетика,

– геномика и эпигеномика,

– генетика индивидуального развития и эпигенетика,

– генетика поведения,

– генетика популяций,

– экологическая генетика (в т.ч., генетическая токсикология),

– математическая генетика.

Прикладная генетика разрабатывает рекомендации для применения генетических знаний в селекции, генной инженерии и других разделах биотехнологии, в деле охраны природы. Идеи и методы генетики находят применение во всех областях человеческой деятельности, связанной с живыми организмами. Они имеют большое значение для решения проблем медицины, сельского хозяйства, микробиологической промышленности.

Генетическая (генная) инженерия – это раздел молекулярной генетики, связанный с целенаправленным созданием in vitro новых комбинаций генетического материала, способного размножаться в клетке-хозяине и синтезировать конечные продукты обмена.

Генная инженерия возникла в 1972, когда в лаборатории П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40.

В прикладной генетике в зависимости от объекта исследования выделяют следующие разделы частной генетики:

    Генетика растений: дикорастущих и культурных: (пшеница, рожь, ячмень, кукуруза; яблони, груши, сливы, абрикосы – всего около 150 видов).

    Генетика животных: диких и домашних животных (коров, лошадей, свиней, овец, кур – всего около 20 видов)

    Генетика микроорганизмов (вирусов, прокариот, низших эукариот – десятки видов).

В особый раздел частной генетики выделяется генетика человека (существует специальный Институт медицинской генетики АМН России)

4. Методы генетики

Совокупность методов исследования наследственных свойств организма (его генотипа) называется генетический анализ. В зависимости от задачи и особенностей изучаемого объекта генетический анализ проводят на популяционном, организменном, клеточном и молекулярном уровнях.

Основу генетического анализа составляет гибридологический анализ, основанный на анализе наследования признаков при скрещиваниях.

Однако в некоторых случаях метод прямого гибридологического анализа оказывается неприменим. Например, при изучении наследования признаков у человека необходимо учитывать ряд обстоятельств: невозможность планирования скрещиваний, низкая плодовитость, длительный период полового созревания. Поэтому кроме гибридологического анализа, в генетике используется множество других методов.

5. Краткая история генетики. Особенности развития отечественной генетики

Явления наследственности и изменчивости признаков были известны с древнейших времен. Сущность этих явлений была сформулирована в виде эмпирических правил: «Яблочко от яблони недалеко падает», «От худого семени не жди доброго племени», «Не в мать, не в отца, а в прохожего молодца» и т.д.

Натурфилософы античного мира пытались объяснить причины сходства и различия между родителями и их потомками, между братьями и сестрами, механизмы определения пола, причины рождения близнецов. Преемственность поколений описывалась терминами «генус» (род), «геннао» (рождаю), «генетикос» (имеющий отношение к происхождению), «генезис» (происхождение).

В Новое время в Англии (Т. Найт), Германии (Й. Кёльрейтер), Франции (О. Сажрэ) были разработаны методики постановки опытов по гибридологическому анализу, были открыты явления доминантности и рецессивности, сформулированы представления об элементарных наследуемых признаках. Однако раскрыть механизмы наследственности и изменчивости долгое время не удавалось. Для объяснения феноменов наследственности и изменчивости использовались концепции наследования благоприобретенных признаков, панспермии, изменчивости признаков под прямым влиянием среды и др.

ЦИТОГЕНЕТИКА. ПРИРОДА ГЕНА. ЭВОЛЮЦИЯ ПРЕДСТАВЛЕНИЙ О ГЕНЕ.

В основе воспроизведения биологических систем лежит деление клеток.

В 1831–1833 гг. Р. Браун доказал, что одним из основных компонентов эукариотической клети является ядро.

В конце XIX в. была установлена ведущая роль ядра в хранении и передаче наследственной информации

В 1924 г. Фёльген доказал, что в состав хромосом входит ДНК.

Число хромосом постоянно для каждого вида организмов.

На этом основании в 1903г. американский цитолог Уильям Сэттон пришел к выводу, что в хромосомах локализованы носители наследственной информации, которые датский генетик Иоганнсен в 1909 г. назвал генами.

Раздел генетики, изучающий хромосомы как носители наследственной информации, называется цитогенетикой.

В 1944 г. О. Эйвери, К. Мак-Лауд, М. Мак-Карти доказали, что веществом, ответственным за передачу наследственных детерминант у бактерий, является ДНК. В 1953 г. Дж. Уотсон и Ф. Крик расшифровали структуру молекулы ДНК и раскрыли генетический код, благодаря которому выявлена закономерность механизмов синтеза полипептидов и белков всех живых существ.

Химический состав и строение молекулы ДНК

Уотсон и Крик предположили, что молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали.

Основная структурная единица одной цепи - нуклеотид.

Принцип комплементарности

Сцепление между цепями обеспечивается особыми водородными связями между

аденином и тимином (2 связи)

гуанином и цитозином (3 связи)

Для любой последовательности азотистых оснований возможна равная ей по длине комплементарная последовательность, составляющая вторую цепь двойной спирали.

Конкретная последовательность пар А-Т и Г-Ц не влияет на структуру молекулы ДНК.

Возможное число различных последовательностей пар оснований в молекуле ДНК практически бесконечно и способно кодировать колоссальное количество информации.

Правило Э.Чаргаффа- биологический закон, в соответствии с которым в любых молекулах ДНК молярная сумма пуриновых оснований (Аденин + Гуанин) равна сумме пиримидиновых оснований (Цитозин + Тимин).

Из правила Э.Чаргаффа следует, что нуклеотидный состав ДНК разных видов может варьировать лишь по суммам комплементарных оснований.

Поскольку цепи ДНК комплементарны, каждая из них при расплетании двойной спирали способна служить матрицей для синтеза новой комплементарной цепи.

Кариотип – это совокупность метафазных хромосом, характерных для определенного вида организмов.

Постоянство кариотипа поддерживается с помощью точных механизмов митоза и мейоза.

Изучение кариотипов и их изменчивости важно для

здравоохранения (многие генетические заболевания связаны с изменением кариотипа),

селекции (многие сорта растений различаются по кариотипу)

экологического биомониторинга (кариотип может изменяться под воздействием экологических факторов).

Кариотип используется в качестве видовой характеристики (существует особый раздел систематики – кариосистематика).

Кариотипический критерий является одним из важнейших критериев вида. Сущность этого критерия заключается в том, что все особи данного вида характеризуются определенным кариотипом.

В понятие «кариотип» включается число хромосом, их размеры, морфология, особенности продольной дифференцировки.

Число хромосом в геноме называется основным хромосомным числом и обозначается символом х.

Изучение геномов важно с точки зрения медицины, теории селекционного процесса и теории эволюции.

Генетика

ГЕНЕ́ТИКА [нэ́], -и; ж. [от греч. genētikos - относящийся к рождению, происхождению]. Наука о законах наследственности и изменчивости организмов. Г. человека. Г. растений. Медицинская г. Космическая г.

гене́тика

(от греч. génesis - происхождение), наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от объекта исследования различают генетику микроорганизмов, растений, животных и человека, а от уровня исследования - молекулярную генетику, цитогенетику и др. Основы современной генетики заложены Г. Менделем, открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.). В СССР в 20-30-х гг. выдающийся вклад в генетику внесли работы Н. И. Вавилова, Н. К. Кольцова, С. С. Четверикова, А. С. Серебровского и др. С середины 30-х гг. и особенно после сессии ВАСХНИЛ 1948 в советской генетике возобладали антинаучные взгляды Т. Д. Лысенко (безосновательно названные им «мичуринским учением»), что до 1965 остановило её развитие и привело к уничтожению крупных генетических школ. Быстрое развитие генетики в этот период за рубежом, особенно молекулярной генетики во второй половине XX в., позволило раскрыть структуру генетического материала, понять механизм его работы. Идеи и методы генетики используются для решения проблем медицины, сельского хозяйства, микробиологической промышленности. Её достижения привели к развитию генетической инженерии и биотехнологии.

