Что такое каноническая матрица. Приведение матрицы к каноническому виду

Передача информации по каналу с решающей обратной связью

дипломная работа

1.2.1 Способы передачи информации по каналам связи

Передача информации с повторением (накоплением). Такой метод передачи применяют для повышения достоверности при отсутствии обратного канала, хотя нет принципиальных ограничений для его использования и при наличии обратной связи. Иногда такой метод классифицируют как прием сообщений с накоплением. Сущность метода заключается в передаче одного и того же сообщения несколько раз, запоминании принятых сообщений, сравнении их поэлементно и составлении сообщения, включая элементы, выбранные «по большинству». Предположим, что трижды передана одна и та же кодовая комбинация 1010101. Во всех трех передачах она подверглась воздействию помех и была искажена:

Приемник поразрядно сравнивает три принятых символа и проставляет те символы (под чертой), количество которых в данном разряде преобладает.

Существует и другой метод передачи информации с накоплением, при котором производится не посимвольное сравнение, а сравнение всей комбинации в целом. Этот метод проще реализуется, но обеспечивает более плохие результаты.

Таким образом, высокая помехоустойчивость метода передачи информации с повторением (накоплением) основана на том, что сигнал и помехи в канале не зависят друг от друга и изменяются по разным законам (сигнал периодичен, а помеха случайна), поэтому повторяющаяся комбинация в каждой передаче, как правило, будет искажаться по-разному. Вследствие этого на приеме накопление, то есть суммирование сигнала, возрастает пропорционально числу повторений, тогда как сумма помехи возрастает по другому закону. Если считать, что помехи и сигнал независимы, то суммируются средн-ие квадраты и средний квадрат суммы возрастает пропорционально первойстепени. Поэтому при n повторениях отношение сигнал/помеха увеличивается в n раз, причем это происходит без увеличения мощности сигнала. Однако это достигается за счет усложнения аппаратуры и возрастания времени передачи или полосы частот в случае, если сигнал передается на нескольких частотах одновременно во времени. Кроме того, при зависимых ошибках и пачках ошибок помехоустойчивость системы снижается.

Передача информации с обратной связью. Помехоустойчивость передачи без обратной связи (ПБОС) обеспечивается следующими способами: помехоустойчивым кодированием, передачей с повторением, одновременной передачей по нескольким параллельным каналам. В ПБОС применяются обычно коды с исправлением ошибок, что связано с высокой избыточностью и усложнением аппаратуры. Передача с обратной связью (ПОС) во многом устраняет указанные недостатки, так как позволяет применять менее помехоустойчивые коды, обладающие, как правило, меньшей избыточностью. В частности, можно использовать коды с обнаружением ошибок. Преимуществом обратного канала является также возможность контроля работоспособности объекта, принимающего информацию.

При ПОС вводят понятие прямого канала, т.е. канала от передатчика к приемнику, например передается сигнал команды с пункта управления (ПУ) на контролируемый пункт (КП). Обратным каналом при этом явится передача сообщения с КП на ПУ о принятии сигнала команды, причем по обратному каналу могут передаваться как сообщение только о том, что сигнал принят на входе КП (в этом случае контролируется лишь прохождение сигнала по каналу связи), так и сведения о полном выполнении команды. Возможна и обратная связь, дающая сведения о поэтапном прохождении сигнала команды по тракту приема.

Рассмотрим отдельные виды передачи с обратной связью.

Передача с информационной обратной связью (ИОС). Если сообщение передается в виде непомехозащищенного кода, то в кодирующем устройстве данный код может быть преобразован в помехозащищенный. Однако, поскольку в этом обычно нет необходимости, кодирующее устройство представляет собой регистр для превращения простого параллельного кода в последовательный. Одновременно c передачей по прямому каналу сообщение запоминается в накопителе на передатчике (рис.1.1а). На контролируемом пункте принятое сообщение декодируется и также запоминается в накопителе. Однако получателю сообщение передается не сразу: сначала оно поступает через обратный канал на пункт управления. В схеме сравнения ПУ происходит сравнение принятого сообщения с переданным. Если сообщения совпадают, то формируется сигнал «Подтверждение» и происходит передача последующих сообщений (иногда перед посылкой последующего сообщения на КП сначала посылается сигнал «Подтверждение» о том, что предыдущее сообщение было принято верно и с накопителя можно передать информацию получателю). При несовпадении сообщений, что свидетельствует об ошибке, формируется сигнал «Стирание». Этот сигнал запирает ключ для прекращения передачи очередного сообщения и посылается на КП для уничтожения записанного в накопителе сообщения. После этого с ПУ производится повторная передача сообщения, записанного в накопителе.

Рис.1.1а. Способ передачи информации с ИОС.

В системах с ИОС ведущая роль принадлежит передающей части, так как она определяет наличие ошибки, приемник только информирует передатчик о том, какое сообщение им получено. Имеются различные варианты передачи с ИОС. Так, существуют системы с ИОС, в которых передача сигналов происходит непрерывно и прекращается лишь при обнаружении ошибки: передатчик посылает сигнал «Стирание» и повторяет передачу. Системы с ИОС, в которых по обратному каналу передается вся информация, переданная на КП, называются системами с ретрансляционной обратной связью. В некоторых системах с ИОС передается не вся информация, а только некоторые характерные сведения о ней (квитанции). Например, по прямому каналу передаются информационные, а по обратному каналу -- контрольные символы, которые будут сравниваться на передатчике с предварительно записанными контрольными символами. Имеется вариант, в котором после проверки принятого по обратному каналу сообщения и обнаружения ошибки передатчик может либо повторить его (дублирование сообщения), либо послать дополнительную информацию, необходимую для исправления (корректирующая информация). Число повторений может быть ограниченным или неограниченным.

Обратный канал используют для того, чтобы определить, необходима ли повторная передача информации. В системах с ИОС повышение достоверности передачи достигается путем повторения информации только при наличии ошибки, тогда как в системах без обратной связи (при передаче с накоплением) повторение осуществляется независимо от искажения сообщения. Поэтому в системах с ИОС избыточность информации значительно меньше, чем в системах с ПБОС: она минимальна при отсутствии искажений и увеличивается при ошибках. В системах с ИОС качество обратного канала должно быть не хуже качества прямого во избежание искажений, которые могут увеличить число повторений.

