Что такое грж в генетике. Этические проблемы развития медицинской генетики

ГЕНЕТИКА
наука, изучающая наследственность и изменчивость - свойства, присущие всем живым организмам. Бесконечное разнообразие видов растений, животных и микроорганизмов поддерживается тем, что каждый вид сохраняет в ряду поколений характерные для него черты: на холодном Севере и в жарких странах корова всегда рождает теленка, курица выводит цыплят, а пшеница воспроизводит пшеницу. При этом живые существа индивидуальны: все люди разные, все кошки чем-то отличаются друг от друга, и даже колоски пшеницы, если присмотреться к ним повнимательнее, имеют свои особенности. Два эти важнейшие свойства живых существ - быть похожими на своих родителей и отличаться от них - и составляют суть понятий "наследственность" и "изменчивость". Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей. Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 20 в. породило повышенный интерес к анализу феномена наследственности. В то время считали, что материальный субстрат наследственности - это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости. Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения "полукровка", "чистокровный" и др. сохранились до наших дней. Неудивительно, что современники не обратили внимания на результаты работы настоятеля монастыря в Брно Грегора Менделя по скрещиванию гороха. Никто из тех, кто слушал доклад Менделя на заседании Общества естествоиспытателей и врачей в 1865, не сумел разгадать в каких-то "странных" количественных соотношениях, обнаруженных Менделем при анализе гибридов гороха, фундаментальные биологические законы, а в человеке, открывшем их, основателя новой науки - генетики. После 35 лет забвения работа Менделя была оценена по достоинству: его законы были переоткрыты в 1900, а его имя вошло в историю науки. Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами. Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Все клетки организма, кроме половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если два аллеля идентичны, организм называют гомозиготным по этому гену. Если аллели разные, организм называют гетерозиготным. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина - другой. Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм. Гены - это определенные фрагменты ДНК; они организованы в хромосомы, находящиеся в ядре клетки. Каждый вид растений или животных имеет определенное число хромосом. У диплоидных организмов число хромосом парное, две хромосомы каждой пары называются гомологичными. Скажем, человек имеет 23 пары хромосом, при этом один гомолог каждой хромосомы получен от матери, а другой - от отца. Имеются и внеядерные гены (в митохондриях, а у растений - еще и в хлоропластах). Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз - это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. В результате митоза каждая хромосома родительской клетки удваивается и идентичные копии расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в онтогенезе, т.е. процессе индивидуального развития. Мейоз - это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток). В отличие от митоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине - другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух гаплоидных гамет (оплодотворении) вновь восстанавливается число хромосом - образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом.
Методические подходы. Благодаря каким особенностям методического подхода Мендель сумел сделать свои открытия? Для своих опытов по скрещиванию он выбрал линии гороха, отличающиеся по одному альтернативному признаку (семена гладкие или морщинистые, семядоли желтые или зеленые, форма боба выпуклая или с перетяжками и др.). Потомство от каждого скрещивания он анализировал количественно, т.е. подсчитывал число растений с этими признаками, что до него никто не делал. Благодаря этому подходу (выбору качественно различающихся признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что признаки родителей не смешиваются у потомков, а передаются из поколения в поколение неизменными. Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков - гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила - Drosophila melanogaster. На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген - сложная структура и имеется много форм (аллелей) одного и того же гена. Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации - включение ДНК, принадлежащей клетке донора, в клетку реципиента - и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др.
См. КЛЕТКА ;
НАСЛЕДСТВЕННОСТЬ ;
МОЛЕКУЛЯРНАЯ БИОЛОГИЯ .
Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов - от вирусов до человека.
Достижения и проблемы современной генетики. На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина
(см. ГЕННАЯ ИНЖЕНЕРИЯ).
Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим. Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930-1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию "химер" - трансгенных растений и животных, "копированию" животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической "паспортизации" людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ. Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы
(см. ПОПУЛЯЦИОННАЯ ГЕНЕТИКА),
изучать наследственные болезни
(см. ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ),
проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.
ЛИТЕРАТУРА
Айала Ф., Кайгер Дж. Современная генетика, тт. 1-3. М., 1988 Сингер М., Берг П. Гены и геномы, тт. 1-2. М., 1998