ГЕНЕТИКА

ГЕНЕ́ТИКА (от греч. genesis - происхождение), наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от объекта исследования различают генетику микроорганизмов, растений, животных и человека, а от уровня исследования - молекулярную генетику, цитогенетику и др. Основы современной генетики заложены Г. Менделем (см. МЕНДЕЛЬ Грегор Иоганн) , открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.). В СССР в 1920-1930-х годах выдающийся вклад в генетику внесли работы Н. И. Вавилова (см. ВАВИЛОВ Николай Иванович) , Н. К. Кольцова, С. С. Четверикова, А. С. Серебровского и др. С сер. 1930-х годов, и особенно после сессии ВАСХНИЛ 1948, в советской генетике возобладали антинаучные взгляды Т. Д. Лысенко (безосновательно названные им «мичуринским учением»), что до 1965 остановило ее развитие и привело к уничтожению крупных генетических школ. Быстрое развитие генетики в этот период за рубежом, особенно молекулярной генетики во 2-й пол. 20 в., позволило раскрыть структуру генетического материала, понять механизм его работы. Идеи и методы генетики используются для решения проблем медицины, сельского хозяйства, микробиологической промышленности. Ее достижения привели к развитию генетической инженерии (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ) и биотехнологии (см. БИОТЕХНОЛОГИЯ) .
* * *
ГЕНЕ́ТИКА (от греч. genesis - происхождение), наука, изучающая закономерности наследственности и изменчивости организмов.
Основные этапы истории генетики
Различные умозрительные представления о наследственности и изменчивости высказывались еще античными философами и врачами. В большинстве своем эти представления были ошибочными, но иногда среди них появлялись и гениальные догадки. Так, римский философ и поэт Лукреций Кар (см. ЛУКРЕЦИЙ) писал в своей знаменитой поэме «О природе вещей» о «первоначалах» (наследственных задатках), определяющих передачу из поколения в поколение признаков от предков к потомкам, о происходящем при этом случайном комбинировании («жеребьевке») этих признаков, отрицал возможность изменения наследственных признаков под влиянием внешних условий. Однако подлинно научное познание наследственности и изменчивости началось лишь спустя много столетий, когда было накоплено множество точных сведений о наследовании различных признаков у растений, животных и человека. Число таких наблюдений, проведенных преимущественно практиками-растениеводами и животноводами, особенно возросло в период с середины 18 до середины 19 века. Наиболее ценные данные были получены И. Кельрейтером и А. Гертнером (Германия), О. Сажрэ и Ш. Ноденом (Франция), Т. Найтом (Англия). На основании межвидовых и внутривидовых скрещиваний растений они обнаружили ряд важных факторов, касающихся усиления разнообразия признаков в потомстве гибридов, преобладания у потомков признаков одного из родителей и т. п. Сходные обобщения сделал во Франции П. Люка (1847-1850), собравший обширные сведения о наследовании различных признаков у человека. Тем не менее, четких представлений о закономерностях наследования и наследственности вплоть до конца 19 века не было за одним существенным исключением. Этим исключением была замечательная работа Г. Менделя (см. МЕНДЕЛЬ Грегор Иоганн) , установившего в опытах по гибридизации сортов гороха важнейший законы наследования признаков, которые впоследствии легли в основу генетики. Однако работа Г. Менделя [доложена им в 1865 на заседании общества естествоиспытателей г. Брюнн (Брно) и напечатана на следующий год в трудах этого общества] не была оценена современниками и, оставаясь забытой 35 лет, не повлияла на распространенные в 19 веке представления о наследственности и изменчивости. Появление эволюционных теорий Ж. Б. Ламарка (см. ЛАМАРК Жан Батист) , а затем Ч. Дарвина усилило во второй половине 19 века интерес к проблемам изменчивости и наследственности, т. к. эволюция возможна только на основе возникновения у живых существ изменений и их сохранения у потомков. Это побудило видных биологов того времени выдвинуть несколько гипотез о механизме наследственности, гораздо более детализированных, чем предлагавшиеся ранее. Хотя эти гипотезы были в значительной степени умозрительными и в дальнейшем были опровергнуты экспериментальными исследованиями, три из них наряду с ошибочными содержали также подтвердившиеся положения. Первая принадлежала Ч. Дарвину, назвавшему ее «временной гипотезой пангенезиса» (см. Пангенезис (см. ПАНГЕНЕЗИС) ). В этой гипотезе была правильная догадка о том, что половые клетки содержат особые частицы, определяющие развитие признаков потомков. Во второй гипотезе, выдвинутой немецким ботаником К. Негели, содержалась верная мысль о том, что каждая клетка организма содержит особое вещество («идиоплазму»), определяющее наследственные свойства организма. Наиболее детализированной была третья гипотеза, предложенная немецким зоологом А. Вейсманом (см. ВЕЙСМАН Август) . Он тоже считал, что в половых клетках есть особое вещество - носитель наследственности («зародышевая плазма»). Опираясь на сведения о механизме деления клетки, Вейсман отождествлял это вещество с хромосомами. Предположение о ведущей роли хромосом в передаче наследственных свойств было правильным и Вейсмана справедливо считают предтечей хромосомной теории наследственности (см. ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ) . Верными были также его утверждения о большом значении скрещиваний, как причины изменчивости, и отрицание наследования приобретенных признаков.
Датой рождения генетики принято считать 1900, когда три ботаника - Г. де Фриз (см. ДЕ ФРИЗ Хуго) (Голландия), К. Корренс (см. КОРРЕНС Карл Эрих) (Германия) и Э. Чермак (см. ЧЕРМАК-ЗЕЙЗЕНЕГГ) (Австрия), проводившие опыты по гибридизации растений, натолкнулись независимо друг от друга на забытую работу Г. Менделя. Они были поражены сходством его результатов с полученными ими, оценили глубину, точность и значение сделанных им выводов и опубликовали свои данные, показав, что полностью подтверждают заключения Менделя. Дальнейшее развитие генетики связано с рядом этапов, каждый из которых характеризовался преобладающими в то время направлениями исследований. Границы между этими этапами в значительной мере условны - этапы тесно связаны друг с другом, и переход от одного этапа к другому становился возможным благодаря открытиям, сделанным в предыдущем. Наряду с разработкой наиболее характерных для каждого этапа новых направлений, продолжалось исследование тех проблем, которые были главными ранее, а затем в той или иной мере отодвинулись на второй план. С этой оговоркой можно разделить историю генетики на шесть основных этапов.
Первый этап (с 1900 приблизительно по 1912), получивший название менделизма (см. МЕНДЕЛИЗМ) , является периодом утверждения открытых Менделем законов наследования на основе гибридологических опытов, проведенных в разных странах на высших растениях и животных (лабораторные грызуны, куры, бабочки и др.), в результате чего выяснилось, что эти законы имеют универсальный характер. Название «генетика» развивающейся науке дал в 1906 английский ученый У. Бэтсон, а вскоре сложились и такие важные генетические понятия, как ген (см. ГЕН (наследственный фактор)) , генотип (см. ГЕНОТИП) , фенотип (см. ФЕНОТИП) , которые были предложены в 1909 датским генетиком В. Иогансеном (см. ИОГАНСЕН Вильгельм Людвиг) . Наряду с наиболее характерными для этого начального этапа истории генетики работами, подтверждающими на разных объектах справедливость законов Менделя, в те же годы зародились и некоторые новые направления исследований, получивших свое развитие в последующие периоды. Во-первых, это синтез сведений о хромосомах, митозе и мейозе с данными генетики. Уже в 1902 Т. Бовери (Германия) и У. Сеттон (США) обратили внимание на полный параллелизм расхождения хромосом и их перекомбинирования при мейозе и оплодотворении с расщеплением и перекомбинированием наследственных признаков по законам Менделя, что послужило важной предпосылкой возникновения хромосомной теории наследственности.