Передача с решающей обратной связью (РОС). Переданное с передатчика по прямому каналу сообщение принимается на приемнике (рис.1.1б), где оно запоминается и проверяется в декодирующем устройстве (декодере). Если ошибок нет, то из накопителя сообщение поступает к получателю информации, а через обратный канал на передатчик подается сигнал о продолжении дальнейшей передачи (сигнал продолжения). Если ошибка обнаружена, то декодер выдает сигнал, стирающий информацию в накопителе. Получателю сообщение не поступает, а через обратный канал на передатчик подается сигнал о переспросе или повторении передачи (сигнал повторения или переспроса). На передатчике сигнал повторения (иногда называемый решающим сигналом) выделяется приемником решающих сигналов, а переключающее устройство отключает вход кодера от источника информации и подключает его к накопителю, что позволяет повторить переданное сообщение. Повторение сообщения может происходить несколько раз до его правильного приема.

Рис.1.1б. Способ передачи информации с РОС.

При передаче с РОС ошибка определяется приемником. Для этого передаваемое сообщение должно кодироваться обязательно помехозащищенным кодом, что позволяет приемнику выделить разрешенную комбинацию (сообщение) из неразрешенных. Это означает, что передача с РОС осуществляется с избыточностью. Достоверность передачи в системах РОС определяется выбором кода и защитой решающих сигналов повторения и продолжения. Последнее не представляет особых трудностей, так как эти сигналы несут одну двоичную единицу информации и могут передаваться достаточно помехоустойчивым кодом.

Системы с РОС, или системы с переспросом, подразделяют на системы с ожиданием решающего сигнала и системы с непрерывной передачей информации.

В системах с ожиданием передача новой кодовой комбинации или повторение переданной происходит только после поступления на передатчик сигнала запроса.

В системах с непрерывной передачей происходит непрерывная передача информации без ожидания сигнала запроса. Скорость передачи при этом выше, чем в системах с ожиданием. Однако после обнаружения ошибки по обратному каналу посылается сигнал переспроса и за время прихода на передатчик с последнего уже будет передано какое-то новое сообщение. Поэтому системы с непрерывной передачей необходимо усложнять соответствующей блокировкой приемника, чтобы он не принимал информацию после обнаружения ошибки.

Для сравнения эффективности системы без обратной связи, в которой применяется код Хэмминга с исправлением одной ошибки, и системы с РОС, использующей простой код, вводят понятие коэффициента эффективности. Этот коэффициент учитывает уменьшение вероятности ошибочного приема и затраты на его достижение, выигрыш в защите от ошибок (в случае применения указанных кодов), относительное снижение скорости передачи и схемную избыточность, связанные с использованием разных кодов. Итоговое сравнение показало, что в отличие от системы без обратной связи, использующей сложный код, система с РОС дает выигрыш в 5,1 раза. Высокая эффективность систем с РОС обеспечила их широкое распространение.

Сравнительный анализ достоверности передачи систем с ИОС и РОС, показал, что:

1) системы с ИОС и РОС обеспечивают одинаковую достоверность передачи при одинаковых суммарных затратах энергии сигналов в прямом и обратном каналах при условии, что эти каналы симметричны и имеют одинаковый уровень помех;

2) системы с ИОС обеспечивают более высокую достоверность передачи, чем Системы с РОС при относительно слабых помехах в обратном канале в отличие от прямого. При отсутствии помех в обратном канале системы с ИОС обеспечивают безошибочную передачу сообщений по основному каналу;

3) при сильных помехах в обратном канале более высокую достоверность обеспечивают системы с РОС;

4) при пачках ошибок в прямом и обратном каналах более высокую достоверность обеспечивают системы с ИОС.

1.1 Акустическая информация К защищаемой речевой (акустической) информации относится информация, являющаяся предметом собственности и подлежащая защите в соответствии с требованиями правовых документов или требованиями...

Защита акустической (речевой) информации от утечки по техническим каналам

Защита акустической (речевой) информации от утечки по техническим каналам

Генераторы пространственного зашумления Генератор шума ГРОМ-ЗИ-4 предназначен для защиты помещений от утечки информации и предотвращения съема информации с персональных компьютеров и локальных вычислительных сетей на базе ПК...

Методы защиты информации

Методы защиты информации в телекоммуникационных сетях

Угрозу отождествляют обычно либо с характером (видом, способом) дестабилизирующего воздействия на информацию, либо с последствиями (результатами) такого воздействия. Однако такого рода термины могут иметь много трактовок...

Методы сбора и обработки цифровых сигналов

Передача данных -- физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу передачи данных, как правило...

Моделирование объекта защиты

3.1 Утечка информации через строительные конструкции и инженерно-технические системы Для обеспечения защиты помещения от данной угрозы можно применить как метод пассивной защиты (звукопоглощающие материалы)...

Определение состава системы передачи информации

Сигнал на выходе аппаратуры ПТИ представляет собой, как правило, сигнал кодоимпульсной формы, спектр частот которого в общем случае бесконечный...

Организация работ по строительству волоконно-оптической линии связи (ВОЛС)

Возможность передачи информации по волоконно-оптическим линиям появилась благодаря переложению квантовой теории света на его распространение в прозрачных однородных средах...

3.1 Анализ возможности передачи конфиденциальной информации по квантовым каналам связи При переходе от сигналов, где информация кодируется импульсами, содержащими тысячи фотонов, к сигналам, где среднее число фотонов...

Передача информации по квантовым каналам связи

Примером протокола исправления ошибок является способ коррекции ошибок, состоящий в том, что блок данных, который должен быть согласован между пользователями, рассматривается как информационный блок некоторого кода...

Проектирование и программная реализация комплексной системы стрелочных переводов

Канал связи представляет собой тракт связи, который начинается с информационного источника, проходит через все этапы кодирования и модулирования, передатчик, физический канал...

