Что такое кристаллизация вещества. Подготовка материальной части

В обыденной жизни все мы то и дело сталкиваемся с явлениями, сопровождающими процессы перехода веществ из одного агрегатного состояния в другое. И наиболее часто нам приходится наблюдать подобные явления на примере одного из самых распространенных химических соединений - всем хорошо знакомой и привычной воды. Из статьи вы узнаете, как происходит превращение жидкой воды в твердый лед - процесс, называемый кристаллизацией воды - и какими особенностями характеризуется этот переход.

Что такое фазовый переход?

Всем известно, что в природе существует три основных агрегатных состояния (фазы) вещества: твердое, жидкое и газообразное. Часто к ним добавляют и четвертое состояние - плазму (благодаря особенностям, отличающим ее от газов). Однако при переходе от газа к плазме нет характерной резкой границы, и свойства ее определяются не столько взаимоотношением между частицами вещества (молекулами и атомами), сколько состоянием самих атомов.

Все вещества, переходя из одного состояния в другое, при обычных условиях резко, скачкообразно меняют свои свойства (исключение составляют некоторые сверхкритические состояния, но здесь мы их касаться не будем). Такое превращение и есть точнее, одна из его разновидностей. Происходит оно при определенном сочетании физических параметров (температуры и давления), называемом точкой фазового перехода.

Превращение жидкости в газ - обратное явление - конденсация. Переход вещества из твердого состояния в жидкое - плавление, если же процесс идет в противоположном направлении, то он именуется кристаллизацией. Твердое тело может сразу превратиться в газ и, наоборот - в этих случаях говорят о сублимации и десублимации.

При кристаллизации вода превращается в лед и наглядно демонстрирует, насколько меняются при этом ее физические свойства. Остановимся на некоторых важных подробностях этого явления.

Понятие о кристаллизации

Когда жидкость при охлаждении затвердевает, изменяется характер взаимодействия и расположения частиц вещества. Уменьшается кинетическая энергия беспорядочного теплового движения составляющих его частиц, и они начинают образовывать между собой устойчивые связи. Когда благодаря этим связям молекулы (или атомы) выстраиваются регулярным, упорядоченным образом, формируется кристаллическая структура твердого вещества.

Кристаллизация не охватывает одновременно весь объем охлаждаемой жидкости, а начинается с образования мелких кристалликов. Это так называемые центры кристаллизации. Они разрастаются послойно, ступенчато, путем присоединения все новых молекул или атомов вещества вдоль растущего слоя.

Условия кристаллизации

Кристаллизация требует охлаждения жидкости до некоторой температуры (она же одновременно является и точкой плавления). Так, температура кристаллизации воды при нормальных условиях - 0 °C.

Для каждого вещества кристаллизация характеризуется величиной скрытой теплоты. Это количество энергии, выделяемое при данном процессе (а при обратном - соответственно поглощаемой энергии). Удельная теплота кристаллизации воды - это скрытая теплота, выделяемая одним килограммом воды при 0 °C. Из всех веществ у воды она одна из самых высоких и составляет около 330 кДж/кг. Столь большая величина обусловлена особенностями структуры, определяющими параметры кристаллизации воды. Формулой для расчета скрытой теплоты мы воспользуемся ниже, после рассмотрения этих особенностей.

Для компенсации скрытой теплоты необходимо переохладить жидкость, чтобы начался рост кристаллов. Степень переохлаждения оказывает существенное влияние на количество центров кристаллизации и на скорость их разрастания. Пока протекает процесс, дальнейшее охлаждение температуры вещества не меняет.

Молекула воды

Чтобы полнее представлять себе, каким образом происходит кристаллизация воды, необходимо знать, как устроена молекула этого химического соединения, ведь строение молекулы обусловливает особенности связей, которые она образует.

В молекуле воды объединены один атом кислорода и два атома водорода. Они формируют тупоугольный равнобедренный треугольник, в котором атом кислорода расположен в вершине тупого угла величиной 104,45°. При этом кислород сильно оттягивает электронные облака в свою сторону, так что молекула представляет собой Заряды в нем распределены по вершинам воображаемой четырехгранной пирамиды - тетраэдра с внутренними углами приблизительно 109°. Вследствие этого молекула может образовывать по четыре водородных (протонных) связи, что, разумеется, влияет на свойства воды.

Особенности структуры жидкой воды и льда

Способность молекулы воды к формированию протонных связей проявляется и в жидком, и в твердом состоянии. Когда вода - жидкость, связи эти достаточно неустойчивы, легко разрушаются, но и постоянно образуются снова. Благодаря их наличию молекулы воды связаны между собой сильнее, чем частицы других жидкостей. Ассоциируясь, они формируют особые структуры - кластеры. По этой причине фазовые точки воды смещены в сторону более высоких температур, ведь для разрушения таких дополнительных ассоциатов тоже нужна энергия. Причем энергия довольно значительная: не будь водородных связей и кластеров, температура кристаллизации воды (а также ее плавления) составила бы -100 °C, а кипения +80 °C.

Строение кластеров идентично льда. Связываясь каждая с четырьмя соседками, молекулы воды выстраивают ажурную кристаллическую структуру с основой в форме шестиугольника. В отличие от жидкой воды, где микрокристаллы - кластеры - непостоянны и подвижны из-за теплового движения молекул, при образовании льда они перестраиваются устойчивым и регулярным образом. Водородные связи фиксируют взаимное расположение узлов кристаллической решетки, и в результате расстояние между молекулами становится несколько больше, чем в жидкой фазе. Этим обстоятельством объясняется скачок плотности воды при ее кристаллизации - плотность падает с почти 1 г/см 3 до примерно 0,92 г/см 3 .

О скрытой теплоте

Особенности молекулярного строения воды весьма серьезно отражаются на ее свойствах. Это видно, в частности, по большой удельной теплоте кристаллизации воды. Она обусловлена именно наличием протонных связей, отличающим воду от прочих соединений, образующих молекулярные кристаллы. Установлено, что энергия водородной связи в воде составляет около 20 кДж на моль, то есть на 18 г. Значительная часть этих связей устанавливается «в массовом порядке» при замерзании воды - вот откуда берется такая большая отдача энергии.

Приведем несложный расчет. Пусть при кристаллизации воды выделилось 1650 кДж энергии. Это немало: эквивалентную энергию можно получить, например, при взрыве шести гранат-лимонок Ф-1. Подсчитаем массу подвергшейся кристаллизации воды. Формула, связывающая количество скрытой теплоты Q, массу m и удельную теплоту кристаллизации λ, очень проста: Q = - λ * m. Знак минуса означает просто, что тепло отдается физической системой. Подставляя известные величины, получим: m = 1650/330 = 5 (кг). Всего 5 литров нужно, чтобы целых 1650 кДж энергии выделилось при кристаллизации воды! Разумеется, энергия отдается не мгновенно - процесс длится в течение достаточно продолжительного времени, и теплота рассеивается.