Во-вторых, выяснилось, что, хотя большинство изученных к тому времени наследственных признаков самых разных организмов передавалось из поколения в поколение в полном соответствии с законами Менделя, были и исключения. Так, английские генетики У. Бэтсон и Р. Пеннет в 1906 в опытах с душистым горошком обнаружили явление сцепленного наследования некоторых признаков, а другой английский генетик Л. Донкастер в том же году в опытах с крыжовниковой пяденицей открыл сцепленное с полом наследование. И в том и в другом случае наследование признаков происходило иначе, чем предсказывали законы Менделя. Число примеров обоих типов отклонения от менделевского наследования стало затем быстро увеличиваться, но только на следующем этапе истории генетики выяснилось, что принципиального противоречия с менделизмом в этих случаях нет и что это кажущееся противоречие объяснимо в рамках хромосомной теории наследственности. В-третьих, началось изучение внезапно возникающих и стойко наследуемых изменений - мутаций. В этом особенно большие заслуги принадлежали Г. де Фризу (1901, 1903), а в России С. Н. Коржинскому (1892). На первом этапе развития генетики появились также первые попытки рассмотреть в свете ее данных проблемы эволюционного учения. Три такие попытки, предпринятые У. Бэтсоном (Англия), Г. де Фризом и Я. Лотси (Голландия), отражали стремление авторов использовать основы генетики для ревизии положений дарвинизма. На несостоятельность этих попыток уже тогда указал в ряде критических статей К. А. Тимирязев, который одним из первых отметил, что менделизм не только не противоречит дарвинизму, но, наоборот, подкрепляет его, снимая некоторые важные возражения, выдвигавшиеся против теории Дарвина.
Отличительной чертой второго этапа развития генетики (приблизительно 1912-1925) было создание и утверждение хромосомной теории наследственности. Ведущую роль в этом сыграли экспериментальные работы американского генетика Т. Моргана и его учеников (А. Стертевант, К. Бриджес и Г. Меллер), проведенные в период с 1909 по 1919 на дрозофиле. Эти работы, подтвержденные затем в др. лабораториях и на др. организмах, показали, что гены лежат в хромосомах клеточного ядра и что передача наследственных признаков, в т. ч. и таких, наследование которых, на первый взгляд, не укладывается в законы Менделя, определяется поведением хромосом при созревании половых клеток и оплодотворении. Данный вывод вытекал из исследований, проводившихся двумя независимыми методами - гибридологическим и цитологическим, дававшими взаимно подтверждающие результаты. Генетические работы школы Моргана показали возможность строить карты хромосом с указанием точного расположения различных генов (см. Генетические карты (см. ГЕНЕТИЧЕСКИЕ КАРТЫ ХРОМОСОМ) ). На основе хромосомной теории наследственности был выяснен и доказан хромосомный механизм определения пола. Большие заслуги в этом принадлежали, кроме Моргана, американскому цитологу Э. Вильсону. Тогда же начались и другие работы по генетике пола, среди которых особое значение имели исследования немецкого генетика Р. Гольдшмидта. Хромосомная теория наследственности была крупнейшим достижением этого этапа развития генетики и во многом определила путь дальнейших генетических исследований.
Если в первые годы развития менделизма было распространено упрощенное представление, что каждый наследственный признак организма определяется особым геном, то в рассматриваемый период стало ясно, что любой такой признак определяется взаимодействием мн. генов (эпистаз (см. ЭПИСТАЗ) , полимерия (см. ПОЛИМЕРИЯ) и др.), а каждый ген в той или иной мере влияет на разные признаки (плейотропия (см. ПЛЕЙОТРОПИЯ) ). Кроме того, оказалось, что способность гена проявляться в фенотипе организма (пенетрантность (см. ПЕНЕТРАНТНОСТЬ) ) и степень его действия на фенотип (экспрессивность (см. ЭКСПРЕССИВНОСТЬ) ) могут зависеть, иногда в большой степени, от влияния окружающей среды или действия др. генов. Представления о пенетрантности и экспрессивности генов были впервые сформулированы в 1925 Н. В. Тимофеевым-Ресовским (см. ТИМОФЕЕВ-РЕСОВСКИЙ Николай Владимирович) на основании результатов его опытов с дрозофилой.
В этот же период быстро развиваются некоторые направления генетики, важные для разработки генетических основ селекции, семеноводства и племенного дела: изучение закономерностей наследования количественных признаков (особенно важны исследования шведского генетика Г. Нильсона-Эле), выяснение природы гетерозиса (см. ГЕТЕРОЗИС) (работы американских генетиков Э. Иста и Д. Джонса), исследования сравнительной генетики культурных растений (выдающиеся труды Н. И. Вавилова, которые легли в основу его закона гомологичных рядов в наследственной изменчивости), по межвидовой гибридизации плодовых растений (работы И. В. Мичурина в СССР, Л. Бербанка в США), по частной генетике возделываемых растений и домашних животных.
К рассматриваемому периоду относится и становление генетики в СССР, причем ее быстрое развитие началось в 1920-х годах, когда сложились три генетических школы, возглавляемые Н. К. Кольцовым в Москве, Ю. А. Филипченко и Н. И. Вавиловым в Ленинграде.
Следующий этап (приблизительно 1925-1940) связан с открытием искусственного мутагенеза. До 1925 довольно широко было распространено мнение, восходившее к высказыванием Вейсмана и особенно к взглядам де Фриза, о том, что мутации возникают в организме самопроизвольно под влиянием каких-то чисто внутренних причин и не зависят от внешних воздействий. Эта ошибочная концепция была опровергнута в 1925 работами Г. А. Надсона и Г. С. Филиппова по искусственному вызыванию мутаций, а затем экспериментально доказана опытами Г. Меллера (1927) по воздействию рентгеновских лучей на дрозофилу. Работа Г. Меллера стимулировала многочисленные исследования по мутагенезу на разных объектах, которые показали, что ионизирующие излучения - универсальные мутагены. Благодаря этому началось изучение закономерностей мутагенного действия излучений; особенно ценными были исследования Н. В. Тимофеева-Ресовского и М. Дельбрюка, обнаруживших прямую зависимость частоты индуцированных мутаций от дозы радиации и предположивших в 1935, что эти мутации вызываются непосредственным попаданием в ген кванта или ионизирующей частицы (теория мишени). В дальнейшем показано, что мутагенным действием обладают ультрафиолетовые лучи, химические вещества. Первые химические мутагены были открыты в 1930-х годах в СССР В. В. Сахаровым, М. Е. Лобашевым и С. М. Гершензоном. Благодаря исследованиям И. А. Раппопорта в СССР и Ш. Ауэрбах и Дж. Робсона в Великобритании, в 1946 обнаружены супермутагены этиленимин и азотистый иприт.
Исследования в этой области привели к быстрому прогрессу в познании закономерностей мутационного процесса и к выяснению некоторых вопросов, касающихся тонкого строения гена. В конце 1920-х - начале 1930-х годов А. С. Серебровский и его ученики получили первые данные, указывающие на сложное строение гена из частей, способных мутировать порознь или вместе. Возможность индукции мутаций открыла новые перспективы практического использования достижений генетики. В разных странах начались работы по применению радиационного мутагенеза для получения исходного материала при создании новых форм культурных растений. В СССР инициаторами такой «радиационной селекции» были А. А. Сапегин и Л. Н. Делоне.
На этом же этапе развития генетики возникло направление, изучающее роль генетических процессов в эволюции. Основополагающими в этой отрасли знаний были теоретические работы английских генетиков Р. Фишера и Дж. Холдейна, американского генетика С. Райта и экспериментальные исследования С. С. Четверикова и его сотрудников, впервые исследовавших на нескольких видах дрозофил генетическую структуру природных популяций. В отличие от некоторых ранних менделистов, выступавших против дарвинизма, эти ученые, опираясь на большой фактический материал, накопленный с тех пор генетикой, убедительно показали, что генетические данные подтверждают и конкретизируют ряд основных принципов дарвинизма, способствуют выяснению соотносительного значения в эволюции естественного отбора, разных типов изменчивости, изоляции и т. д. Н. И. Вавиловым и его учениками продолжалось успешное изучение сравнительной генетики и эволюции возделываемых растений. Особенно яркой была работа его талантливого сотрудника Г. Д. Карпеченко, который на основе межродовой гибридизации получил плодовитый редечно-капустный гибрид. Он экспериментально доказал возможность преодоления бесплодия у отдаленных гибридов и воспроизвел один из способов образования новых видов у растений.