Проектирование магистральной волоконно-оптической системы передачи с повышенной пропускной способностью

Развитие телекоммуникаций идет ускоренными темпами. Получили широкое развитие современные цифровые технологии передачи данных, к которым можно отнести ATM, Frame Relay, IP, ISDN, PCM, PDH, SDH и WDM. Причем такие технологии, как АТМ, ISDN, PCM, PDH...

Расчет надежности работы атмосферной оптической линии связи

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи...

Каналом связи называется совокупность технических средств и физической среды, способной к передаче посылаемых сигналов, которая обеспечивает передачу сообщений от источника информации к получателю.

Каналы принято делить на непрерывные и дискретные.

В наиболее общем случае всякий дискретный канал включает в себя непрерывный как составную часть. Если влиянием мешающих факторов на передачу сообщений в канале можно пренебречь, то такой идеализированный канал называется каналом без помех . В таком канале каждому сообщению на входе однозначно соответствовало определенное сообщение на выходе и наоборот. Если влиянием помех в канале пренебречь нельзя, то при анализе особенностей передаваемых сообщений по такому каналу используются модели характеризующие работу канала при наличии помех.

Под моделью канала понимается математическое описание канала, позволяющие рассчитать или оценить его характеристики, на основании которых исследуются способы построения систем связи без проведения экспериментальных исследований.

Канал в котором вероятности отождествления первого сигнала со вторым и второго с первым одинаковы называется симметричным .

Канал, алфавит сигналов на входе которого отличается от алфавита сигналов на его выходе называется каналом со стиранием.

Канал передачи сообщения от источника к получателю, дополненный обратным каналом, служит для повышения достоверности передачи называется каналом с обратной связью.

Канал связи считается заданным, если известны данные по сообщению на его входе, а также ограничения которые накладываются на входные сообщения физическими характеристиками каналов.

Для характеристики каналов связи используют два понятия скорости передач:

1 – техническая скорость передачи, которая характеризуется числом элементарных сигналов, передаваемых по каналу связи в единицу времени, она зависти от свойств линий связи и от быстродействия аппаратуры канала:

2 – информационная скорость, которая определяется средним количеством информации, передающимся по каналу связи в единицу времени:

Пропускной способностью канала называется максимальная скорость передачи информации по этому каналу, достигаемая при самых совершенных способах передачи и приема.

Лекция №8

Согласование физических характеристик канала связи и сигнала

Каждый конкретный канал связи обладает физическими параметрами, определяющими возможности передачи по этому каналу тех или иных сигналов. Независимо от конкретного типа и назначения каждый канал может быть охарактеризован тремя основными параметрами:

    Т К – время доступа канала [с];

    F K – полоса пропускания каналов [Гц];

    Н К – допустимое превышение сигнала над помехами в канале.

На основании этих характеристик используется интегральная характеристика – объем канала.

Рассмотрим следующие случаи:

а)

Чтобы оценить возможность передачи данного сигнала по конкретному каналу нужно соотнести характеристики канала с соответствующими характеристиками сигнала:

    T C – длительность сигнала [с];

    F C – полоса частот (ширина спектра) сигнала [Гц];

    H C – уровень превышения сигнала над помехой.

Тогда можем ввести понятие объема сигнала .

Для того чтобы передавать различную информацию, изначально должна быть создана среда ее распространения, которая представляет собой совокупность линий, или же каналов передачи данных со специализированным приемо-передающим оборудованием. Линии, или же каналы связи, представляют собой связующее звено в любой современной системе передачи данных, и с точки зрения организации подразделяются на два основных типа - это линии и каналы.

Линия связи представляет собой множество кабелей или же проводов, при помощи которых объединяются пункты связи между собой, а абоненты объединяются с ближайшими узлами. При этом каналы связи могут быть созданы самым разным образом в зависимости от особенностей определенного объекта и схемы.

Какими они могут быть?

Они могут представлять собой физические проводные каналы, которые основываются на использовании специализированных кабелей, а также могут быть волновыми. Волновые каналы связи формируются для организации в определенной среде всевозможных видов радиосвязи с использованием антенн, а также выделенной полосы частот. При этом как оптические, так и электрические каналы связи также подразделяются на два основных типа - это проводные и беспроводные. В связи с этим оптический и электрический сигнал может передаваться через провода, эфир, а также множество других способов.

В телефонной сети после того как будет набран номер, канал образуется на то время, пока будет присутствовать соединение, к примеру, между двумя абонентами, а также пока будет поддерживаться сеанс голосовой связи. Проводные каналы связи формируются посредством использования специализированного оборудования уплотнения, при помощи которого можно в течение длительного или же короткого времени передавать через линии связи информацию, которая подается из огромнейшего количества различных источников. Такие линии включают в себя одну или же одновременно несколько пар кабелей и предоставляют возможность передачи данных на достаточно большое расстояние. Вне зависимости от того, какие виды каналов связи рассматриваются, в радиосвязи они представляют собой среду передачи данных, которая организуется для какого-то определенного или же одновременно нескольких сеансов связи. Если речь идет именно о нескольких сеансах, то в таком случае может применяться так называемое частотное распределение.

Какие есть виды?

Точно так же, как и в современных средствах связи, существуют различные виды каналов связи:

  • Цифровые.
  • Аналоговые.
  • Аналогово-цифровые.

Цифровые

Данный вариант является на порядок более дорогостоящим по сравнению с аналоговыми. При помощи таких каналов достигается предельно высокое качество транслирования данных, а также появляется возможность внедрения различных механизмов, с помощью которых достигается абсолютная целостность каналов, высокая степень защищенности информации, а также использование целого ряда других сервисов. Для того чтобы обеспечить передачу аналоговой информации через технические каналы связи цифрового типа, эта информация первоначально преобразуется в цифровую.