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ГЕНЕТИКА" в других словарях:

    ГЕНЕТИКА - (от греч. genesis происхождение), обычно определяется как физиология изменчивости и наследственности. Именно так определил содержание генетики Бетсон (Bateson), предложивший в 1906 г. этот термин, желая подчеркнуть, что из трех основных элементов … Большая медицинская энциклопедия

    - (от греч. genesis происхождение), наука о наследственности и изменчивости живых организмов и методах управления ими. В её основу легли закономерности наследственности, обнаруженные Г. Менделем при скрещивании разл. сортов гороха (1865), а также… … Биологический энциклопедический словарь

    - [гр. genetikos относящийся к рождению, происхождению] биол. раздел биологии, изучающий законы наследственности и изменчивости организмов. Словарь иностранных слов. Комлев Н.Г., 2006. генетика (гр. genetikos относящийся к рождению, происхождению)… … Словарь иностранных слов русского языка

    Продажная девка империализма Словарь русских синонимов. генетика сущ., кол во синонимов: 11 биология (73) … Словарь синонимов

    - (греч. genetikos – относящийся к происхождению) наука о законах наследственности и изменчивости организмов. Генетика занимает одно из центральных мест в комплексе биологических дисциплин; ее объектом является генотип, выполняющий функцию… … Энциклопедия культурологии

    генетика - раздел биологии, изучающий законы наследования признаков. Генетику не следует путать с психологией генетической, изучающей развитие поведения от момента рождения до смерти. Словарь практического психолога. М.: АСТ, Харвест. С. Ю. Головин. 1998.… … Большая психологическая энциклопедия