Об этом свойстве воды прекрасно знают, например, многие птицы, и используют его, чтобы погреться возле замерзающей воды озер и рек, в таких местах температура воздуха на несколько градусов выше.

Кристаллизация растворов

Вода - замечательный растворитель. Вещества, растворенные в ней, сдвигают точку кристаллизации, как правило, в сторону понижения. Чем выше концентрация раствора, тем при более низкой температуре будет происходить замерзание. Ярким примером служит морская вода, в которой растворено много различных солей. Их концентрация в воде океанов составляет 35 промилле, и кристаллизуется такая вода при -1,9 °C. Соленость воды в разных морях сильно отличается, поэтому и точка замерзания бывает различной. Так, вода Балтики имеет соленость не более 8 промилле, и температура кристаллизации ее близка к 0 °C. Минерализованные грунтовые воды также замерзают при температурах ниже нуля. Следует иметь в виду, что речь всегда идет только о кристаллизации воды: морской лед практически всегда пресный, в крайнем случае слабосоленый.

Водные растворы различных спиртов тоже отличаются пониженной температурой замерзания, причем кристаллизация их протекает не скачкообразно, а с некоторым интервалом температур. Например, 40-процентный спирт начинает замерзать при -22,5 °C, а окончательно кристаллизуется при -29,5 °C.

А вот раствор такой щелочи, как едкий натр NaOH или каустик являет собой интересное исключение: ему свойственна повышенная температура кристаллизации.

Как замерзает чистая вода?

В дистиллированной воде кластерная структура нарушена вследствие испарения при дистилляции, и количество водородных связей между молекулами такой воды очень мало. Кроме того, в такой воде отсутствуют примеси типа взвешенных микроскопических пылинок, пузырьков и т. п., представляющих собой дополнительные центры кристаллообразования. По этой причине точка кристаллизации дистиллированной воды понижена до -42 °C.

Можно переохладить дистиллированную воду даже до -70 °C. В подобном состоянии переохлажденная вода способна кристаллизоваться практически мгновенно по всему объему при малейшем сотрясении или попадании ничтожной примеси.

Парадоксальная горячая вода

Удивительный факт - горячая вода переходит в кристаллическое состояние быстрее, чем холодная - получил название «эффекта Мпембы» в честь танзанийского школьника, обнаружившего этот парадокс. Точнее, знали о нем еще в древности, однако, не найдя объяснения, натурфилософы и естествоиспытатели в конце концов перестали обращать внимание на загадочный феномен.

В 1963 году Эрасто Мпемба был удивлен тем, что подогретая смесь для мороженого застывает быстрее, чем холодная. А в 1969 году интригующее явление получило подтверждение уже в физическом эксперименте (кстати, с участием самого Мпембы). Эффект объясняют целым комплексом причин:

  • большее количество центров кристаллизации, таких как воздушные пузырьки;
  • высокая теплоотдача горячей воды;
  • высокий темп испарения, влекущего за собой уменьшение объема жидкости.

Давление как фактор кристаллизации

Взаимосвязь давления и температуры как ключевых величин, влияющих на процесс кристаллизации воды, наглядно отражена на фазовой диаграмме. Из нее видно, что при повышении давления температура фазового перехода воды из жидкого в твердое состояние чрезвычайно медленно понижается. Естественно, справедливо и обратное: чем давление ниже, тем более высокая температура нужна для образования льда, и растет она точно так же медленно. Чтобы добиться условий, при которых вода (не дистиллированная!) способна кристаллизоваться в обычный лед Ih при минимально возможной температуре -22 °C, давление нужно увеличить до 2085 атмосфер.

Максимальная температура кристаллизации соответствует следующему сочетанию условий, называемому тройной точкой воды: 0,006 атмосфер и 0,01 °C. При таких параметрах точки кристаллизации-плавления и конденсации-кипения совпадают, и все три агрегатных состояния воды сосуществуют равновесно (в отсутствие других веществ).

Множество типов льда

В настоящее время известно около 20 модификаций твердотельного состояния воды - от аморфного до льда XVII. Все они, кроме обычного льда Ih, требуют экзотических для Земли условий кристаллизации, и далеко не все стабильны. Только лед Ic очень редко обнаруживается в верхних слоях земной атмосферы, но его формирование связано не с замерзанием воды, так как он образуется из водяных паров при чрезвычайно низких температурах. В Антарктиде был найден лед XI, однако эта модификация - производная обычного льда.

Путем кристаллизации воды при экстремально высоких давлениях можно получить такие модификации льда, как III, V, VI, и с одновременным повышением температуры - лед VII. Вполне вероятно, что какие-либо из них могут образовываться в условиях, необычных для нашей планеты, на других телах Солнечной системы: на Уране, Нептуне или крупных спутниках планет-гигантов. Надо думать, будущие эксперименты и теоретические исследования малоизученных пока свойств этих льдов, а также особенности процессов их кристаллизации, прояснят этот вопрос и откроют еще много нового.

Что такое кристаллизация, изучают еще в школе. Но, как правило, рассматривают понятие лишь в отношении одной науки - химии. И наибольшее отношение данный процесс действительно имеет к ней, хотя это не повод не уделять внимание его рассмотрению в других отраслях. И сейчас стоит это исправить. Но обо всем по порядку.

Определение процесса

Итак, что такое кристаллизация? Это процесс, в ходе которого из газов, расплавов, стекол и растворов образуются кристаллы. Все знают, что они собой представляют. Если выражаться научным языком, то кристаллы - это твердые тела с закономерным расположением атомов (наименьших частиц химического элемента, носящих его свойства). Они имеют естественную форму правильных симметричных многогранников, которая обусловлена их внутренней структурой.

На вопрос о том, что такое кристаллизация, можно ответить и по-другому. Так еще называется образование этих твердых тел из кристаллов с другой структурой. Имеются в виду полиморфные превращения. Они объясняются тем, что одни и те же атомы способны образовывать разные кристаллические решетки.

Кроме того, кристаллизацией называют процесс перехода какого-либо вещества из жидкого состояния в твердый кристаллический.

Политермический процесс

Рассказывая о том, что такое кристаллизация, следует отметить, что способов, которыми она образуется, существует несколько. Отличаются они приемами, используемыми для достижения пресыщения раствора.

Первым делом стоит рассказать про политермическую кристаллизацию, также именуемую изогидрической. Она может происходить лишь при неизменном содержании воды в системе.

Принцип не так сложен, каким может казаться. Пересыщенный раствор образуется благодаря охлаждению системы. Протекает процесс только при переменной температуре.

Политермический процесс, ведомый посредством охлаждения насыщенных растворов, может быть применим лишь для некоторых веществ. Для тех, растворимость которых при увеличении температуры также улучшается.

Стоит отметить, что иногда применяют также метод политермической выпарки. В ходе данного процесса вещество нагревается и испаряется. После этого происходит многократный тепловой и массовый обмен между паровой фазой и жидкой.