В конце 80-х годов прошлого века появилась специализированная цифровая сеть с интеграцией услуг, более известная сегодня многим как ISDN. Предполагается, что такая сеть с течением времени сможет превратиться в глобальную цифровую магистраль, которая обеспечивает соединение офисных и домашних компьютеров, обеспечивая им достаточно большую скорость транслирования данных. Основные каналы связи данного типа могут быть:

  • Факс.
  • Телефон.
  • Устройства передачи данных.
  • Специализированное оборудование для проведения телеконференций.
  • И множество других.

В качестве конкуренции таким средствам могут выступать современные технологии, которые сегодня активно используются в сетях кабельного телевидения.

Другие разновидности

В зависимости от того, какая обеспечивается скорость передачи каналов связи, они подразделяются на:

  • Низкоскоростные. В данную категорию входят всевозможные телеграфные линии, которые отличаются чрезвычайно низкой (почти отсутствующей по нынешним меркам) скоростью передачи данных, которая достигает максимум 200 бит/с.
  • Среднескоростные. Здесь присутствуют аналоговые телефонные линии, обеспечивающие скорость передачи до 56000 бит/с.
  • Высокоскоростные или же, как их еще называют, широкополосные. Передача данных по каналам связи данного типа осуществляется на скорости более 56000 бит/с.

В зависимости от того, какие предусматриваются возможности организации направлений передачи данных, каналы связи могут подразделяться на следующие типы:

  • Симплексные. Организация каналов связи данного типа обеспечивает возможность транслирования данных только в каком-то определенном направлении.
  • Полудуплексные. Используя такие каналы, данные могут передаваться как в прямом, так и в обратном направлениях.
  • Дуплексные или же полнодуплексные. Используя такие каналы обратной связи, данные могут одновременно транслироваться в прямом и обратном направлениях.

Проводные

Проводные каналы связи включают в себя массу параллельных или же скрученных медных проводов, волоконно-оптических линий связи, а также специализированных коаксиальных кабелей. Если рассматривать, какие каналы связи используют кабеля, стоит выделить несколько основных:

  • Витая пара. Обеспечивает возможность передачи информации на скорости до 1 Мбит/с.
  • Коаксиальные кабели. К этой группе относятся кабели формата TV, включая как тонкий, так и толстый. В данном случае скорость передачи данных уже достигает 15 Мбит/с.
  • Оптоволоконные кабели. Наиболее современный и производительный вариант. Каналы связи передачи информации данного типа предусматривают скорость около 400 Мбит/с, что значительно превышает все остальные технологии.

Витая пара

Представляет собой изолированные проводники, которые между собой попарно свиваются для того, чтобы значительно снизить наводки между парами и проводниками. Стоит отметить, что на сегодняшний день существует семь категорий витых пар:

  • Первая и вторая применяются для того, чтобы обеспечить низкоскоростную передачу данных, причем первая представляет собой стандартный, хорошо известный всем телефонный провод.
  • Третья, четвертая и пятая категории используются для обеспечения скоростей передачи до 16, 25 и 155 Мбит/с, при этом разные категории предусматривают различную частоту.
  • Шестая и седьмая категории являются наиболее производительными. Речь идет о возможности передачи данных на скорости до 100 Гбит/с, что представляет собой самые производительные характеристики каналов связи.

Наиболее распространенной на сегодняшний день является третья категория. Ориентируясь на различные перспективные решения, касающиеся необходимости постоянно развивать пропускную способность сети, наиболее оптимальным будет использовать сети связи (каналы связи) пятой категории, которые обеспечивают скорость транслирования данных через стандартные телефонные линии.

Коаксиальный кабель

Специализированный медный проводник заключается внутрь цилиндрической экранирующей защитной оболочки, которая вьется из достаточно тонких жилок, а также является полностью изолированной от проводника при помощи диэлектрика. От стандартного телевизионного кабеля такой отличается тем, что в нем присутствует волновое сопротивление. Через такие информационные каналы связи данные могут передаваться на скорости до 300 Мбит/с.

Данный формат кабелей подразделяется на тонкий, который имеет толщину 5 мм, а также толстый - 10 мм. В современных ЛВС зачастую принято использовать тонкий кабель, так как он отличается предельной простотой в прокладывании и монтаже. Предельно высокая стоимость при непростой прокладке достаточно сильно ограничивают возможности использования таких кабелей в современных сетях передачи информации.

Сети кабельного телевидения

Такие сети основываются на применении специализированного коаксиального кабеля, аналоговый сигнал через который может транслироваться на расстояние до нескольких десятков километров. Типичная сеть кабельного телевидения отличается древовидной структурой, в которой основной узел получает сигналы со специализированного спутника или же через ВОЛС. На сегодняшний день активно используются такие сети, в которых используется волоконно-оптический кабель, при помощи которого обеспечивается возможность обслуживания больших территорий, а также транслирование более объемных данных, сохраняя при этом предельно высокое качество сигналов при отсутствии повторителей.

При симметричной архитектуре обратный и прямой сигналы транслируются при помощи единственного кабеля в разных диапазонах частот, и при этом с разными скоростями. Соответственно, обратный сигнал медленнее прямого. В любом случае, используя такие сети, можно обеспечить скорость передачи данных в несколько сотен раз больше по сравнению со стандартными телефонными линиями, в связи с чем последние уже давным-давно перестали использовать.

В организациях, в которых устанавливаются собственные кабельные сети, наиболее часто используются симметричные схемы, так как в данном случае как прямая, так и обратная передача данных осуществляется на одной скорости, которая составляет приблизительно 10 Мбит/с.

Особенности использования проводов

Количество проводов, которые могут использоваться для объединения домашних компьютеров и различной электроники, увеличивается с каждым годом. Согласно статистике, полученной в процессе исследований профессиональными специалистами, в 150-метровой квартире прокладывается приблизительно 3 км различных кабелей.

В 90-е годы прошлого века британская компания UnitedUtilities предложила довольно интересное решение данной проблемы при помощи собственной разработки под названием DigitalPowerLine, более известной сегодня по сокращению DPL. Компания предложила использовать стандартные силовые электросети в качестве среды для обеспечения высокоскоростного транслирования данных, осуществляя передачу пакетов информации или же голоса через обыкновенные электрические сети, напряжение которых составляло 120 или 220 В.