Генетика (от греч. "генезис" - происхождение) - наука о закономерностях наследственности и изменчивости организмов.
Ген (от греч. "генос"-рождение)-участок молекулы ДНК, отвечающий за один признак, т. е. за структуру определенной молекулы белка.
Альтернативные признаки - взаимоисключающие, контрастные признаки (окраска семян гороха желтая и зеленая).
Гомологичные хромосомы (от греч. "гомос" - одинаковый) - парные хромосомы, одинаковые по форме, размерам, набору генов. В диплоидной клетке набор хромосом всегда парный:
одна хромосома из пары материнского происхождения, другая - отцовского.
Локус - участок хромосомы, в котором расположен ген.
Аллельные гены - гены, расположенные в одних и тех же локусах гомологичных хромосом. Контролируют развитие альтернативных признаков (доминантных и рецессивных - желтая и зеленая окраска семян гороха).
Генотип - совокупность наследственных признаков организма, полученных от родителей,- наследственная программа развития.
Фенотип - совокупность признаков и свойств организма, проявляющаяся при взаимодействии генотипа со средой обитания.
Зигота (от греч. "зиготе" - спаренная) - клетка, образующаяся при слиянии двух гамет (половых клеток) - женской (яйцеклетки) и мужской (сперматозоида). Содержит диплоидный (двойной) набор хромосом.
Гомозигота (от греч. "гомос" - одинаковый и зигота) зигота, имеющая одинаковые аллели данного гена (оба доминантные АА или оба рецессивные аа). Гомозиготная особь в потомстве не дает расщепления.
Гетерозигота (от греч. "гетерос" - другой и зигота) - зигота, имеющая два разных аллеля по данному гену (Аа, Вb). Гетерозиготная особь в потомстве дает расщепление по данному признаку.
Доминантный признак (от лат. "едоминас" - господствующий) - преобладающий признак, проявляющийся в потомстве у
гетерозиготных особей.
Рецессивный признак (от лат. "рецессус" - отступление) признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков, полученных при скрещивании.
Гамета (от греч. "гаметес" - супруг) - половая клетка растительного или животного организма, несущая один ген из аллельной пары. Гаметы всегда несут гены в "чистом" виде, так как образуются путем мейотического деления клеток и содержат одну из пары гомологичных хромосом.
Цитоплазматическая наследственность - внеядерная наследственность, которая осуществляется с помощью молекул ДНК, расположенных в пластидах и митохондриях.
Модификация (от лат. "модификацио"-видоизменение)- ненаследственное изменение фенотипа, возникающее под влиянием факторов внешней среды в пределах нормы реакции генотипа.
Модификационная изменчивость - изменчивость фенотипа. Реакция конкретного генотипа на разные условия среды обитания.
Вариационный ряд - ряд модификационной изменчивости признака, слагающийся из отдельных значений видоизменений, расположенных в порядке увеличения или уменьшения количественного выражения признака (размеры листьев, число цветков в колосе, изменение окраски шерсти).
Вариационная кривая - графическое выражение изменчивости признака, отражающее как размах вариации, так и частоту встречаемости отдельных вариант.
Норма реакции - предел модификационной изменчивости признака, обусловленный генотипом. Пластичные признаки обладают широкой нормой реакции, непластичные- узкой.
Мутация (от лат. "мутацио" - изменение, перемена) - наследственное изменение генотипа. Мутации бывают: генные, хромосомные, генеративные (у гамет), внеядерные (цитоплазматиче-ские) и т. д.
Мутагенный фактор - фактор, вызывающий мутацию. Существуют естественные (природные) и искусственные (вызванные человеком) мутагенные факторы.
Моногибридное скрещивание- скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.
Дигибридное скрещивание-скрещивание форм, отличающихся друг от друга по двум парам альтернативных признаков.
Анализирующее скрещивание- скрещивание испытуемого организма с другим, являющимся по данному признаку рецессивной гомозиготой, что позволяет установить генотип испытуемого. Применяется в селекции растений и животных.
Сцепленное наследование - совместное наследование генов, локализованных в одной хромосоме; гены образуют группы сцепления.
Кроссинговср (перекрест) - взаимный обмен гомологичными участками гомологичных хромосом при их конъюгации (в профазе I мейоза I), приводящий к перегруппировке исходных комбинаций генов.
Пол организмов - совокупность морфологических и физиологических особенностей, которые определяются в момент оплодотворения сперматозоидом яйцеклетки и зависят от половых хромосом, которые несет сперматозоид.
Половые хромосомы - хромосомы, по которым мужской пол отличается от женского. Половые хромосомы женского организма все одинаковы (XX) и определяют женский пол. Половые хромосомы мужсквго организма разные(XY): X определяет женский
пол, Y- мужской пол. Поскольку все сперматозоиды образуются путем мейотического деления клеток, половина их несет Х-хро-мосомы, а половина - У-хромосомы. Вероятность получения мужского и женского пола одинакова,
Генетика популяций - раздел генетики, изучающий генотипический состав популяций. Это позволяет рассчитывать частоту мутантных генов, вероятность встречаемости их в гомо- и гетерозиготном состоянии, а также следить за накоплением в популяциях вредных и полезных мутаций. Мутации служат материалом для естественного и искусственного отбора. Данный раздел генетики был основан С. С. Четвериковым и получил дальнейшее развитие в трудах Н. П. Дубинина.

от греч. genesis - происхождение) - учение о развитии; генетический - относящийся к возникновению и развитию, рассматриваемый с точки зрения развития, эволюционно-исторический (напр., генетическая психология).