Еще политермический метод применяется, когда в веществе присутствует несколько солей с разными способностями к растворимости. Яркий пример - выделение хлористого калия из сильвинита.

Изотермический способ и высаливание

Об этом тоже следует рассказать. Изотермический процесс кристаллизации характеризуется испарением воды из растворов при постоянной, не меняющейся температуре. Этот метод применим для веществ с содержанием солей, растворимость которых практически не зависит от нагревания.

Испарения удается добиться за счет доведения жидкости до интенсивного кипения и поддержания ее в таком состоянии. Это «традиционный» метод. Еще может использоваться медленное поверхностное испарение.

В некоторых случаях в жидкости вводят вещества, которые понижают их способность к растворению. Это называется высаливанием. Такими «помощниками» являются вещества, в которых содержится одинаковый с данной солью ион. Яркий пример: процесс кристаллизации хлорида натрия из раствора с высокой концентрацией, в который добавляют хлорид магния.

Следует оговориться, что механизм высаливания не всегда одинаков. Если в целях проведения данного процесса смешать два электролита, добавочный из которых будет с одноименным ионом, то в итоге получится добиться такой концентрации, что произведение растворимости вещества станет значительно выше. Что это значит? Говоря простыми словами - появится избыток вещества, и он выделится в твердую фазу.

Бывает и по-другому. Чтобы добиться высаливания, приходится и вовсе менять структуру раствора - способствовать образованию гидратных оболочек вокруг частиц вещества, которое необходимо кристаллизовать. Как это достигается? Посредством разрушения оболочек у уже растворенного вещества.

Важно усвоить: соли, которые образуют кристаллогидраты, высаливаются интенсивнее, чем те, которые образуются в безводной форме. Но некоторые «добавки» лишь усиливают растворимость. Это приводит к всаливанию.

Осаждение веществ реагентами

Это самый распространенный метод кристаллизации в химии. Он является наиболее быстрым и простым.

Если в процессе образуется продукт реакции, практически не растворяющийся в воде, то он тут же выпадает в осадок из раствора. Что в противном случае? Если продукту реакции свойственна растворимость, то начало кристаллизации приходится на тот момент, когда жидкость достигает необходимого уровня пресыщения. И продолжается процесс до тех пор, пока в нее поступает осадитель (реагент).

Яркий пример - получение карбоната кальция. Он нерастворим. Так что приходится использовать конверсию нитрата кальция в нитрат алюминия. Взглянув на формулу, можно понять, как примерно происходит данный процесс: Са (NO 3) 2 + (NH 4) 2 CO3 = CaCO 3 + 2NH 4 NO 3 .

Чтобы получить катализаторы, прибегают к осаждению металлов в виде нерастворимых веществ. К ним относятся оксалаты, гидроксиды, карбонаты и прочие соли. Их осаждают, потому что впоследствии они разлагаются до оксидов.

Вымораживание

Еще один процесс, который необходимо отметить вниманием, рассказывая о том, что такое кристаллизация. Вымораживанием называется выделение в твердом виде одного из компонентов газовой или жидкой смеси, которое достигается посредством охлаждения смеси. Причем достигается температура ниже той, при которой обычно начинается кристаллизация.

Основа данного процесса - низкая взаимная растворимость компонентов, которые нужно разделить. Пример: когда водные растворы вымораживают, то растворенные вещества в состав формирующихся в итоге кристаллов не входят.

Задействуется данный метод в особых случаях. Вымораживание эффективно, когда нужно разделить смеси, очистить вещества или концентрировать раствор.

Метод активно применяется в химической, микробиологической, фармакологической и пищевой промышленности. Но и в быту встречается масса примеров данного процесса. Речь идет про концентрирование вымораживанием с выделением льда. Оно направлено на сохранение аромата, цвета, а также лекарственных и вкусовых качеств термолабильных продуктов. К таковым относятся: травяные экстракты, соки, пиво, вино, ферментные растворы. А еще препараты, являющиеся биологически и лекарственно активными.

Нередко кристаллизация вещества посредством вымораживания сопровождается, впоследствии, сублимационной сушкой. Этот метод задействуется при производстве порошкообразных, предназначенных для растворения продуктов. Примеров полно - соки, чаи, кофе, супы, молоко, сливки, пюре, кисель, мороженое… всем знакомы эти порошки в пакетиках или банках, разведя которые в воде, удается получить готовый к употреблению продукт.

Кстати, еще вымораживание применяют для очистки сточных вод и обессоливания морских - чтобы получить чистую, без примесей. Даже воздух, иногда, разделяют. Криогенным способом, разумеется. Посредством вымораживания из него удается удалить пары диоксида углерода и воды.

Удельная теплота кристаллизации

Вкратце стоит отметить вниманием и это понятие. Оно также известно, как «удельная теплота плавления» и «энтальпия». Названия разные, а определение одно. Это - количество теплоты, которое нужно сообщить одной единице массы кристаллического вещества, чтобы оно из твердого состояния перешло в жидкое.

Обозначается греческой буквой λ. В химии формула температуры кристаллизации выглядит следующим образом: Q: m = λ. Здесь под Q понимается количество теплоты, которое получено веществом в процессе его плавления. А буквой m обозначается его масса.

Стоит отметить, что удельная теплота кристаллизации (плавления) всегда положительна. Исключением является только гелий под высоким давлением. Интересно, что этот простейший одноатомный газ имеет самую низкую температуру кипения среди всех известных на сегодняшний день веществ. Данный процесс с гелием начинает происходить при -268,93 °C.

Что касательно температуры плавления? Вот несколько примеров, указанных в кДж по отношению к одному килограмму вещества: лед - 330, ртуть -12, нафталин - 151, белый и серый свинец - 14 и 100.

Примеры

Кристаллизация - это в химии очень тщательно изучаемый процесс, который особенно интересен на практике.

В качестве примера можно рассмотреть процесс образования сахара. Суть процесса заключается в выделении сахарозы, содержащейся в сиропе. Последний, в свою очередь, содержит также другие вещества, которые не были удалены в процессе очистки сока, и вновь образовались по ходу сгущения.

Когда поднимается температура, кристаллизация начинается, и в ее процессе образуется межкристальный раствор, который называется утфель. Все лишние вещества будут скапливаться в нем. На самом деле, они серьезно затрудняют весь процесс, поскольку наличие различного рода примесей увеличивает вязкость раствора.

Еще один яркий пример кристаллизации в химии связан с образованием соли. Для того чтобы его увидеть воочию, даже не нужно проводить экспериментов - данный процесс существует в природе. В холодное время года прибой выбрасывает на берег тонны соли. Она не пропадает. Ее сгребают в огромные кучи, а потом, когда наступает жара и сухость, из нее испаряется кристаллизационная вода. Остается лишь мелкий порошок - соль, потребляемая промышленностью.