Наиболее успешной с этой точки зрения является израильская компания под названием Main.net, которая первой выпустила технологию PLC (PowerlineCommunications). При помощи данной технологии передача голоса или же данных осуществлялась со скоростью до 10 Мбит/с, при этом поток информации распределялся на несколько низкоскоростных, которые передавались на отдельных частотах, и в конечном итоге вновь объединялись в единый сигнал.

Использование технологии PLC на сегодняшний день является актуальным только в условиях транслирования данных на небольшой скорости, в связи с чем используется в домашней автоматике, различных бытовых устройствах и другом оборудовании. При помощи такой технологии достигается возможность выхода в интернет на скорости около 1 Мбит/с для тех приложений, которым требуется высокая скорость соединения.

При небольшом расстоянии между зданием и промежуточной приемопередающей точкой, которой служит трансформаторная подстанция, скорость транслирования данных может достигать 4.5 Мбит/с. Использование данной технологии активно осуществляется при формировании локальной сети в каком-нибудь жилом доме или же небольшом офисе, так как минимальная скорость передачи обеспечивает возможность покрытия расстояния до 300 метров. При помощи этой технологии обеспечивается возможность реализации различных услуг, связанных с дистанционным мониторингом, охраной объектов, а также управлением режимами объектов и их ресурсами, что входит в элементы интеллектуального дома.

Оптоволоконный кабель

Данный кабель составляется из специализированного кварцевого сердечника, диаметр которого составляет всего лишь 10 микронов. Этот сердечник окружается уникальной отражающей защитной оболочкой, внешний диаметр которой составляет около 200 микрон. Передача данных осуществляется посредством трансформации электрических сигналов в световые, используя, к примеру, какой-нибудь светодиод. Кодирование данных осуществляется посредством изменения интенсивности светового потока.

Осуществляя передачу данных, луч, который отражается от стенок волокна, в котором итоге поступает на приемный конец, имея при этом минимальное затухание. При помощи такого кабеля достигается предельно высокая степень защиты от воздействия со стороны каких-либо внешних электромагнитных полей, а также достигается достаточно высокая скорость передачи данных, которая может достигать 1000 Мбит/с.

Используя оптоволоконный кабель, есть возможность одновременной организации работы сразу нескольких сотен тысяч телефонных, видеотелефонных, а также телевизионных каналов. Если говорить о других преимуществах, присущих таким кабелям, стоит отметить следующие:

  • Предельно высокая сложность несанкционированного подключения.
  • Максимально высокая степень защиты от каких-либо возгораний.
  • Достаточно высокая скорость передачи данных.

Однако если говорить о том, какие недостатки имеют такие системы, стоит выделить то, что они являются довольно дорогостоящими и обуславливают необходимость в трансформации световых лазеров в электрические и наоборот. Использование таких кабелей в преимущественном большинстве случаев осуществляется в процессе прокладки магистральных линий связи, а уникальные свойства кабеля сделали его еще и достаточно распространенным среди провайдеров, обеспечивающих организацию сети интернет.

Коммутация

Помимо всего прочего, каналы связи могут быть коммутируемыми или же некоммутируемыми. Первые создаются только на определенное время, пока нужно передавать данные, в то время как некоммутируемые выделяются абоненту на конкретный промежуток времени, и не имеют никакой зависимости от того, в течение какого времени осуществлялась передача данных.

WiMAX

Такие линии, в отличие от традиционных технологий радиодоступа, могут функционировать также на отраженном сигнале, который не находится в прямой видимости той или иной базовой станции. Мнение экспертов сегодня однозначно сходится в том, что такие мобильные сети раскрывают для пользователей огромные перспективы по сравнению с фиксированным WiMAX, который является предназначенным для корпоративных заказчиков. В этом случае информация может транслироваться на достаточно большое расстояние (до 50 км), при этом характеристики каналов связи данного типа включают в себя скорость до 70 Мбит/с.

Спутниковые

Спутниковые системы предусматривают использование специализированных антенн СВЧ-диапазона частот, которые используются для приема радиосигналов от каких-либо наземных станций, и потом ретранслируют полученные сигналы обратно на другие наземные станции. Стоит отметить, что такие сети предусматривают использование трех основных видов спутников, располагающихся на средних или низких, а также геостационарных орбитах. В преимущественном большинстве случаев принято запускать спутники группами, так как, разносясь друг от друга, с их помощью обеспечивается охват всей поверхности нашей планеты.

Каналы передачи, их классификация и основные характеристики

Основные понятия и определения: канал передачи, его динамический диапазон, эффективно передаваемая полоса частот, время, в течении которого канал предоставлен для передачи первичного сигнала, пропускная способность канала. Основные параметры и характеристики канала. Принципы нормирования отклонения остаточного затухания, частотная характеристика, понятие «шаблона» . Фазо-частотная характеристика. Амплитудная характеристика и различные ее формы. Типовые каналы и их основные характеристики.

Ключевыми понятиями техники телекоммуникационных систем и сетей являются канал передачи и канал электросвязи.

Каналом передачи называется совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью передачи между оконечными или промежуточными пунктами телекоммуникационных сетей.

По методам передачи сигналов электросвязи различают аналоговые ицифровые каналы.

1) Аналоговые каналы, в свою очередь, подразделяются на непрерывные идискретные в зависимости от изменения информационного параметра сигнала.

2)Цифровые каналы делятся на каналы с использование импульсно-кодовой модуляции (ИКМ ) , каналы с использованиемдифференциальной ИКМ и каналы на основедельта-модуляции . Каналы, в которых на одних участка используются аналоговые, а на других цифровые методы передачи сигналов, называютсясмешанными каналами передачи.