Отличное определение

Неполное определение ↓

ГЕНЕТИКА

обычно определяется как наука, изучающая закономерности процессов наследственности и изменчивости живых организмов. Формальным годом рождения генетики считается 1900 г., хотя основы ее фактически были сформулированы еще в XIX в. австрийским монахом и ученым Г. Менделем (1822- 1884). Именно Мендель на основе своих классических опытов по растительным гибридам уже в работе 1865 г. сформулировал основные идеи всей классической генетики XX в.: материальность и дискретность наследственности (существование особых единиц, факторов наследственности) и случайно-комбинаторный механизм их передачи по поколениям живых организмов. В силу центральной роли генетических структур в осуществлении практически всех важнейших процессов жизнедеятельности, генетика в XX в. заняла особое - стержневое - место во всей системе биологического знания о живой природе, включая и человека как ее части. Начавшись в 1900 г. с переоткрытия законов Менделя, генетика в XX в. прошла стремительный путь развития от формальной идентификации генов (так были в начале века названы менделевскис «факторы» наследственности) с определенными участками ядерных хромосом до выяснения их подлинной химической природы (1944) в форме особого класса химических биополимеров - дезоксирибонуклеиновых кислот (ДНК); от раскрытия структуры ДНК в виде знаменитой теперь и известной всем двойной спирали (1953) до расшифровки кода наследственной информации (1961); и от открытия методов быстрого прочтения, определения (или, как говорят ученые, - секвенирования) длинных нуклеотидных последовательностей ДНК (1977) до расшифровки (точнее, - секвенирования) генома человека (2000).

Согласно последним исследованиям в человеческом теле находится от 24 000 до 25 000 генов. Гены наследуются от биологических родителей и определяют такие вещи, как цвет кожи, наличие веснушек и скорость загара. Каждый ген вашего тела является сегментом ДНК и подает сигналы клеткам.

Ученые, врачи и диетологи в один голос утверждают, что гены играют важную роль в подверженности кожи различным заболеваниям. Мы постоянно слышим истории о людях с «хорошими» генами, которые могут литрами пить шоколадное молоко и при этом наслаждаться прекрасной кожей. В прошлом я проклинала свои «плохие» гены каждый раз, когда моя кожа покрывалась красной сыпью. Гены важны, и, без сомнения, они оказывают влияние на состояние кожи. Но стоит ли причину видеть только в них?

Исследователи по всему миру заметили, что наша определенная генами биология не в силах угнаться за коренными изменениями в питании, произошедшими на Западе за последнее время. Что это означает для вашего здоровья? Давайте подумаем о питании наших предков. Очевидно, что они проводили большую часть времени в поисках пищи и обустройстве жилья. О полуфабрикатах и газированных напитках никто и понятия не имел, а искусственные красители и ароматизаторы не существовали вовсе. Рацион наших предков зависел от региона проживания, но ученым удалось выявить основные характеристики их питания. Они перекусывали орехами, семенами, фруктами, овощами, охотились на дичь, ловили рыбу, шоколадного печенья в их рационе не было. Конечно, может быть, рацион ваших предков отличался от этого, особенно если они были эскимосами. Древние эскимосы питались морепродуктами и рыбой, поэтому они потребляли больше жира и омега-3 жирных кислот. Зерновые не были неотъемлемой частью их питания.

Какими бы ни были ваши предки, в современном мире вам не нужно собирать орехи и ловить кабанов. Сегодня вы просто идете в магазин и выбираете все необходимое.

Питание современного человека:

    обработанное мясо, например ветчина, салями и сосиски

    молочные продукты (жирное и обезжиренное молоко, сыр и масло)

    белый хлеб, мучные изделия, торты, печенье, рафинированный сахар и сиропы

    рафинированные масла и маргарин

    кофе, чай, алкогольные напитки

    фрукты, овощи, рыба, орехи, крупы и бобовые

Как правило, чем больше полуфабрикатов ест человек, тем меньше он в результате потребляет фруктов и овощей. Признайтесь, что полуфабрикаты - самый удобный вариант ужина в конце рабочего дня, когда вы слишком устали, чтобы готовить. Удобство - важная часть современного общества, но зачастую подобное питание негативно отражается на состоянии кожи.

В Американском журнале клинического питания Лорен Кордэйн и ее коллеги высказали свое мнение о том, что перемены в рационе человека произошли еще десять тысяч лет назад, с зарождением земледелия и животноводства, но последние изменения, связанные с потреблением слишком большого количества обработанной пищи и полуфабрикатов, произошли совсем недавно, чтобы генетика человека могла к ним адаптироваться. Возможно, многие из нас вообще не являются жертвами плохой генетики, просто мы запутываем наши бедные гены, потребляя пищу, которую наши тела не могут распознать.