Пример с солью - самый простой. Даже в некоторых школах детям дают на дом задание в рамках урока химии: растворить в совсем небольшом количестве воды 1-2 ложки соли и оставить емкость где-нибудь. Для более интенсивной кристаллизации температуру можно увеличить - пододвинуть раствор к батарее, например. Через пару дней вода испарится. А вот солевые кристаллы останутся.

Металлы

Они тоже кристаллизуются. Более того, все твердые металлы, которые мы видим и можем потрогать, являются результатом данного процесса. Превращения, происходящие параллельно, имеют огромное значение, поскольку они в значительной степени определяют свойства металлов.

Кристаллизация, как процесс, весьма интересна в данном случае. Пока вещество находится в жидком состоянии - атомы в нем непрерывно движутся. Естественно, все это время поддерживается соответствующая высокая температура. По мере ее понижения атомы сближаются, вследствие чего происходит их группирование в кристаллы. Так образуются «центры». То есть, первичные группы кристаллов. К ним, по мере замедления движения остальных атомов, присоединяются уже вторичные.

Поначалу кристаллы нарастают беспрепятственно. А те, которые уже образовались, не теряют правильности строения. Но потом кристаллы сталкиваются при дальнейшем движении. Вследствие их контакта форма портится. Однако внутри каждого кристалла строение по-прежнему остается правильным. Эти группы, кстати, именуются зернами. И образуются они не всегда. Все зависит от условий кристаллизации, при какой температуре она происходила (стабильной или нет), а также от природы самого металла.

О зернистости

Выше было многое сказано про удельную кристаллизацию, а также о различных методах, посредством которых осуществляется данный процесс. В продолжение темы металлов хотелось бы рассказать о пресловутой зернистости, причины возникновения которой описаны в предыдущем абзаце.

На самом деле, ее появление - признак плохой кристаллизации. Крупнозернистый металл является непрочным, практически не способен сопротивляться действительно высокому удару. В процессе ковке в нем появляются трещины. Также они образуются в зоне термического влияния. Чтобы уменьшить вероятность их образования, на производствах используют различные меры - модифицируют металл титановыми швами, например. Они способны предупредить рост зерна.

Для крупнозернистых металлов даже выдвигаются другие требования по предъявлению образцов. Их толщина должна быть как минимум 1,5 см. Только в таком случае удастся сравнить результаты механических и микромеханических испытаний.

Так что на производствах стремятся к получению металлов мелкозернистой структуры. Для этого создают особые условия - те, при которых возможна малая скорость роста кристаллов и максимальное число пресловутых центров, вокруг которых потом формируются их группы.

То, насколько крупными получатся зерна, зависит от количества частичек нерастворимых примесей. Обычно это сульфиды, нитриды и оксиды - они играют роль готовых центров кристаллизации.

Мелкозернистой структуры можно добиться посредством модифицирования - добавления в металлы посторонних веществ. Они делятся на два вида:

  • Вещества, которые не растворяются в жидком металле. Играют роль дополнительных центров кристаллизации.
  • Поверхностно-активные компоненты. В металлах растворяются. Впоследствии они оседают на поверхности растущих кристаллов и препятствуют их росту.

А качество полученного металла изучается посредством различных методов. Проводят термический, дилатометрический, магнитный анализ, структурные и физические исследования. Причем одним только способом выяснить информацию обо всех свойствах металла невозможно.

Вода

Уже было рассказано и об образовании солей, и о количестве теплоты при кристаллизации, и о том, как данный процесс протекает в случае с металлами. Что ж, можно напоследок поговорить и про воду - самое удивительное явление на планете.

В природе существует лишь три агрегатных состояния - газообразное, твердое и жидкое. Вода способна пребывать в любом из них, переходя из одного в другое в естественных условиях.

Когда она жидкая, ее молекулы слабо связаны между собой. Они пребывают в постоянном движении, предпринимая попытки по группированию в единую структуру, но этого не получается из-за тепла. И, когда на воду воздействуют низкие температуры, молекулы становятся прочнее. Им перестает мешать тепло, поэтому они приобретают кристаллическую структуру шестигранной формы. Наверняка каждый хоть раз в жизни видел яркий ее пример. Снежинка - самый настоящий шестигранник.

Что касательно «теплоты» кристаллизации? Вода, как всем известно с детства, начинает застывать при 0°C. Если по Фаренгейту, то данный показатель составит 32 градуса.

Но с этих отметок процесс лишь начинается. Вода не всегда кристаллизуется при указанных температурах. Чистую жидкость можно даже охладить до -40°C, и она все равно не заледенеет. Почему? Потому что в чистой воде отсутствуют примеси, являющиеся основанием для возникновения кристаллической структуры. Это, обычно, растворенные соли, частички пыли и т. д.

Еще одна особенность воды: она, замерзая, расширяется. В то время, как другие вещества при кристаллизации сжимаются. Почему так? Потому что при переходе воды из жидкого состояния в твердое, между ее молекулами увеличивается расстояние.

Парадокс Мпембы

Его нельзя не отметить вниманием, рассказывая о кристаллизации воды. Такое явление, как парадокс Мпембы, интересно как минимум своей формулировкой. Звучит фраза так: «Горячая вода замерзает быстрее холодной». Интригует и озадачивает. Как такое возможно? Ведь вода перед переходом в стадию кристаллизации должна пройти «холодный» этап - остыть!

Противоречие первому началу термодинамики налицо. Но на то он и парадокс - логического объяснения нет, но на практике существует. Хотя с первым можно поспорить. Объяснения все-таки есть, и вот некоторые из них:

  • Горячая вода начинает процесс испарения. Однако в холодном воздухе она превращается в лед и падает, образуя ледяную корку.
  • Когда горячая вода испаряется из сосуда, ее объем уменьшается. Чем меньше жидкости - тем быстрее она кристаллизуется. Рюмка кипятка быстрее кристаллизуется, чем бутылка воды комнатной температуре.
  • Снеговая подкладка в морозилке. Сосуд с кипятком ее плавит, устанавливая тепловой контакт со стенкой камеры. А вот под контейнером с холодной водой снег не тает.
  • Кипяток охлаждается снизу. А холодная вода - сверху, что ухудшает конвекцию и теплоизлучение. На убыли тепла это тоже отражается.
  • Расстояние между молекулами в горячей воде больше, чем в холодной. Это отражается на растягивании водородных связей. Следовательно, они запасают большую энергию. Она, в свою очередь, высвобождается в процессе охлаждения жидкости, и молекулы идут на сближение. Считается, что это меняет свойства кипятка, и потому замерзает он быстрее.

Есть еще несколько интересных попыток обосновать парадокс Мпембы, но однозначная причина по-прежнему неизвестна. Возможно, однажды ученые проведут основательное исследование, результат которого поможет окончательно разобраться в данном эффекте.