В зависимости от ширины полосы пропускания, в которой передаются сигналы электросвязи, и соответствия параметров каналов установленным нормам, различают аналоговые типовые каналы тональной частоты, типовые первичный, вторичный, третичный и четверичный широкополосные каналы. Типовые каналы передачи сигналов звукового вещания, сигналов изображения и звукового сопровождения телевидения ;

В зависимости от скорости передачи и соответствия параметров каналов установленным нормам различают: основной цифровой канал, первичный, вторичный, третичный, четверичный и пятеричный цифровые каналы ;

По виду среды распространения сигналов электросвязи различают: проводные каналы , организованные по кабельным и, реже, воздушным линиям связи иканалы радиосвязи , организованные по радиорелейным и спутниковым линиям связи.

Каналом электросвязи называется комплекс технических средств и среды распространения, обеспечивающий передачу первичных сигналов электросвязи от преобразователя сообщения в первичный сигнал до преобразователя первичного сигнала в сообщение.

Помимо приведенной классификации, каналы электросвязи подразделяются

По виду передаваемых первичных сигналов (или сообщений) различают телефонные каналы, каналы звукового вещания, телевизионные каналы, теле-

графные каналы иканалы передачи данных ;

По способам организации двусторонней связи различают двухпроводный однополосный канал, двухпроводный двухполосный канал ичетырехпроводный однополосный канал;

По территориальному признаку каналы электросвязи подразделяются на международные, междугородные, магистральные, зоновые и местные .

Рассмотренная классификация каналов передачи и электросвязи (далее просто каналы) соответствует сложившейся практике их организации и разработке требований к их основным параметрам и характеристикам, которые принято увязывать с соответствующими параметрами и характеристиками первичных сигналов.

Канал может характеризоваться тремя параметрами:

1) эффективно передаваемой полосой частот D F к , которую канал способен пропустить с выполнением требований к качеству передачи сигналов;

2) временем Т к , в течение которого канал предоставлен для передачи сигналов или сообщений;

3) динамическим диапазоном D к , под которым понимается отношение вида

где P кмакс – максимальная неискаженная мощность, которая может быть передана по каналу; P кмин – минимальная мощность сигнала, при которой обеспечивается необходимая защищенность от помех.

Очевидно, что передача сигнала с параметрами D F c ,Т с , иD c по каналу с параметрами D F к ,Т к иD к возможна при условии

Произведение трех параметров канала V к = D к × F к × T к называется егоемкостью . Сигнал может быть передан по каналу, если его емкость не менее объема сигнала (см. лекция 2). Если система неравенств (3.2) не выполняется, то возможнадеформация одного из параметров сигнала, позволяющих согласовать его объем с емкостью канала. Следовательно, условие возможности передачи сигнала по каналу можно представить в более общем виде

V к ³ V с . (3.3)

Канал характеризуется защищенностью

, (3.4)

где P п – мощность помех в канале.

Пропускная способность канала описывается следующим выражением

, (3.5)

где P ср – средняя мощность передаваемого по каналу сигнала.

Канал передачи как четырехполюсник

Канал передачи, как совокупность технических средств и среды распространения электрического сигнала, представляет каскадное соединение различных четырехполюсников , осуществляющих фильтрацию, преобразование сигналов, их усиление и коррекцию. Следовательно, канал можно представитьэквивалентным четырехполюсником, параметры и характеристики которого определяют качество передачи сигналов, рис. 3.1.

Рис. 3.1. Канал передачи как четырехполюсник

На рис.3.1 приняты следующие обозначения: 1-1 и 2-2 -входные и выходные зажимы соответственно;I вх (j w ) иI вых (j w ) – комплексные входной и выходной токи;U вх (j w ) иU вых (j w ) – комплексные входное и выходное напряжения;Z вх (j w ) иZ вых (j w ) – комплексные входное и выходное сопротивления (как правило, величины чисто активные и равные, т.е.Z вх = R вх = Z вых = R вых );K (j w ) =U вых (j w ) /U вх (j w ) =К (w е jb (w ) – комплексный коэффициент передачи по напряжению,К (w ) – модуль коэффициента передачи иb (w ) – фазовый сдвиг между входным и выходными сигналами; если берется отношение выходного тока к входному, то говорят о коэффициенте передачи по току;u вх (t ), u вых (t ) – мгновенные значения напряжения входного и выходного сигналов ир вх и р вых – входной и выходной уровни напряжения или мощности сигналов.

Каналы передачи работают между реальными нагрузками Z н1 (j w ) и Z н2 (j w ), подключаемыми соответственно к зажимам 1-1 и 2-2.

Свойства каналов и их соответствия требованиям к качеству передачи сообщений определяется рядом параметров и характеристик.

Первым и одним из основных параметров каналов является остаточное затухание А r , под которым понимаетсярабочее затухание канала, измеренное или рассчитанное в условиях подключения к зажимам 1-1и 2-2 (рис. 3.1)активных сопротивлений, соответствующих номинальным значениям R вх и R вых соответственно. Входные и выходные сопротивления отдельных устройств канала передачи достаточно хорошо согласуются между собой. При этом условии рабочее затухание канала можно считать равным суммехарактеристических (собственных)затуханий отдельных устройств, не учитывая отражений. Тогда остаточное затухание канала может быть определено по формуле;

, (3.1)

где р вх и р вых – уровни на входе и выходе канала (см. рис. 3.1);A r – затуханиеi - го иS j - усилениеj - го четырехполюсников, составляющих канал передачи.

Это означает, что остаточное затухание (ОЗ) канала представляет собой алгебраическую сумму затуханий и усилений и удобна при расчетахА r , когда известны затухания усилительных участков и усиления усилителей. ОЗ измеряется на определенной для каждогоканала измерительной частоте .

В процессе эксплуатации ОЗ канала не остается величиной постоянной, а отклоняется от номинального значения под воздействием различных дестабилизирующих факторов. Эти изменения ОЗ называютсянестабильностью , которая оценивается по максимальному и среднеквадратическому значениям отклонений ОЗ от номинального значения или величиной их дисперсии.

Остаточное затухание канала связано с его полосой пропускания. Полоса частот канала, в пределах которой остаточное затухание отличается от номинального не более, чем на некоторую величину DA r , называется эффективно передаваемой полосой частот (ЭППЧ). В пределах ЭППЧ нормируются допустимые отклонения ОЗDA r от номинального значения. Наиболее распространенным способом нормирования является использование “шаблонов” допустимых отклонений ОЗ Примерный вид такого шаблона приведен на рис. 3.2.