Большого расцвета в этот период достигла генетика в СССР. Помимо выдающихся работ, указанных выше, в разных областях генетики были получены важные результаты, признанные генетиками всего мира. Среди них работы Б. Л. Астаурова, который в опытах на тутовом шелкопряде разработанными им генетическими методами впервые доказал возможность регулировать частоту особей определенного пола у потомства, М. М. Завадовского по развитию половых признаков у позвоночных, Г. А. Левитского по классификации и изменчивости кариотипов и их эволюции. Широко известны в этот период исследования А. А. Сапегина, К. К. Мейстера, А. Р. Жебрака по частной генетике и генетическим основам селекции растений, работы А. С. Серебровского, С. Г. Давыдова, Д. А. Кисловского по частной генетике и генетическим основам селекции домашних животных. Н. К. Кольцов (см. КОЛЬЦОВ Николай Константинович) выдвинул в 1927 концепцию о том, что хромосома с генами представляет одну гигантскую органическую молекулу и что воспроизведение этой наследственной молекулы осуществляется матричным путем. То и другое было позже подтверждено, когда генетические процессы начали изучать на молекулярном уровне (правда оказалось, что генетическим материалом служит не белок, как считал Кольцов, а ДНК).
В конце 1920-х годов в СССР происходила оживленная дискуссия о том, могут ли наследоваться модификации (их тогда называли «приобретенными признаками»), т. е. фенотипические изменения, вызванные в теле организма воздействием внешних условий (пищей, температурой, влажностью, освещением и т. п.) и упражнением либо неупражнением органов. Представление о возможности наследования модификаций было в ту пору практически полностью отвергнуто в зарубежной генетике на основании многочисленных опытных данных, но в СССР некоторые биологи, особенно Е. С. Смирнов, Е. М. Вермель и А. М. Кузин, эту возможность разделяли и пропагандировали. Их поддерживали московские философы М. Б. Митин, П. Ф. Юдин и др., утверждавшие, что эта неоламаркистская концепция якобы соответствует философии диалектического материализма. Спор этот продолжался несколько лет, хотя ошибочность теории наследования модификаций была убедительно продемонстрирована и сов. генетиками Н. К. Кольцовым, Ю. А. Филипченко, А. С. Серебровским, С. С. Четвериковым и зоологами А. С. Северцовым и И. И. Шмальгаузеном. Последний позже выдвинул важные соображения о том, что размах и характер модификаций, хотя они и не наследуются, зависят не только от внешних воздействий, но и от «нормы реакции» организма, определяемой его генотипом. Ошибочной идее наследования приобретенных признаков суждено было впоследствии возродиться в антинаучных воззрениях Т. Д. Лысенко.
Наиболее характерными чертами четвертого этапа истории генетики (приблизительно 1940-1955) было бурное развитие работ по генетике физиологических и биохимических признаков, обусловленное вовлечением в круг генетических опытов новых для генетики объектов - микроорганизмов и вирусов. Возможность получения у этих объектов огромного по численности потомства за короткое время резко повысила разрешающую способность генетического анализа и позволила исследовать многие ранее недоступные стороны генетических явлений.
Изучение биохимических процессов, лежащих в основе формирования наследственных признаков разных организмов, в т. ч. дрозофилы и особенно плесени нейроспоры, пролило свет на то, как действуют гены и, в частности, как влияют генные мутации на синтезируемые в организме ферменты. Это привело к обобщению, сделанному в 1940-х годах американскими генетиками Дж. Бидлом и Э. Тейтемом, согласно которому всякий ген определяет синтез одного фермента (формула «один ген - один фермент» была впоследствии уточнена «один ген - один белок» или даже «один ген - один полипептид»).
В конце 30-х и начале 40-х годов работами американских генетиков М. Грина и Э. Льюиса в опытах на дрозофиле было четко доказано сложное строение и дробимость гена, т. е. подтверждены и углублены аналогичные данные, полученные А. С. Серебровским (см. СЕРЕБРОВСКИЙ Александр Сергеевич) .
В 1944 американский генетик О. Эйвери с сотрудниками в работе по выяснению природы генетической трансформации у бактерий показала, что носителем наследственных потенций (генетической информации) организма служит дезоксирибонуклеиновая кислота (ДНК) хромосом. Это открытие послужило мощным толчком к изучению тонкого химического строения, путей биосинтеза и биологических функций нуклеиновых кислот и явилось отправной точкой, с которой началось развитие молекулярной генетики и всей молекулярной биологии. Наиболее важными достижениями конца четвертого периода является установление того факта, что инфекционным элементом вирусов служит их нуклеиновая кислота (ДНК или РНК), а также открытие в 1952 американскими генетиками Дж. Ледербергом и М. Зиндером трансдукции (см. ТРАНСДУКЦИЯ) , т. е. переноса вирусами генов хозяина, и выяснение структуры молекул ДНК (т. н. двойной спирали) английским физиком Ф. Криком и американским генетиком Дж. Уотсоном в 1953. Последняя работа сыграла выдающуюся роль во всем последующем развитии генетики и всей биологии.
Благодаря прогрессу биохимической генетики большие успехи были достигнуты в генетических и цитологических исследованиях наследственных болезней (см. НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ) человека. В результате сложилось новое направление - медицинская генетика.
Дальнейшее развитие получили работы по генетике природных популяций. Особенно интенсивно они проводились в СССР Н. П. Дубининым с сотрудниками и С. М. Гершензоном с сотрудниками, а в США Ф. Г. Добржанским. В ходе этих исследований показаны роль различных типов мутаций в эволюции, действие естественного отбора, изоляции и генетического дрейфа на генетическую структуру природных популяций. Открытие ряда сильных химических мутагенов послужило толчком к быстрому прогрессу химического мутагенеза. В эти же годы появились первые высокопродуктивные сорта культурных растений, созданные на основе мутаций, искусственно вызванных радиацией, началось применение с той же целью химических мутагенов; были внедрены в практику методы использования гетерозиса, особенно у кукурузы и тутового шелкопряда.
До 1940-х годов генетические исследования в СССР развивались в целом успешно и занимали одно из ведущих мест в мире. С установлением в сов. биологии полновластного господства Т. Д. Лысенко и его сподвижников, быстрое выдвижение которого началось в середине 1930-х годов и достигло апогея в 1948, генетика в СССР была фактически разгромлена.
Пятый этап истории генетики (приблизительно с середины 1950-х годов до начала 1970-х годов) характеризуется исследованием генетических явлений преимущественно на молекулярном уровне, что стало возможным благодаря быстрому внедрению в генетику, как и в др. области биологии, новых химических, физических и математических методов.
Было установлено, что гены представляют собой участки гигантских полимерных молекул ДНК и различаются числом и порядком чередования составляющих их пар нуклеотидов. Совместными усилиями генетиков, физиков и химиков было выяснено, что наследственная информация, передаваемая от родителей потомкам, закодирована последовательностью нуклеотидных пар в генах. С помощью ферментов она переписывается (транскрипция) в нуклеотидную последовательность однонитевых молекул матричных (информационных) РНК, определяющих аминокислотную последовательность синтезируемых белках (трансляция), обуславливающих основные свойства организма (у РНК-содержащих вирусов генетическая информация закодирована в нуклеотидной последовательности их РНК). В расшифровке генетического кода (см. КОД ГЕНЕТИЧЕСКИЙ) , оказавшегося универсальным для всех живых существ, главные заслуги принадлежат Ф. Крику, С. Бреннеру (Великобритания), С. Очоа и М. Ниренбергу (США).
В эти же годы благодаря открытию ряда ферментов (рестриктаз), разрезающих нить ДНК в определенных точках на мелкие фрагменты, научились выделять гены из ДНК хромосом. В 1969 в США Х. Г. Корана с сотрудниками осуществил химический синтез гена.
В 1961 французские генетики Ф. Жакоб и Ж. Моно открыли регуляторные механизмы включения и выключения работы некоторых генов белкового синтеза у кишечной палочки и разработали на основе этих данных концепцию оперона (см. ОПЕРОН) , которая позже была подтверждена и на др. организмах.
В результате выяснения молекулярных механизмов мутаций были достигнуты большие успехи в изыскании и изучении действия новых мощных химических мутагенов («супермутагенов») и в использовании их в селективной практике. Значительно продвинулись работы и во мн. других областях генетики - в разработке методов защиты генома человека от воздействия физических и химических мутагенов окружающей среды, в раскрытии молекулярно-генетических механизмов регуляции индивидуального развития организмов, в исследовании ранее малоизученных явлений внеядерной наследственности, осуществляемой через пластиды, митохондрии, плазмиды. К концу этого периода относится широкое возрождение генетических исследований в СССР (начиная с 1965).