Переход из жидкого состояния в твердое (кристаллическое) называют кристаллизацией . Процессы кристаллизации зависят от температуры и протекают во времени, поэтому кривые охлаждения строятся в координатах температура-время (рис. 3). Теоретический, т. е. идеальный процесс кристаллизации металла без переохлаждения протекает при температуре Т s (рис. 3). При достижении идеальной температуры затвердевания T s падение температуры прекращается. Это объясняется тем, что перегруппировка атомов при формировании кристаллической решетки идет с выделением тепла (выделяется скрытая теплота кристаллизации). Каждый чистый металл (не сплав) кристаллизуется при строго индивидуальной постоянной температуре. По окончании затвердевания металла температура его снова понижается.

Рис. 3. Кривые кристаллизации металла при охлаждении с разной скоростью


Практически кристаллизация протекает при более низкой температуре, т. е. при переохлаждении металла до температур Т n , T n1 , Т n2 , (например, кривые 1, 2). Степень переохлаждения (∆T=T s -Т n) зависит от природы и чистоты металла и скорости охлаждения. Чем чище жидкий металл, тем он более склонен к переохлаждению. При увеличении скорости охлаждения степень переохлаждения возрастает, а зерна металла становятся мельче, что улучшает его качество. Для большинства металлов степень переохлаждения при кристаллизации в производственных условиях составляет от 10 до 30°С. При больших скоростях охлаждения она может достигать сотен градусов.
Процесс кристаллизации состоит из двух стадий: зарождения кристаллов (зародышей или центров кристаллизации) и роста кристаллов из этих центров. При переохлаждении сплава ниже Т n на многих участках жидкого металла (рис. 4, а, б) образуются способные к росту кристаллические зародыши. Сначала образовавшиеся кристаллы растут свободно и имеют более или менее правильную геометрическую форму (рис. 4, в, г, д). Затем при соприкосновении растущих кристаллов их правильная форма нарушается, так как в этих участках рост граней прекращается. Рост кристалла продолжается только в тех направлениях, где есть свободный доступ жидкого металла. В результате кристаллы, имевшие сначала геометрически правильную форму, после затвердевания получают неправильную форму, их называют кристаллитами или зернами (рис. 4, е).
Величина зерен зависит от числа центров кристаллизации и скорости роста кристаллов. Чем больше центров кристаллизации, тем мельче зерно металла.


Рис. 4. Последовательные этапы процесса кристаллизации металла


Величина зерен, образующихся при кристаллизации, зависит не только от количества самопроизвольно зарождающихся центров кристаллизации, но также и от количества нерастворимых примесей, всегда имеющихся в жидком металле. Такие нерастворимые примеси являются готовыми центрами кристаллизации. Ими являются окислы (например, Al 2 O 3), нитриды, сульфиды и другие соединения. Центрами кристаллизации в данном металле или сплаве могут быть только такие твердые частицы, которые соизмеримы с размерами атомов основного металла. Кристаллическая решетка таких твердых частиц должна быть близка по своему строению и параметрам решетке кристаллизующегося металла. Чем больше таких частичек, тем мельче будут зерна закристаллизовавшегося металла.
На образование центров кристаллизации влияет и скорость охлаждения. Чем выше скорость охлаждения, тем больше возникает центров кристаллизации и, следовательно, мельче зерно металла.
Чтобы получить мелкое зерно, создают искусственные центры кристаллизации. Для этого в расплавленный металл (расплав) вводят специальные вещества, называемые модификаторами. Так, при модифицировании магниевых сплавов зерно уменьшается от 0,2-0,3 до 0,01-0,02 мм, т. е. в 15-20 раз. Модифицирование отливок проводят введением в расплав добавок, которые образуют тугоплавкие соединения (карбиды, окислы). При модифицировании, например, стали применяют алюминий, титан, ванадий; алюминиевых сплавов - марганец, титан, ванадий.
Иногда в качестве модификаторов применяют поверхностно-активные вещества, Они растворяются в жидком металле. Эти модификаторы осаждаются на поверхности растущих кристаллов, образуя очень тонкий слой. Этот слой препятствует дальнейшему росту кристаллов, придавая металлу мелкозернистое строение.
Строение металлического слитка. Форма растущих кристаллов определяется не только условиями их касания друг с другом, но и составом сплава, наличием примесей и режимом охлаждения. Обычно механизм образования кристаллов носит дендритный (древовидный) характер (рис. 5). Дендритная кристаллизация характеризуется тем, что рост зародышей происходит с неравномерной скоростью. После образования зародышей их развитие идет в тех плоскостях и направлениях решетки, которые имеют наибольшую плотность упаковки атомов и минимальное расстояние между ними. В этих направлениях образуются длинные ветви будущего кристалла - так называемые оси (1) первого порядка (рис. 5). В дальнейшем от осей первого порядка начинают расти новые оси (2) - оси второго порядка, от осей второго порядка - оси (3) - третьего порядка и т. д. По мере кристаллизации образуются оси более высокого порядка, которые постепенно заполняют все промежутки, ранее занятые жидким металлом.


Рис. 5. Схема дендритного роста кристалла


Рассмотрим реальный процесс получения стального слитка. Стальные слитки получают охлаждением в металлических формах (изложницах) или на установках непрерывной разливки. В изложнице сталь не может затвердеть одновременно во всем объеме из-за невозможности создания равномерной скорости отвода тепла. Поэтому процесс кристаллизации стали начинается у холодных стенок и дна изложницы, а затем распространяется внутрь жидкого металла.
При соприкосновении жидкого металла со стенками изложницы 1 (рис. 6) в начальный момент образуется зона мелких равноосных кристаллов 2. Так как объем твердого металла меньше жидкого, между стенкой изложницы и застывшим металлом образуется воздушная прослойка и сама стенка нагревается от соприкосновения с металлом, поэтому скорость охлаждения металла снижается и кристаллы растут в направлении отвода теплоты. При этом образуется зона 3, состоящая из древовидных или столбчатых кристаллов. Во внутренней зоне слитка 4 образуются равноосные, неориентированные кристаллы больших размеров в результате замедленного охлаждения.
В верхней части слитка, которая затвердевает в последнюю очередь, образуется усадочная раковина 6 вследствие уменьшения объема металла при охлаждении. Под усадочной раковиной металл в зоне 5 получается рыхлым из-за большого количества усадочных пор. Для получения изделий используют только часть слитка, удаляя усадочную раковину и рыхлый металл слитка для последующего переплава.
Слиток имеет неоднородный химический состав, который тем больше, чем крупнее слиток. Например, в стальном слитке концентрация серы и фосфора увеличивается от поверхности к центру и снизу вверх. Химическую неоднородность по отдельным зонам слитка называют зональной ликвацией. Она отрицательно влияет на механические свойства металла.