Многие ученые предполагают, что медленная генетическая адаптация к современному рациону питания может стать причиной возникновения рака, сердечных болезней и акне. Исследования показали, что такое заболевание как акне встречается очень редко или вообще отсутствует в традиционных культурах, где люди едят необработанную пищу.

С возникновением обработки еды появились семь ключевых изменений в рационе человека:

1. Гликемическая нагрузка возросла. Обработанная пища отличается более высоким гликемическим индексом, поднимающим уровень глюкозы в крови. Это может повредить кровеносные сосуды и привести к развитию диабета II типа.

2. Изменилось соотношение жирных кислот. Животные, выращенные в искусственных условиях, не получают достаточной физической нагрузки, поэтому в их мясе практически нет омега-3 жирных кислот, но зато в нем содержится большое количество насыщенных жиров.

3. Изменились пропорции белков, жиров и углеводов. Люди стали потреблять больше насыщенных жиров и рафинированных углеводов.

4. Сократилось количество питательных микроэлементов. В таких прошедших обработку продуктах, как белый хлеб и пшеничная мука, практически нет витаминов и минералов.

5. Изменился кислотно-щелочной баланс. Ставший привычным рацион питания может вызвать метаболический ацидоз (смещение кислотно-щелочного баланса организма в сторону увеличения кислотности), который с возрастом будет лишь возрастать. Слишком большое содержание кислоты в организме пагубно сказывается на здоровье.

6. Изменился натриево-калиевый баланс. Большое содержание соли в продуктах и потребление фруктов и овощей в недостаточном количестве означает, что у большинства из нас наблюдается дефицит калия. Исследователи выяснили, что люди стали потреблять на 400% больше соли, но значительно меньше овощей и фруктов.

7. Сократилось содержание клетчатки. Рафинированные сахара и масла, алкогольные напитки и молочные продукты не содержат клетчатку. Чем меньше в мучных изделиях полезных веществ, тем белее они выглядят.

В настоящее время лишь небольшое число примитивных культур продолжают есть натуральные продукты, не потребляя фастфуд, белую муку и сахар. Изучать такие культуры невероятно интересно, так как они на своем примере демонстрируют зависимость здоровья кожи от питания.

    В современном обществе, где люди потребляют белую муку, молочные продукты и сахар, более 79% подростков страдают от акне.

    Удивительно, но более чем у 40% мужчин и женщин старше 25 лет, проживающих в странах Запада, есть акне.

    Эскимосы, чей рацион состоит из натуральных продуктов, не подвержены акне, однако эскимосы, чье питание приближено к западному, точно так же страдают от этого заболевания.

    Жители японского острова Окинава питаются натуральными продуктами и не страдают акне.

О генах

У вас может быть генетическая предрасположенность к экземе, псориазу, темным кругам под глазами и целлюлиту, но это не означает, что вам придется страдать ими всю жизнь. Здоровое питание и ежедневный правильный образ жизни оказывают влияние на гены. Оказывается, сбалансированный рацион может «выключить» проблемные гены. Ген псориаза может перестать быть активным и просто начать пребывание в спящем состоянии после прохождения программы против этого заболевания.

Если вы страдаете от акне, целлюлита, перхоти, экземы/дерматита, псориаза или розацеа, вам будет приятно узнать о том, что в этой книге есть специальные программы, которые помогут вам избавиться от этих проблем (см. Часть III). Если у вашего ребенка есть кожные заболевания, от которых вы хотите его избавить, обратитесь к Главе 16. Информацию о том, как лечить себорейный дерматит у новорожденных, вы найдете в Главе 14. Кроме того, вы можете незамедлительно обратиться к Части III «Специализированные программы», перед тем как начнете изучать главы Части II «Восемь правил здоровой кожи».