На современном этапе истории генетики, начавшемся в начале 1970-х годов, наряду с прогрессом почти всех ранее сложившихся направлений, особенно интенсивно развивалась молекулярная генетика, что привело к фундаментальным открытиям и, как следствие, к возникновению и успешной разработке принципиально новых форм прикладной генетики.
Так, еще в 1960-х годах в СССР С. М. Гершензон с сотрудниками, изучавшими репродукцию одного из вирусов насекомых, получили новые данные в пользу того, что генетическая информация может передаваться от РНК к ДНК (обратная транскрипция), а не только от ДНК к РНК, что ранее считалось единственным путем транскрипции. В 1970 американские генетики Г. Темин и Д. Балтимор в опытах с некоторыми РНК-содержащими опухолеродными вирусами животных доказали существование обратной транскрипции, выявили ее молекулярный механизм и выделили осуществляющий ее фермент - обратную транскриптазу (ревертазу (см. РЕВЕРТАЗА) ), кодируемую вирусным геном. Открытие обратной транскрипции позволило искусственно синтезировать многие физиологически активные гены на основе их матричной РНК и создавать банки генов (см. БАНК ГЕНОВ) , как искусственно синтезированных, так и естественных. Большинство этих генов уже секвенированы, т. е. в них определена последовательность нуклеотидных пар. Полученные при секвенировании данные привели к открытию интрон-экзонной структуры большинства генов эукариот.
Выяснение того, что репродукция РНК-содержащих онкогенных вирусов происходит с использованием обратной транскрипции (такие вирусы стали называть ретровирусами (см. РЕТРОВИРУСЫ) ), сыграло важную роль в создании современной молекулярно-генетической концепции онкогенеза (см. ОНКОГЕНЕЗ) - возникновения злокачественных опухолей. Вирусогенетическая природа возникновения опухолей была выдвинута еще в сер. 1940-х годов советским вирусологом Л. А. Зильбером, работавшим с ДНК-содержавшим онкогенным вирусом. Однако ее признанию в те годы помешало то, что она не могла объяснить, как РНК-содержащие вирусы вызывают злокачественные опухоли. После открытия обратной транскрипции стало ясно, что вирусогенетическая теория применима к ретровирусам в такой же мере, как и к ДНК-содержащим онкогенным вирусам. В дальнейшем вирусогенетическая теория злокачественного роста стала развиваться гл. обр. на основе гипотезы онкогенов (см. ОНКОГЕНЫ) , впервые выдвинутой американскими учеными Р. Хюбнером и Дж. Тодаро и подтвержденной затем многочисленными экспериментальными исследованиями.
Фундаментальное значение для развития генетики имело также открытие и исследование мобильных генетических элементов (см. МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ) , впервые предсказанных Б. Мак-Клинток (см. МАК-КЛИНТОК Барбара) еще в конце 1940-х годов на основе генетических экспериментов на кукурузе. Эти данные не были должным образом оценены до тех пор, пока в конце 1960-х годов широко развернувшиеся работы по генетике бактерий не привели к открытию у них двух классов мобильных генетических элементов. Десятилетие спустя Д. Хогнесс с сотрудниками (США) и независимо от них Г. П. Георгиев с сотрудниками (СССР) выявили мобильные генетические элементы, получившие название мобильных диспергированных генов (МДГ) у дрозофилы. Вскоре было установлено, что подвижные генетические элементы имеются и у других эукариот.
Некоторые мобильные генетические элементы способны захватывать близлежащие гены и переносить их в др. места генома. Такая способность мобильного Р-элемента дрозофилы была использована американскими генетиками Г. Рубиным и А. Спрэдлингом для разработки техники переноса любого выделенного с помощью рестриктаз гена или его части в несвойственное ему место хромосом. Этот метод стал широко применяться для изучения роли регуляторных генов в работе структурных генов, для конструирования мозаичных генов и т. д.
Молекулярно-генетический подход углубил понимание механизма синтеза антител (иммуноглобулинов (см. ИММУНОГЛОБУЛИНЫ) ). Выявление структурных генов, кодирующих константные и вариабельные цепи молекул иммуноглобулинов, и регуляторных генов, обеспечивающих согласованное действие этих структурных генов, позволило объяснить, как обеспечивается возможность синтеза огромного числа различных иммуноглобулинов на основе ограниченного набора соответствующих генов.
Уже на начальных этапах развития генетики сложилось представление о двух основных типах изменчивости: наследственной, или генотипической, изменчивости, обусловленной генными и хромосомными мутациями и рекомбинацией генов, и ненаследственной, или модификационной, обусловленной воздействиями на признаки развивающегося организма различных факторов окружающей среды. В соответствии с этим было принято рассматривать фенотип организма как результат взаимодействия генотипа и факторов окружающей среды. Однако, эта концепция потребовала существенного дополнения. Еще в 1928 Б. Л. Астауров на основании изучения изменчивости некоторых мутантных признаков дрозофилы высказал мысль, что одной из причин изменчивости могут быть случайные отклонения в ходе развития тех или иных признаков (органов). В 1980-е годы эта мысль получила дополнительные подтверждения. Опытами Г. Стента (США) и В. А. Струнникова (СССР), проведенными на разных животных (нематодах, пиявках, дрозофиле, тутовом шелкопряде), было показано, что выраженная изменчивость структурных и физиологических признаков наблюдается даже среди генетически идентичных (изогенных) особей, воспитываемых в идеально однородных условиях среды. Эта изменчивость, очевидно, обусловлена случайными отклонениями в протекании различных внутриклеточных и межклеточных онтогенетических процессов, т. е. тем, что можно охарактеризовать, как «онтогенетический шум». В связи с этим В. А. Струнников развил представление о «реализационной изменчивости», которая участвует в формировании фенотипа наряду с генотипической и модификационной (подробнее см. Изменчивость (см. ИЗМЕНЧИВОСТЬ) ).
Успехи молекулярной генетики создали предпосылки для возникновения четырех новых направлений генетических исследований преимущественно прикладного характера, основная цель которых изменять геном организма в желаемую сторону. Наиболее быстро из этих направлений развивались генетическая инженерия (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ) и генетика соматических клетоڮ Генетическая инженерия подразделяется на генную (искусственный перенос отдельных генов) и хромосомную (искусственный перенос хромосом и их фрагментов). Методы генной инженерии, развитие которых началось в 1972 в США в лаборатории П. Берга, широко используются для промышленного производства высококачественных биопрепаратов, используемых в медицине (инсулин человека, интерферон, вакцины против гепатитов В, для диагностики СПИД и т. д.). С их помощью получены разнообразные трансгенные животные (см. ТРАНСГЕННЫЕ ЖИВОТНЫЕ) . Получены растения картофеля и подсолнечника, обогащенные запасным белком, кодируемым геном бобовых, растения подсолнечника, обогащенные белком, кодируемым геном кукурузы. Очень перспективны работы, ведущиеся во многих лабораториях мира, по переносу генов азотфиксации из почвенных бактерий в сельскохозяйственные растения. Делаются попытки излечения наследственных заболеваний путем введения в организм пациента «здорового» гена для замещения им мутантного, являющегося причиной болезни. Достижения в технологии рекомбинантных ДНК, сделавшие возможным выделение многих генов др. организмов, а также расширение знаний о регуляции их экспрессии позволяют надеяться на реализацию этой, казавшейся прежде фантастической, идеи.
Метод хромосомной инженерии позволяет пересадить в яйцеклетку млекопитающего с удаленным ядром диплоидное ядро соматической клетки и ввести такую яйцеклетку в матку самки, гормонально подготовленную к имплантации. В этом случае родится потомок, генетически идентичный особи, от которой взята соматическая клетка. Таких потомков можно получить от этой особи неограниченное число, т. е. генетически клонировать ее (см. Клонирование животных (см. КЛОНИРОВАНИЕ ЖИВОТНЫХ) ).