Рис. 6. Схема строения стального слитка:
а - расположение дендритов в наружных частях слитка, б - строение слитка; 1- стенки изложницы. 2 – мелкие равноосные кристаллы, 3 - древовидные кристаллы, 4 - равноосные неориентированные кристаллы больших размеров, 5 - усадочная рыхлость, 6 - усадочная раковина


Аллотропия металлов. Аллотропией, или полиморфизмом, называют способность металла в твердом состоянии иметь различные кристаллические формы. Процесс перехода из одной кристаллической формы в другую называют аллотропическим превращением. При нагреве чистого металла такое превращение сопровождается поглощением тепла и происходит при постоянной температуре, что связано с необходимостью затраты определенной энергии на перестройку кристаллической решетки. Аллотропические превращения имеют многие металлы: железо, олово, титан и др. Например, железо в интервале температур 911-1392°С имеет гранецентрированную кубическую решетку (ГЦК) γ-Fe (рис. 7). В интервалах до 911°С и от 1392 до 1539°С железо имеет объемно-центрированную кубическую решетку (ОЦК) - α-Fe. Аллотропические формы металла обозначаются буквами α, β, γ и т. д. Существующая при самой низкой температуре аллотропическая форма металла обозначается через букву α, которая в виде индекса добавляется к символу химического элемента металла и т. д.
При аллотропических превращениях происходит изменение свойств металлов - изменение объема металлов (особенно характерно для олова) и растворимости углерода (характерно для железа).


Рис. 7. Аллотропические превращения в железе


Методы изучения строения металлов. Изучение строения металлов и сплавов производится методами макро- и микроанализа, рентгеновского, а также дефектоскопии (рентгеновской, магнитной, ультразвуковой).
Методом макроанализа изучается макроструктура, т. е. структура, видимая невооруженным глазом или с помощью лупы, при этом выявляются крупные дефекты: трещины, усадочные раковины, газовые пузыри и т. д., а также неравномерность распределения примесей в металле. Макроструктуру определяют по изломам металла, по макрошлифам. Макрошлиф – это образец металла или сплава, одна из сторон которого отшлифована, тщательно обезжирена, протравлена и рассматривается с помощью лупы с увеличением в 5-10х.
Микроанализ выявляет структуру металла или сплава по микрошлифам, приготовленным так же, как и для макроанализа, но дополнительно отполированным до зеркального блеска. Шлифы рассматривают в отраженном свете под оптическим микроскопом при увеличении до 3000х. Из-за различной ориентировки зерен металла они травятся не в одинаковой степени и под микроскопом свет также отражается неодинаково. Границы зерен благодаря примесям травятся сильнее, чем основной металл, и выявляются более рельефно. В сплаве структурные составляющие травятся также различно. В электронном микроскопе рассматривают реплику - слепок с особо тонкой структуры блоков, фрагментов, дислокаций при увеличениях до 100 000х. Этот важнейший анализ определяет размеры и форму зерен, структурные составляющие, неметаллические включения и их характер (трещины, пористость и т. д.), качество термической обработки. Зная микроструктуру, можно объяснить причины изменения свойств металла.
С помощью рентгеновского анализа изучают атомную структуру металлов, типы и параметры кристаллических решеток, а также дефекты, лежащие в глубине. Этот анализ, основанный на дифракции (отражении) рентгеновских лучей рядами атомов кристаллической решетки, позволяет обнаружить дефекты (пористость, трещины, газовые пузыри, шлаковые включения и т. д.), не разрушая металла. В местах дефектов рентгеновские лучи поглощаются меньше, чем в сплошном металле, и поэтому на фотопленке такие лучи образуют темные пятна, соответствующие форме дефекта.
Для исследования структуры металла и дефектов изделий широко применяют гамма-лучи, которые проникают в изделие на большую глубину, чем рентгеновские.
Магнитным методом исследуют дефекты в магнитных металлах (сталь, никель и др.) на глубине до 2 мм (трещины различного происхождения, неметаллические включения и т. д.). Для этого испытуемое изделие намагничивают, покрывают его поверхность порошком железа, осматривают поверхность и размагничивают изделие. Вокруг дефекта образуется неоднородное поле, вследствие чего магнитный порошок повторяет очертания дефекта. Другой метод - магнитный индукционный - часто используют для оценки полноты структурных превращений в сплавах (изделиях) после их термической обработки.
Ультразвуковым методом осуществляется эффективный контроль качества металла изделий и заготовок практически любых размеров. В импульсных ультразвуковых дефектоскопах ультразвуковая волна от щупа – излучателя распространяется в контролируемом изделии и при встрече с каким-либо дефектом отражается от него. При этом отраженные волны принимаются, усиливаются и передаются на показывающий индикатор. Ультразвук используют для контроля качества роторов, рельсов, поковок, проката и других изделий при необходимости сохранения целостности изделий. КРИСТАЛЛИЗАЦИЯ , переход в-ва из газообразного (парообразного), жидкого или твердого в кристаллическое, а также из одного кристаллич. состояния в другое (рекристаллизация, или вторичная кристаллизация); первого рода. Кристаллизация из жидкой или газовой фазы-экзотермич. процесс, при к-ром выделяется теплота , или теплота кристаллизации; при этом изменение в большинстве случаев составляет [в Дж/( . К)]: для простых в-в 5-12, для неорг. соед. 20 - 30, для орг. соед. 40-60. Рекристаллизация может протекать с выделением либо поглощением теплоты. В пром-сти и лаб. практике кристаллизацию используют для получения продуктов с заданными составом, содержанием примесей, размерами, формой и дефектностью (см. , . ), а также для фракционного разделения смесей (см. ), и др.
Физико-химические основы процесса. Условия, при к-рых возможна кристаллизация, определяются видом . Чтобы кристаллизация протекала с конечной скоростью, исходную фазу необходимо переохладить (перегреть), пересытить кристаллизующимся в-вом или внести во внеш. поле, снижающее р-римость кристаллизующейся фазы. В переохлажденной (перегретой) либо пересыщенной фазе происходит - образуются центры кристаллизации, к-рые превращ. в и растут, как правило, изменяя форму, содержание примесей и дефектность. Центры кристаллизации возникают гомогенно в объеме начальной фазы и гетерогенно на пов-стях посторонних твердых частиц (первичное ), а также вблизи пов-сти ранее сформировавшихся новой фазы (вторичное ). Общее число центров кристаллизации, возникших в единице объема р-ра или в 1 с, или суммарную интенсивность их первичного и вторичного образования, находят по ф-ле:

где a -кинетич. коэф. первичного , к-рый рассматривают в рамках кинетич. теории образования новой фазы; R - ; T - т-ра кристаллизации; у-уд. поверхностная своб. энергия ; V т - молярный объем новой фазы; Dm = D HS и S = (Т 0 -7)/Т 0 для , am =RT1n(S + 1) и S = (c-c 0)/c 0 для р-ров; D H-энтальпия кристаллизации; с - кристаллизующегося в-ва; Т 0 и c 0 - соотв. т-ра в-ва и насыщ. р-ра; E - перехода из среды в центры кристаллизации; I ат - интенсивность вторичного в объеме начальной фазы. Для измерения a, E aкт и I вт находят зависимость интенсивности образования центров кристаллизации от т-ры, пересыщения и посторонних твердых частиц. Величина I и проходит через один или неск. максимумов (рис. 1) с возрастанием переохлаждения (пересыщения) и увеличивается при мех. воздействиях ( ,

Рис. I Зависимость скорости от переохлаждения InSb: I массой 16 г перегревался в кварцевом тигле на 15 К выше т-ры в течение 9 мин и затем охлаждался со скоростью 1 град/мин; 2 то же, на 55 К в течение 20 с.