Если же вы страдаете другим кожным заболеванием или у вас отсутствуют явные проблемы (и вы просто хотите предотвратить преждевременное старение), то вам подойдет Часть II - «Восемь правил здоровой кожи». Там вы найдете основные рекомендации, которые следует соблюдать, чтобы стать обладателем красивой кожи.

ПРЕДУПРЕЖДЕНИЕ

Не занимайтесь самодиагностикой! Существует множество кожных заболеваний,в том числе и серьезных, требующих постоянного медицинского наблюдения.

Если вы еще не консультировались с врачом по поводу состояния вашей кожи, сделайте это перед тем, как приступать к Диете для здоровой кожи. Убедитесь в том, что рекомендации подойдут именно вам.

История развития генетики началась с теории эволюции, которую опубликовал в 1859 английский натуралист и путешественник Чарльз Дарвин в книге «Происхождение видов».

В 1831 году Дарвин присоединился к пятилетней научной экспедиции изучавшей окаменелости, найденные в породах свидетельствующих о животных, которые жили миллионы лет назад. Также Дарвин отметил, что на Галапагосских островах поддерживается своя собственная разновидность зябликов, которые тесно связаны между собой, но имели незначительные различия, которые, казалось были адаптированы в соответствии с их индивидуальной средой.

По возвращении в Англию, Дарвин на протяжении следующих 20 лет предложил теорию эволюции происходящую в процессе естественного отбора. Книга «Происхождение видов» была кульминацией этих усилий, где он утверждал, что живые существа лучше всего подходит для их среды обитания, у них больше шансов выжить, размножаться и передавать свои характеристики потомкам. Это привело к теории о постепенном изменении видов с течением времени. Его исследования содержат некоторые истины, такие как связь между животной и человеческой эволюцией.

Книга, положившая начало истории развития генетики была крайне противоречивой на то время, так как он бросил вызов доминирующим взглядом в период, когда многие люди буквально думали, что Бог создал мир за семь дней. Он также предположил, что люди были животные и, возможно, произошли от обезьяны. Он отметил, что через тысячи лет эволюции животные имеют свои тела приспособившись к жизни. Если люди произошли от животных на протяжении миллионов лет, определенные врожденные качества остались и сегодня.

1859 — Чарльз Дарвин публикует «Происхождение видов»

Наука узучающая наследственную изменчивость привела к развитию молекулярной биологии для более глубокого понимания механизмов наследственной изменчивости и науке генетика.

Начальный этап развития молекулярной биологии

Начальный этап развития молекулярной биологии принадлежит швейцарскому физиологическому химику Фридриху Мишеру который в 1869 году впервые выявил, как он назвал «нуклеиновые» ядра человеческих белых кровяных клеток, которые мы знаем сегодня, как дезоксирибонуклеиновая кислота (ДНК).

Первоначально Фридрих Мишер изолировал и охарактеризовал компоненты белка, белые кровяные клетки. Для этого он взял из местной хирургической клиники гной-насыщенные бинты, которые он планировал промыть перед фильтрацией белых клеток крови и выделения их различных белков.

Однако, в процессе работы наткнулся на вещество, обладающее необычными химическими свойствами в отличие от белков, с очень высоким содержанием фосфора и устойчивостью к перевариванию белка. Мишер быстро понял, что он открыл новое вещество и почувствовал важность своего открытия. Несмотря на это, потребовалось более 50 лет широкой научной общественности, чтобы оценить его работу.

1869 Фридрих Мишер выделяет «нуклеиновые» кислоты или ДНК

Макромолекула ДНК обеспечивает хранение, передачу из поколения в поколение и реализацию генетической информации

Основные начальные этапы развития генетики

Основные этапы развития генетики начались с учения синтеза дарвинизма и механизмов эволюции живого.

В 1866 году, неизвестный монах Австрийский биолог и ботаник Грегор Мендель был первым человеком, чтобы пролить свет на пути, в котором признаки передаются из поколения в поколение.

Грегор Мендель сегодня считается отцом генетики

Он пользовался не такой известностью в течение своей жизни, и его открытия во многом не принимались в научном сообществе. На самом деле, он был настолько впереди, что потребовалось три десятилетия чтобы его открытия были приняты всерьез.