Практическое значение имеют исследования, проводимые на соматических клетках растений, животных и человека. Селекцией клеток растений - продуцентов лекарственных алкалоидов (руты душистой, раувольфии), в сочетании с мутагенезом содержание этих алкалоидов в клеточной массе повышено в 10-20 раз. Селекцией клеток на питательных средах и последующей регенерацией целых растений из клеточного каллуса выведены сорта ряда возделываемых растений, устойчивые к различным гербицидам и засолению почвы. Гибридизацией соматических клеток разных видов и родов растений, половая гибридизация которых невозможна или очень затруднена, и последующей регенерацией из клеточного каллуса созданы разные гибридные формы (капуста - турнепс, культурный картофель - дикие его виды и т. п.).
Другое важное достижение генетики соматических клеток животных - создание гибридом (см. ГИБРИДОМА) , на основе которых получают моноклональные антитела, служащие для создания высокоспецифических вакцин, а также для выделения необходимого фермента из смеси ферментов.
Весьма перспективны для практики еще два молекулярно-генетических направления - сайт-специфичный мутагенез и создание антисмысловых РНК. Сайт-специфичный мутагенез (индукция мутаций определенного выделенного рестриктазами гена или его комплементарной ДНК, и затем включение мутировавшего гена в геном для замены им его немутантного аллеля) впервые позволил индуцировать желательные, а не случайные генные мутации, и уже успешно применяется для получения направленных генных мутаций у бактерий и дрожжей.
Антисмысловые РНК, возможность получения которых впервые была показана в 1981 работающим в США японским иммунологом Д. Томизавой, могут использоваться для целенаправленного регулирования уровня синтеза определенных белков, а также для направленного ингибирования онкогенов и вирусных геномов. Исследования, проведенные по этим новым генетическим направлениям, были нацелены преимущественно на решение прикладных задач. Вместе с тем они внесли фундаментальный вклад в представления об организации генома, структуре и функциях генов, взаимоотношениях генов ядра и клеточных органелл и др.
Основные задачи генетики
Генетические исследования преследуют цели двоякого рода: познание закономерностей наследственности и изменчивости и изыскание путей практического использования этих закономерностей. То и другое тесно связано: решение практических задач основывается на заключениях, полученных при изучении фундаментальных генетических проблем и в то же время доставляет фактические данные, важные для расширения и углубления теоретических представлений.
От поколения к поколению передается (хотя иногда и в несколько искаженном виде) информация о всех многообразных морфологических, физиологических и биохимических признаках, которые должны реализоваться у потомков. Исходя из такого кибернетического характера генетических процессов, удобно сформулировать четыре основные теоретические проблемы, исследуемые генетикой:
Во-первых, проблема хранения генетической информации. Изучается, в каких материальных структурах клетки заключена генетическая информация и как она там закодирована (см. Генетический код (см. КОД ГЕНЕТИЧЕСКИЙ) ).
Во-вторых, проблема передачи генетической информации. Изучаются механизмы и закономерности передачи генетической информации от клетки к клетке и от поколения к поколению.
В-третьих, проблема реализации генетической информации. Изучается, как генетическая информация воплощается в конкретных признаках развивающегося организма, взаимодействуя при этом с влияниями окружающей среды, в той или иной мере изменяющей эти признаки, подчас значительно.
В-четвертых, проблема изменения генетической информации. Изучаются типы, причины и механизмы этих изменений.
Заключения, полученные при изучении фундаментальных проблем наследственности и изменчивости, служат основой решения стоящих перед генетикой прикладных задач.
Достижения генетики используются для выбора типов скрещиваний, наилучшим образом влияющих на генотипическую структуру (расщепление) у потомков, для выбора наиболее эффективных способов отбора, для регуляции развития наследственных признаков, управления мутационным процессом, направленного изменения генома организма с помощью генетической инженерии и сайт-специфичного мутагенеза. Знание того, как разные способы отбора влияют на генотипическую структуру исходной популяции (породу, сорт), позволяет использовать те приемы отбора, которые наиболее быстро изменят эту структуру в желаемую сторону. Понимание путей реализации генетической информации в ходе онтогенеза и влияния, оказываемого на эти процессы окружающей средой, помогают подбирать условия, способствующие наиболее полному проявлению у данного организма ценных признаков и «подавлению» нежелательных. Это имеет важное значение для повышения продуктивности домашних животных, культурных растений и промышленных микроорганизмов, а также для медицины, так как позволяет предупреждать проявление ряда наследственных болезней человека.
Исследование физических и химических мутагенов и механизма их действия делает возможным искусственно получать множество наследственно измененных форм, что способствует созданию улучшенных штаммов полезных микроорганизмов и сортов культурных растений. Познание закономерностей мутационного процесса необходимо для разработки мер по защите генома человека и животных от повреждений физическими (гл. обр. радиацией) и химическими мутагенами.
Успех любых генетических исследований определяется не только знанием общих законов наследственности и изменчивости, но и знанием частной генетики организмов, с которыми ведется работа. Хотя основные законы генетики универсальны, они имеют у разных организмов и особенности, обусловленные различиями, например, в биологии размножения и строении генетического аппарата. Кроме того, для практических целей необходимо знать, какие гены участвуют в определении признаков данного организма. Поэтому изучение генетики конкретных признаков организма представляет собой обязательный элемент прикладных исследований.
Основные разделы генетики
Современная генетика представлена множеством разделов, представляющих как теоретический, так и практический интерес. Среди разделов общей, или «классической», генетики основными являются: генетический анализ, основы хромосомной теории наследственности, цитогенетика, цитоплазматическая (внеядерная) наследственность, мутации, модификации. Интенсивно развиваются молекулярная генетика, генетика онтогенеза (феногенетика), популяционная генетика (генетическое строение популяций, роль генетических факторов в микроэволюции), эволюционная генетика (роль генетических факторов в видообразовании и макроэволюции), генетическая инженерия, генетика соматических клеток, иммуногенетика, частная генетика - генетика бактерий, генетика вирусов, генетика животных, генетика растений, генетика человека, медицинская генетика и мн. др. Новейшая отрасль генетики - геномика - изучает процессы становления и эволюции геномов.
Влияние генетики на другие отрасли биологии
Генетика занимает центральное место в современной биологии, изучая явления наследственности и изменчивости, в большей степени определяющие все главные свойства живых существ. Универсальность генетического материала и генетического кода лежит в основе единства всего живого, а многообразие форм жизни есть результат особенностей его реализации в ходе индивидуального и исторического развития живых существ. Достижения генетики входят важной составной частью почти во все современные биологические дисциплины. Синтетическая теория эволюции представляет собою теснейшее сочетание дарвинизма и генетики. То же можно сказать о современной биохимии, основные положения которой о том, как контролируется синтез главнейших компонентов живой материи - белков и нуклеиновых кислот, основаны на достижениях молекулярной генетики. Цитология главное внимание уделяет строению, репродукции и функционированию хромосом, пластид и митохондрий, т. е. элементам, в которых записана генетическая информация. Систематика животных, растений и микроорганизмов все шире пользуется сравнением генов, кодирующих ферменты и другие белки, а также прямым сопоставлением нуклеотидных последовательностей хромосом для установления степени родства таксонов и выяснения их филогении. Разные физиологические процессы растений и животных исследуются на генетических моделях; в частности, при исследованиях физиологии мозга и нервной системы пользуются специальными генетическими методами, линиями дрозофилы и лабораторных млекопитающих. Современная иммунология целиком построена на генетических данных о механизме синтеза антител. Достижения генетики, в той или иной мере, часто очень значительной, входят составной частью в вирусологию, микробиологию, эмбриологию. С полным правом можно сказать, что современная генетика занимает центральное место среди биологических дисциплин.