Рис. 3.2. Примерный шаблон допустимых отклонений остаточного затухания канала передачи

На рис. 3.2 приняты следующие обозначения f 0 – частота, на которой определяется номинальное значение ОЗ; f н , f в – нижняя и верхняя граничные частоты ЭППЧ; 1,2 – границы допустимых отклонений ОЗ; 3 – вид измеренной частотной характеристики ОЗ. Отклонения ОЗ от номинального определяются по формуле

, (3.2)

где f - текущая частота иf 0 частота определения номинального значения ОЗ.

С понятием ЭППЧ тесно связана амплитудно-частотная характеристика -АЧХ (или просточастотная характеристика ) канала, под которой понимаетсязависимость остаточного затухания от частоты А r =j ч (f ) при постоянном уровне на входе канала, т.е. р вх = const . Эта характеристика оценивает амплитудно-частотные (просто частотные) искажения, вносимые каналом за счет зависимости его ОЗ от частоты. Допустимые искажения определяются шаблоном отклонений ОЗ в пределах ЭППЧ. Примерный вид АЧХ канала показан на рис. 3.3.

Для передачи ряда сигналов электросвязи важной является фазо-частотная характеристика – ФЧХ (простофазовая характеристика ) канала, под которой понимается зависимость фазового сдвига между выходным и входным сигналами от частоты, т.е.b=j ф (f). Общий вид фазовой характеристики канала приведен на рис. 3.4

(линия 1).

Рис.3. 3. Частотная характеристика канала. Рис.3. 4. Фазовая характеристика канала.

В средней части ЭППЧ указанная характерситика близка к линейной, а на ее границах наблюдается заметная нелинейность, обусловленная фильтрами, входящими в состав канала передачи. В связи с тем, что непосредственное измерение фазового сдвига, вносимого каналом, затруднительно, для оценки фазовых искажений рассматривают частотную характеристику группового времени прохождения – ГВП (или замедления – ГВЗ)

t (w ) = db (w) /d w , (3.3)

где b (w ) – фазо-частотная характеристика. Примерный вид частотной характеристики ГВП показан на рис.3.4 (линия 2).

Частотные характеристики остаточного затухания, фазового сдвига или группового времени прохождения определяют линейные искажения , вносимые каналами передачи при прохождении по ним сигналов электросвязи.

Зависимость мощности, напряжения, тока или их уровней на выходе канала от мощности, напряжения, тока или их уровней на входе канала называется амплитудной характеристикой АХ . Под АХ канала понимается также зависимость остаточного затухания канала от уровня сигнала на его входе, т.е.A r =j а (р вх ), измеренная на некоторой обусловленной постоянной частоте измерительного сигнала на входе канала, т.е.f изм =const.

Амплитудная характеристика канала может быть представлена различными зависимостями, показанными на рис.3.5: U вых =j н (U вх ) (рис.3.5 а, линии 1 и 2), А r = j А (р вх ) (рис. 3.5 б, линия 1),р вх =j р (р вых ) (рис. 3.5 б, линии 2 и 3), где приняты следующие обозначения:U вх , U вых – напряжения сигнала на входе и выходе канала соответственно;р вх , р вых – уровни (напряжения, мощности) сигналов на входе и выходе канала соответственно;A r – остаточное затухание канала передачи.

Из рассмотрения графиков, представленных на рис.3.5 видно, что АХ имеет три участка:

1) нелинейный участок при малых значениях напряжения или уровней сигнала на входе канала. Нелинейность АХ при этом объясняется соизмеримостью напряжения или уровня сигнала с шумами самого канала;

2) линейный участок при значениях напряжения или уровня входного сигнала, для которого характерна прямая пропорциональная зависимость между напряжением (уровнем) сигнала на входе канала и напряжением (уровнем) сигнала на выходе канала;

Рис.3. 5. Амплитудные характеристики канала передачи

3) участок с существенной нелинейностью при значениях входного напряжения (уровня) сигнала выше максимального U макс (р макс ), для которого характерно появлениенелинейных искажений. Если угол наклона прямой, соответствующей линейному участку АХ, равен 45 0 , то напряжение (уровень) сигнала на выходе канала равно напряжению (уровню) на его входе. Если угол наклона меньше 45 0 , то в канале имеет место затухание, а если угол наклона больше 45 0 , то в канале имеет место усиление. ЕслиA r > 0, то канал вносит затухание (ослабление), еслиA r <0, то канал передачи вноситостаточное усиление.

Незначительная нелинейность АХ при малых значениях входного напряжения или уровня сигнала не влияет на качество передачи и ею можно пренебречь. Нелинейность АХ при значительных значениях напряжения или уровня входного сигнала, выходящих за пределы линейного участка АХ, проявляются в возникновении гармоник иликомбинационных частот выходного сигнала. По АХ можно лишь приблизительно оценить величину нелинейных искажений. Более точно величина нелинейных искажений в каналах оцениваетсякоэффициентом нелинейных искажений илизатуханием нелинейности.

или
, (3.4)

где U – действующее значение напряжения первой (основной гармоники измерительного сигнала; U ,U и т.д. – действующие значения напряжений второй, третьей и т.д. гармоник сигнала, возникших из-за нелинейности АХ канала передачи. Кроме того, в технике многоканальных телекоммуникационных систем передачи широко пользуются понятиемзатухания нелинейности по гармоникам

А нг = 20lg(U / U n г ) =р - р n г ,n = 2, 3 …, (3.5)

где р – абсолютный уровеньпервой гармоники измерительного сигнала,р n г – абсолютный уровеньn –ой гармоники , обусловленной нелинейностью АХ канала.

Цифровые каналы характеризуются скоростью передачи, а качество передачи сигналов оценивается коэффициентом ошибки , под которым понимаетсяотношение числа элементов цифрового сигнала, принятых с ошибками к общему числу элементов сигнала, переданных в течение времени измерения

К ош = N ош / N =N ош / ВТ , (3.6)

где N ош – число ошибочно принятых элементов;N – общее число переданных элементов;В – скорость передачи в бодах;Т – время измерения (наблюдения).