Между 1856 и 1863 г. Мендель проводил опыты на растениях гороха, пытаясь скрестить и определить «истинную» линию в определенной комбинации. Он выделил семь признаков: высота растения, форма и цвет стручка, форма семян, цвет и положение цветов и окраска.

Он обнаружил, что, когда желтый горох и зеленый горошек растение было выращено вместе, их отпрыски всегда были желтыми. Однако, в следующем поколении растений, зеленый горошек вернулся в соотношении 3:1.

Мендель ввел термины рецессивный и доминантный по отношению к чертам характера, для того, чтобы объяснить этот феномен. Так, в примере, зеленый признак был рецессивным, а желтый признак был доминирующим.

1866 — Грегор Мендель открывает базовые принципы генетики

В 1900 году, через 16 лет после его смерти исследования наследственных признаков гороха Грегора Менделя наконец восприняла широкая научная общественность.

Голландский ботаник и генетик Гуго де Фриз, немецкий ботаник и генетик Карл Эрих Корренс и австриец Эрих Чермак-Зейзенегг все самостоятельно переоткрыли работы Менделя и представили результаты экспериментов по гибридизации с похожими выводами.

В Великобритании, биолог Уильям Бейтсон стал ведущим теоретиком учения Менделя и вокруг него собралась восторженная группа последователей. История развития генетики потребовала три десятилетия чтобы в достаточной степени понять теорию Менделя и найти свое место в эволюционной теории и ввести термин: генетика как наука изучающая наследственную изменчивость .

Этические проблемы развития медицинской генетики

Этические проблемы развития медицинской генетики появились с начала 1900-х годов, когда зародилась наука евгеника (от греч. –«хороший род»). Смысл науки евгеники во влиянии на репродуктивные качества для определенных господствующих рас людей. Наука евгеника — особенно темная глава, которая свидетельствует об отсутствии понимания относительно нового открытие в то время. Термин «евгеника» был впервые использован около 1883 ссылаться на «науку» наследственность и воспитанность.

В 1900 году были переоткрыты теории Менделя, которые нашли регулярной статистической шаблон для характеристики человека как рост и цвет. В угаре исследования, которые последовали, одна мысль ответвляется в социальную теорию науки евгеники. Это было огромное народное движение в первой четверти 20-го века и была представлена как математическая наука, которая может предсказать черты характера и особенности человеческого существа.

Этические проблемы развития медицинской генетики возникли, когда исследователи заинтересовались контролем размножения человеческих существ, так что только люди с лучшими генами могли воспроизвести и улучшить вид. Сейчас это используется в качестве своего рода «научного» расизма, чтобы убедить людей, что некоторые расовые виды были выше других в плане чистоты, интеллекта и т. д. Это свидетельствует об опасностях, которые приходят с практикующей наукой евгеникой без истинного уважения к человечеству в целом.

Многие люди могли видеть, что дисциплина была пронизана неточностями, допущениями и противоречиями, а также поощрение дискриминации и расовой ненависти. Однако, в 1924 году движение получило политическую поддержку, когда Закон об иммиграции был принят большинством в Палате представителей и Сенате США. Закон ввел жесткие квоты на иммиграцию из стран для «низших» рас, таких как Южная Европа и Азия. Когда политический выигрыш и удобная наука евгеника объединили усилия появились этические проблемы развития медицинской генетики.

При продолжении научных исследований и внедрение бихевиоризма (наука о поведении) в 1913 году, популярность евгеники, наконец, начала падать. Ужасы институциональной евгеники в нацистской Германии, которые появились на свет во время 2-й мировой войны полностью уничтожили то, что осталось от движения.

Так, с конца 19 начала 20 века история развития генетики получила основные закономерности передачи наследственных признаков на растительных и животных организмах которые приложили в дальнейшем и к человеку.

Сейчас возникла наука , изучающая процесс старения организма.



Понравилась статья? Поделитесь с друзьями!