- (от греч. genesis происхождение), наука о наследственности и изменчивости живых организмов и методах управления ими. В её основу легли закономерности наследственности, обнаруженные Г. Менделем при скрещивании разл. сортов гороха (1865), а также… … Биологический энциклопедический словарь

  • 1. Генетика как наука, ее предмет, задачи и методы. Основные этапы развития .

    Генетика - дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами.

    Предмет генетики – наследственность и изменчивость организмов.

    Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования:

    1) механизмов хранения и передачи генетической информации от родительских форм к дочерним;

    2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды;

    3) типов, причин и механизмов изменчивости всех живых существ;

    4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

    Генетика является также основой для решения ряда важнейших практических задач. К ним относятся:

    1) выбор наиболее эффективных типов гибридизации и способов отбора;

    2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов;

    3) искусственное получение наследственно измененных форм живых организмов;

    4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных;

    5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

    Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек.

    Методы генетики:


    Основные этапы развития генетики.

    До начала ХХ в. попытки ученых объяснить явления, связанные с наследственностью и изменчивостью, имели в основном умозрительный характер. Постепенно было накоплено множество сведений относительно передачи различных признаков от родителей потомкам. Однако четких представлений о закономерностях наследования у биологов того времени не было. Исключением стали работы австрийского естествоиспытателя Г. Менделя.

    Г. Мендель в своих опытах с различными сортами гороха установил важнейшие закономерности наследования признаков, которые легли в основу современной генетики. Результаты своих исследований Г. Мендель изложил в статье, опубликованной в 1865 г. в «Трудах Общества естествоиспытателей» в г. Брно. Однако опыты Г. Менделя опережали уровень исследований того времени, поэтому данная статья не привлекла внимания современников и оставалась невостребованной в течение 35 лет, вплоть до 1900 г. В этом году три ботаника – Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии, независимо проводившие опыты по гибридизации растений, натолкнулись на забытую статью Г. Менделя и обнаружили сходство результатов своих исследований с результатами, полученными Г. Менделем. 1900 год считается годом рождения генетики.

    Первый этап развития генетики (с 1900 примерно до 1912 г.) характеризуется утверждением законов наследственности в гибридологических опытах, проведенных на разных видах растений и животных. В 1906 г. английский ученый В. Ватсон предложил важные генетические термины «ген», «генетика». В 1909 г. датский генетик В. Иоганнсен ввел в науку понятия «генотип», «фенотип».

    Второй этап развития генетики (приблизительно с 1912 до 1925 г.) связан с созданием и утверждением хромосомной теории наследственности, в создании которой ведущая роль принадлежит американскому ученому Т. Моргану и его ученикам.

    Третий этап развития генетики (1925 – 1940) связан с искусственным получением мутаций – наследуемых изменений генов или хромосом. В 1925 г. русские ученые Г. А. Надсон и Г. С. Филиппов впервые открыли, что проникающее излучение вызывает мутации генов и хромосом. В это же время были заложены генетико-математические методы изучения процессов, происходящих в популяциях. Фундаментальный вклад в генетику популяций внес С. С. Четвериков.

    Для современного этапа развития генетики, начавшегося с середины 50-х годов XX в., характерны исследования генетических явлений на молекулярном уровне. Этот этап ознаменован выдающимися открытиями: созданием модели ДНК, определением сущности гена, расшифровкой генетического кода. В 1969 г. химическим путем вне организма был синтезирован первый относительно небольшой и простой ген. Спустя некоторое время ученым удалось осуществить введение в клетку нужного гена и тем самым изменить в желаемую сторону ее наследственность.

    2. Основные понятия генетики

    Наследственность - это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития.

    Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма.

    Изменчивость - способность организмов в процессе онтогенеза приобретать новые признаки и терять старые.

    Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются и друг от друга, и от своих родителей.

    Ген – это участок молекулы ДНК, отвечающий за определенный признак.

    Генотип - это совокупность всех генов организма, являющихся его наследственной основой.

    Фенотип - совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.

    Аллельные гены - различные формы того же гена, занимающие одно и то же место (локус) гомологичных хромосом и определяющие альтернативные состояния одного и того же признака.

    Доминантность - форма взаимоотношений междуаллелямиодногогена, при которой один из них подавляет проявление другого.

    Рецессивность – отсутствие (непроявление) у гетерозиготного организма одного из пары противоположных (альтернативных) признаков.

    Гомозиготность – состояние диплоидного организма, при котором в гомологичных хромосомах находятся идентичные аллели генов.

    Гетерозиготность – состояние диплоидного организма, при котором в гомологичных хромосомах находятся разные аллели генов.

    Гемизиготность - состояние гена, при котором в гомологичной хромосоме полностью отсутствует его аллель.

    3. Основные типы наследования признаков.

      Моногенное (такой тип наследования, когда наследственный признак контролируется одним геном)

      1. Аутосомное

        1. Доминантное (прослеживается в каждом поколении; у больных родителей больной ребенок; болеют и мужчины и женщины; вероятность наследования – 50-100%)

          Рецессивное (не в каждом поколении; проявляется в потомстве у здоровых родителей; встречается и у мужчин и у женщин; вероятность наследования – 25-50-100%)

      2. Геносомное

        1. Х-сцепленное доминантное (сходен с аутосомным доминантным, но мужчины передают признак только дочерям)

          Х-сцепленное рецессивное (не в каждом поколении; болеют преимущественно мужчины; у здоровых родителей с вероятностью 25% - больные сыновья; больные девочки, если отец болен, а мать носительница)

          Y-сцепленное (голандрическое) (в каждом поколении; болеют мужчины; у больного отца все сыновья больные; вероятность наследования – 100% у всех мужчин)

      Полигенное

    4. Моногибридное скрещивание. Первый и второй законы Менделя, их цитологические основы.

    Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

    Первый закон Менделя (Закон единообразия гибридов первого поколения):

    «При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу»

    Второй закон Менделя (Закон расщепления признаков):

    «При скрещивании гибридов первого поколения, анализируемых по одной паре альтернативных признаков, наблюдается расщепление по фенотипу 3:1, по генотипу 1:2:1»

    В опытах Менделя первое поколение гибридов получено от скрещивания чистолинейных (гомозиготных) родительских растений гороха с альтернативными признаками (АА х аа). Они образуют гаплоидные гаметы А и а. Следовательно, после оплодотворения гибридное растение первого поколения будет гетерозиготным (Аа) с проявлением только доминантного (желтая окраска семени) признака, т. е. будет единообразным, одинаковым по фенотипу.