) или под влиянием . При росте сначала кристаллизующееся в-во адсорбируется на пов-сти сформировавшегося кристаллика, а затем встраивается в его кристаллич. решетку: при сильном переохлаждении равновероятно на любом участке пов-сти (нормальный рост), при слабом - слоями тангенциально на ступенях, образованных винтовыми или двухмерными зародышами (послойный рост). Если переохлаждение ниже нек-рого значения, наз. пределом морфологич. устойчивости, нормально растущий повторяет форму (обычно округлую) теплового либо концентрац. поля вокруг него, а послойно растущий имеет форму многогранника. При превышении указанного предела растут древовидные (). Количественно рост характеризуют линейной скоростью, равной скорости перемещения их пов-сти в нормальном к ней направлении. В пром-сти используют эффективную линейную скорость роста (увеличение в 1 с радиуса шара, объем к-рого равен объему ): I эфф = b S n ехр(E р /RT), где b - кинетич. коэф. роста (10 -5 -10 -14 м/с), n-параметр роста (обычно 1-3), Е р - роста (10-150 кДж/). Параметры b , n и E р находят, измеряя I эфф при разных т-рах и пересыщениях р-ра или переохлаждениях . С увеличением переохлаждения I эфф проходит через максимум аналогично I m . Скорость роста может лимитироваться массо- и со средой (соотв. внешнедиффузионный и теплообменный режимы роста), скоростью хим. взаимод. кристаллизующегося компонента с др. компонентами среды (внешнекинетич. режим) или процессами на пов-сти (адсорбционно-кинетич. режим). Во внешнекинетич. режиме I эфф возрастает с повышением и , во внешнедиффузионном и теплообменном режимах - с увеличением интенсивности , в адсорбционно-кинетич. режиме - с возрастанием поверхностной дефектности и уменьшением ПАВ. При высоких скоростях роста приобретают значит. число неравновесных (вакансий, и др.). При превышении предела морфологич. устойчивости в объем попадают трехмерные включения среды, замурованные между ветвями (). Состав из-за приближается к составу среды тем больше, чем выше I эфф. При своем росте захватывают любую присутствующую в среде примесь, причем захваченной примеси зависит от скорости роста. Если кристаллизация происходит в р-ре и после завершения роста продолжают контактировать со средой, то неравновесно захваченная примесь выбрасывается из в среду, а их структура совершенствуется (структурная ). Одновременно в перемешиваемой среде при столкновениях друг с другом и со стенками кристаллизатора возникают дополнит. структурные . Поэтому в системе постепенно устанавливается стационарная дефектность , к-рая зависит от интенсивности . В наиб. распространенном случае образования при кристаллизации множества (массовая кристаллизация) выделяющаяся фаза полидисперсна, что обусловлено неодновременностью зарождения и флуктуациями их роста. Мелкие более р-римы, чем крупные, поэтому при убывающем пересыщении наступает момент, когда среда, оставаясь пересыщенной относительно последних, становитcя

Рис. 2. Функция распределения по размерам (обычным r и наиб. вероятным r A)при изотермической (298 К) периодич. кристаллизации из водного р-ра в кристаллизаторе с (число Re=10 4): 1 BaSO 4 , исходное пересышение S 0 =500. r A =7.6 мкм; 2 - K 2 SO 4 , (1 . 1)r A =1 мкм; t время процесса.

насыщенной относительно мелких . С этого момента начинаются их и рост крупных (освальдoво созревание), в результате чего средний размер возрастает, а их число уменьшается. Одновременно в перемешиваемой среде раскалываются при соударениях и через нек-рое время приобретают стационарную , определяемую интенсивностью мех. воздействия. Осн. количеств, характеристика массовой кристаллизации - ф-ция распределения по размеру f(r,t)=dN/dr, где N - число , размер к-рых меньше текущего размера r, в единице объема в момент t. Эта ф-ция часто имеет колоколообразный вид (рис. 2); восходящая ее ветвь чувствительна в осн. к , росту, раскалыванию и (при созревании) , нисходящая к росту и образованию их агрегатов. Если среднее квадратичное отклонение размера от среднего не превышает половины, последнего, упомянутая ф-ция наз. узкой, если превышает - широкой. Изменение ф-ции f(r,t) при кристаллизации описывается ур-нием:


где a - коэф. флуктуации скорости роста ; D к и v к - соотв. коэф. и скорость перемещения в среде; I ar и I р - соотв. интенсивность образования данного размера за счет слипания более мелких частиц и раскалывания . Система ур-ний материального и теплового балансов, ур-ния (2), а также ур-ния, связывающие размеры и скорость роста с их формой, дефектностью и содержанием примесей, - основа и расчета массовой кристаллизации и выбора оптим. условий ее реализации. Массовую кристаллизацию осуществляют периодически или непрерывно. При периодич. кристаллизации охлаждают или насыщ. р-р (), испаряют р-ритель, добавляют высаливающие агенты (см. ниже) или смешивают порции , образующих продукционные . При непрерывной кристаллизации в кристаллизатор вводят потоки , пересыщенного р-ра либо и непрерывно отводят кристаллич. продукт. При пeриодич. процессе скорость кристаллизации, определяемая по ф-ле:
,
где
r и V - соотв. плотность твердой фазы и объем системы, сначала медленно растет (), затем резко увеличивается в результате одновременного возрастания r и f и, пройдя через максимум, уменьшается (рис. 3) вследствие снижения I эфф. В и увеличения скорости кристаллизации в системе преобладают зарождение и рост , в период уменьшения скорости - их рост, агрегация и раскалывание и далее -освальдово созревание и структурная . сокращается под влиянием факторов, к-рые ускоряют и рост . Так, при охлаждении этот период с повышением интенсивности охлаждения сначала уменьшается, а затем

Рис. 3. Типичное изменение скорости периодической кристаллизации: t - время процесса; t - длительность ; A - момент появления новой фазы; В - начало стадии структурной перeкристаллизации и освальдова созревания.