Телекоммуникационные системы должны быть построены таким образом, чтобы каналы обладали бы определенной универсальностью и были бы пригодны для передачи различного вида сообщений. Такими свойствами обладают типовые каналы , параметры и характеристики которых нормированы. Типовые каналы могут бытьпростыми, т.е. не проходящим через оборудование транзита, и составными , т.е. проходящими через оборудование транзита.

Типовые каналы передачи

Канал тональной частоты . Типовой аналоговый канал передачи с полосой частот 300…3400 Гц и с нормированными параметрами и характеристиками называетсяканалом тональной частоты – КТЧ.

Нормированная (номинальная величина) относительного (измерительного) уровня на входе КТЧ равна р вх = - 13дБм 0, на выходе КТЧр вых = + 4дБм 0. Частота измерительного сигнала принимается равнойf изм = 1020 Гц (ранее 800 Гц ). Таким образом, номинальное остаточное затухание КТЧ равноA r = - 17 дБ , т.е. КТЧ вносит усиление равное 17дБ .

Эффективно передаваемой полосой частот КТЧ (составного и максимальной протяженности) называется полоса, на крайних частотах которой (0,3 и 3,4 кГц) остаточное затуханиеA r на 8,7 дБ превышает величину остаточного затухания на частоте 1020 Гц (ранее 800 Гц).

Частотная характеристика отклонений остаточного затухания D А r от номинального значения (- 17дБ ) должна оставаться в пределахшаблона , приведенного на рис. 3.6.

Рис. 3.6. Шаблон допустимых отклонений остаточного затухания КТЧ

Чтобы выполнить требования к частотной характеристики остаточного затухания, ее неравномерность для простого канала длиной 2500 км должна укладываться в переделы, указанные в табл. 3.1.

Таблица 3.1

f , кГц

D A r , дБ

Фазо-частотные искажения мало влияют на качество передачи речевых сигналов, но так как КТЧ используется для передачи и других первичных сигналов, большие фазо-частотные искажения или неравномерность частотной характеристики группового времени прохождения (ГВП) недопустимы. Поэтому нормируются отклонения ГВП от его значения на частоте 1900 Гц для простого канала длиной 2500 км, табл.3.2.

Таблица 3.2

f , кГц

Dt ,мс

Естественно, что для составных каналов отклонения ГВП будут во столько раз больше, сколько простых каналов организуют составной.

Амплитудная характеристика КТЧ нормируется следующим образом: остаточное затухание простого канала должно быть постоянным с точностью до 0,3 дБ при изменении уровня измерительного сигнала от –17,5 до +3,5дБ в точке с нулевым измерительным уровнем на любой частоте в переделах ЭППЧ. Коэффициент нелинейных искажений для простого канала не должен превышать 1,5% (1% по 3-й гармонике) при номинальном уровне передачи на частоте 1020Гц .

Нормирование касается и степени согласования входного и выходного сопротивлений КТЧ с сопротивлениями внешних цепей – нагрузок: внутренним сопротивлением источника передаваемых сигналов и сопротивлением нагрузки. Входное и выходное сопротивление КТЧ должны быть чисто активные и равны R вх = R вых = 600Ом . Вход и выход канала должны бытьсимметричными , коэффициент отражения d или затухание несогласованности (отражения ) А d равные соответственно не должны превышать 10% или 20дБ .

(3.7)

не должны превышать 10% или 20 дБ . ЗдесьZ н - номинальное, аZ р – реальное значение сопротивления.

Важным показателем качества передачи по КТЧ является мощность помех, которые измеряются специальным прибором, называемым псофометром (“псофос” – по гречески означает шум). Псофометр представляет вольтметр с квадратичной характеристикой выпрямления. Выбор такой характеристики объясняется тем, что ухо складывает шумы от отдельных источников по мощности, а мощность пропорциональна квадрату напряжения или тока. От обычных квадратичных вольтметров псофометры отличаются наличием у них частотной зависимости чувствительности. Эта зависимость учитывает различную чувствительность уха на отдельных частотах, входящих в состав спектра помех и шумов, и формируется взвешивающимпсофометрическим фильтром.

При подаче на вход псофометра напряжения частотой 800 Гц с нулевым измерительным уровнем его показание будет равно 775мВ . Для получения того же значения при иных частотах уровни должны быть большей частью выше. Напряжение помех, измеренное псофометромU псоф , связано с эффективным напряжениемU эфф соотношениемU псоф = k п × U эфф , здесьk п = 0,75 называетсяпсофометрическим коэффициентом.

Напряжение помех или шумов, измеренное псофометром, называется псофометрическим напряжением . Мощность, определяемая псофометрическим напряжением на некотором сопротивленииR , называетсяпсофометрической мощностью, которая равнаP псоф = k п × U 2 эфф / R = 0,56U 2 эфф R .

Средний уровень мощности помех с равномерным спектром оказывается при псофометрических измерениях в полосе частот 0,3…3,4 кГц на 2,5дБ (или в 1,78 раза) меньше, чем при измерениях действующих (эффективных) значений. Величина 2,5дБ называетсялогарифмическим псофометрическим коэффициентом.

Псофометрическая мощность помех в точке с нулевым измерительным уровнем КТЧ максимальной протяженности, состоящего из максимального числа простых каналов, не должна превышать 50000 пВтп 0 (пиковаттпсофометрических в точке нулевого относительного уровня). Соответствующее значение эффективной (невзвешенной ) допустимой мощности помех составляет 87000пВт. Псофометрическая мощность помех простого канала длиной 2500км не должна превышать 10000пВтп 0.

Нормируются также допустимые величины средней и пиковой мощности телефонных сигналов на входе КТЧ: в точке нулевого относительного уровня среднее значение мощности составляет 32 мкВт , а пиковое – 2220мкВт.



Понравилась статья? Поделитесь с друзьями!