    Второе поколение гибридов получено при скрещивании между собой гибридных растений первого поколения (Аа), каждое из которых образует по два типа гамет: А и а. Равновероятное сочетание гамет при оплодотворении особей первого поколения дает расщепление у гибридов второго поколения в соотношении: по фенотипу 3 части растений с доминантным признаком (желтозерные) к 1 части растений с рецессивным признаком (зеленозерным), по генотипу - 1 АА: 2 Аа: 1 аа.

    История развития генетики началась с теории эволюции, которую опубликовал в 1859 английский натуралист и путешественник Чарльз Дарвин в книге «Происхождение видов».

    В 1831 году Дарвин присоединился к пятилетней научной экспедиции изучавшей окаменелости, найденные в породах свидетельствующих о животных, которые жили миллионы лет назад. Также Дарвин отметил, что на Галапагосских островах поддерживается своя собственная разновидность зябликов, которые тесно связаны между собой, но имели незначительные различия, которые, казалось были адаптированы в соответствии с их индивидуальной средой.

    По возвращении в Англию, Дарвин на протяжении следующих 20 лет предложил теорию эволюции происходящую в процессе естественного отбора. Книга «Происхождение видов» была кульминацией этих усилий, где он утверждал, что живые существа лучше всего подходит для их среды обитания, у них больше шансов выжить, размножаться и передавать свои характеристики потомкам. Это привело к теории о постепенном изменении видов с течением времени. Его исследования содержат некоторые истины, такие как связь между животной и человеческой эволюцией.

    Книга, положившая начало истории развития генетики была крайне противоречивой на то время, так как он бросил вызов доминирующим взглядом в период, когда многие люди буквально думали, что Бог создал мир за семь дней. Он также предположил, что люди были животные и, возможно, произошли от обезьяны. Он отметил, что через тысячи лет эволюции животные имеют свои тела приспособившись к жизни. Если люди произошли от животных на протяжении миллионов лет, определенные врожденные качества остались и сегодня.

    1859 — Чарльз Дарвин публикует «Происхождение видов»

    Наука узучающая наследственную изменчивость привела к развитию молекулярной биологии для более глубокого понимания механизмов наследственной изменчивости и науке генетика.

    Начальный этап развития молекулярной биологии

    Начальный этап развития молекулярной биологии принадлежит швейцарскому физиологическому химику Фридриху Мишеру который в 1869 году впервые выявил, как он назвал «нуклеиновые» ядра человеческих белых кровяных клеток, которые мы знаем сегодня, как дезоксирибонуклеиновая кислота (ДНК).

    Первоначально Фридрих Мишер изолировал и охарактеризовал компоненты белка, белые кровяные клетки. Для этого он взял из местной хирургической клиники гной-насыщенные бинты, которые он планировал промыть перед фильтрацией белых клеток крови и выделения их различных белков.

    Однако, в процессе работы наткнулся на вещество, обладающее необычными химическими свойствами в отличие от белков, с очень высоким содержанием фосфора и устойчивостью к перевариванию белка. Мишер быстро понял, что он открыл новое вещество и почувствовал важность своего открытия. Несмотря на это, потребовалось более 50 лет широкой научной общественности, чтобы оценить его работу.

    1869 Фридрих Мишер выделяет «нуклеиновые» кислоты или ДНК

    Макромолекула ДНК обеспечивает хранение, передачу из поколения в поколение и реализацию генетической информации

    Основные начальные этапы развития генетики

    Основные этапы развития генетики начались с учения синтеза дарвинизма и механизмов эволюции живого.

    В 1866 году, неизвестный монах Австрийский биолог и ботаник Грегор Мендель был первым человеком, чтобы пролить свет на пути, в котором признаки передаются из поколения в поколение.

    Грегор Мендель сегодня считается отцом генетики

    Он пользовался не такой известностью в течение своей жизни, и его открытия во многом не принимались в научном сообществе. На самом деле, он был настолько впереди, что потребовалось три десятилетия чтобы его открытия были приняты всерьез.

    Между 1856 и 1863 г. Мендель проводил опыты на растениях гороха, пытаясь скрестить и определить «истинную» линию в определенной комбинации. Он выделил семь признаков: высота растения, форма и цвет стручка, форма семян, цвет и положение цветов и окраска.

    Он обнаружил, что, когда желтый горох и зеленый горошек растение было выращено вместе, их отпрыски всегда были желтыми. Однако, в следующем поколении растений, зеленый горошек вернулся в соотношении 3:1.

    Мендель ввел термины рецессивный и доминантный по отношению к чертам характера, для того, чтобы объяснить этот феномен. Так, в примере, зеленый признак был рецессивным, а желтый признак был доминирующим.

    1866 — Грегор Мендель открывает базовые принципы генетики

    В 1900 году, через 16 лет после его смерти исследования наследственных признаков гороха Грегора Менделя наконец восприняла широкая научная общественность.

    Голландский ботаник и генетик Гуго де Фриз, немецкий ботаник и генетик Карл Эрих Корренс и австриец Эрих Чермак-Зейзенегг все самостоятельно переоткрыли работы Менделя и представили результаты экспериментов по гибридизации с похожими выводами.

    В Великобритании, биолог Уильям Бейтсон стал ведущим теоретиком учения Менделя и вокруг него собралась восторженная группа последователей. История развития генетики потребовала три десятилетия чтобы в достаточной степени понять теорию Менделя и найти свое место в эволюционной теории и ввести термин: генетика как наука изучающая наследственную изменчивость .

    Этические проблемы развития медицинской генетики

    Этические проблемы развития медицинской генетики появились с начала 1900-х годов, когда зародилась наука евгеника (от греч. –«хороший род»). Смысл науки евгеники во влиянии на репродуктивные качества для определенных господствующих рас людей. Наука евгеника — особенно темная глава, которая свидетельствует об отсутствии понимания относительно нового открытие в то время. Термин «евгеника» был впервые использован около 1883 ссылаться на «науку» наследственность и воспитанность.

    В 1900 году были переоткрыты теории Менделя, которые нашли регулярной статистической шаблон для характеристики человека как рост и цвет. В угаре исследования, которые последовали, одна мысль ответвляется в социальную теорию науки евгеники. Это было огромное народное движение в первой четверти 20-го века и была представлена как математическая наука, которая может предсказать черты характера и особенности человеческого существа.

    Этические проблемы развития медицинской генетики возникли, когда исследователи заинтересовались контролем размножения человеческих существ, так что только люди с лучшими генами могли воспроизвести и улучшить вид. Сейчас это используется в качестве своего рода «научного» расизма, чтобы убедить людей, что некоторые расовые виды были выше других в плане чистоты, интеллекта и т. д. Это свидетельствует об опасностях, которые приходят с практикующей наукой евгеникой без истинного уважения к человечеству в целом.

    Многие люди могли видеть, что дисциплина была пронизана неточностями, допущениями и противоречиями, а также поощрение дискриминации и расовой ненависти. Однако, в 1924 году движение получило политическую поддержку, когда Закон об иммиграции был принят большинством в Палате представителей и Сенате США. Закон ввел жесткие квоты на иммиграцию из стран для «низших» рас, таких как Южная Европа и Азия. Когда политический выигрыш и удобная наука евгеника объединили усилия появились этические проблемы развития медицинской генетики.

    При продолжении научных исследований и внедрение бихевиоризма (наука о поведении) в 1913 году, популярность евгеники, наконец, начала падать. Ужасы институциональной евгеники в нацистской Германии, которые появились на свет во время 2-й мировой войны полностью уничтожили то, что осталось от движения.

    Так, с конца 19 начала 20 века история развития генетики получила основные закономерности передачи наследственных признаков на растительных и животных организмах которые приложили в дальнейшем и к человеку.

    Сейчас возникла наука , изучающая процесс старения организма.



    Понравилась статья? Поделитесь с друзьями!