возрастает из-за экстремальной зависимости скоростей зарождения и роста от переохлаждения; если темп охлаждения достаточно велик, твердеет, оставаясь аморфным (см. ). Для сокращения в систему добавляют продукта (затравку), к-рые растут, что приводит к увеличению скорости кристаллизации. В результате выделения при росте теплоты кристаллизации снижается переохлаждение и замедляется . При малых переохлаждениях (пересыщениях) зародыши вообще не возникают, и затравка, введенная в систему в виде единичных , может вырасти в , а в виде порошка-в т. наз. монодисперсный продукт с узкой ф-цией f(r, t). При непрерывной кристаллизации ф-ция f(r,t) в сопоставимых условиях шире, чем при периодич. кристаллизации, что объясняется разбросом времен пребывания в кристаллизаторах непрерывного действия. Чтобы сузить эту ф-цию, режим кристаллизации приближают к режиму идеального вытеснения, чтобы расширить - к режиму идеального (см. ). При малом пересыщении системы непрерывная кристаллизация устойчива к флуктуациям внеш. условий; при высоком пересыщении его значение и размер колеблются в ходе кристаллизации. В хим. и смежных отраслях пром-сти, а также в лабораториях преим. применяют кристаллизацию из и р-ров, реже - кристаллизацию из паровой и твердой фаз. К ристаллизацию из используют гл. обр. для расплавленных в-в и, кроме того, для их фракционного разделения и . в-в в виде отливок (блоков) осуществляют в спец. формах. В малотоннажных произ-вах (напр., реактивов) обычно применяют отдельные формы определенных размеров или конфигурации, в к-рых охлаждается путем естеств. с ; в крупнотоннажных произ-вах ( и др.). Кристаллизацию проводят в секционированных, трубчатых, конвейерных и иных кристаллизаторах со встроенными формами, принудительно охлаждаемыми , жидким NH 3 , и т.п. Для получения продуктов в виде тонких пластинок или чешуек используют непрерывно действующие ленточные, вальцевые и дисковые кристаллизаторы, где происходит значительно интенсивнее, чем в формах. В ленточном кристаллизаторе (рис. 4) исходный

Рис. 4. Ленточный кристаллизатор: 1 лента; 2 приводные ; 3 питающий бункер; 4 охлаждающее устройство; 5 отверждснный продукт.

тонким слоем подается на движущуюся металлич. ленту, на к-рой он охлаждается до полного затвердевания. В вальцевом аппарате (рис. 5) продукт кристаллизуется на наружной пов-сти охлаждаемого изнутри вращающегося полого (вальца), частично погруженного в с ; снимаются с неподвижным ножом. В дисковых аппаратах продуктов происходит на пов-сти охлаждаемых изнутри вращающихся .


Рис. 5. Вальцевый кристаллизатор: 1 ; 2 ; 3 нож; 4 труба для подачи ; 5 форсунка; 6 ; 7 отвержденный продукт.

При приготовлении гранулир. продуктов диспергируют непосредственно в поток газообразного, в осн. (произ-во , и др.), или жидкого, напр. либо (произ-во , и т. п.) в полых башнях или аппаратах с псевдоожнжeнным слоем, где кристаллизуются мелкие капли (см. ). Кристаллизацию из используют преим. для выделения ценных компонентов из р-ров, а также их концентрированна (см. ) и очистки в-в от примесей. В-ва, р-римость к-рых сильно зависит от т-ры (напр., KNO 3 в ), кристаллизуют охлаждением горячих р-ров, при этом исходное кол-во р-рителя, к-рый содержится в маточной , в системе не изменяется (изогидрическая кристаллизация). В малотоннажных произ-вах применяют емкостные кристаллизаторы периодич. действия, снабженные охлаждаемыми рубашками. В таких аппаратах р-р охлаждают при непрерывном по определенной программе. Для предотвращения интенсивной инкрустации пов-стей охлаждения разность т-р между р-ром и должна быть не более 8-10°С. В крупнотоннажных произ-вах используют, как правило, скребковые, шнековые, дисковые, барабанные и роторные кристаллизаторы непрерывного действия. Скребковые аппараты обычно состоят из неск. последовательно соединенных трубчатых секций, в каждой из к-рых имеется вал со скребками и к-рые снабжены общей или индивидуальными охлаждающими рубашками. При вращении вала скребки очищают внутр. пов-сть охлаждаемых труб от осевших на них и способствуют транспортированию образовавшейся сгущенной из секции в секцию. В шнековых кристаллизаторах р-р перемешивают и перемещают с помощью сплошных или ленточных шнеков. Дисковые кристаллизаторы снабжены неподвижными либо вращающимися . В первом случае (рис. 6) по оси аппарата расположен приводной вал со скребками для очистки пов-стей от осаждающихся ; исходный р-р подается в кристаллизатор сверху, а образующаяся последовательно проходит в пространстве между охлаждаемыми и выгружается через ниж. штуцер. Во втором случае вал с размещен внутри корыта или горизонтального цилиндрич. ; снимаются с пов-сти неподвижными скребками.


Осн. элемент барабанного кристаллизатора - полый с опорными бандажами, установленный под углом 15° к горизонтальной оси и вращающийся с частотой 5-20 мин -1 . Р-р, охлаждаемый водяной рубашкой или (к-рый нагнетают вентилятором через внутр. полость ), поступает с одного его конца, а отводится с другого. Вязкие р-ры (напр., жирных к-т) часто охлаждают в роторных кристаллизаторах - цилиндрич. аппаратах, внутри к-рых с большой скоростью вращается ротор с ножами. Последние под действием центробежной силы прижимаются к внутр. пов-сти кристаллизатора, очищая ее от осевших . Р-р обычно подастся в аппарат под избыточным . Для увеличения времени пребывания в кристаллизаторе р-ра и большего его переохлаждения последовательно соединяют неск. аппаратов. При использовании скребковых, шнековых, роторных и иногда дисковых кристаллизаторов часто образуются мелкие (0,1-0,15 мм), что приводит к увеличению слеживаемости и адсорбц. загрязнения продукта, а также ухудшает его фильтруемость. Поэтому для укрупнения продукта после упомянутых аппаратов устанавливают т. наз. кристаллорастворители, в к-рых концентрир. выдерживается при медленном охлаждении, что приводит к росту до 2-3 мм. Для получения крупнокристаллич. однородных продуктов часто применяют кристаллизаторы с псевдоожиженным слоем (рис. 7). Исходный р-р вместе с циркулирующим осветленным маточником подается в , где в результате охлаждения р-р пересыщается и поступает по циркуляц. трубе в ниж. часть кристаллорастворителя, в к-ром поддерживаются во взвешенном состоянии восходящим потоком р-ра. Кристаллизация происходит в осн. на готовых центрах кристаллизации, при этом крупные

Когда вершина мощных кучевых облаков оказывается в области низких отрицательных температур, происходит замерзание капелек, что приводит к изменению условий роста частиц и электризации. Поэтому до рассмотрения особенностей роста ледяных частиц в облаках представляется целесообразным ознакомиться с процессами кристаллизации переохлажденных капелек и влиянием на них электрических сил.

Для лучшего понимания процессов кристаллизации рассмотрим сперва некоторые вопросы строения воды и льда.

1.6.1. Строение воды и льда

Строение молекул воды, так же как структура жидкой воды и льда, исследовалось с помощью различных методов - оптической спектроскопии, комбинационного рассеяния световых лучей,

дифракции рентгеновских лучей, электронов и нейтронов. Однако еще и сейчас нет полной ясности относительно структуры воды, особенно в жидкой фазе. Причиной этого являются необыкновенные свойства воды, являющейся аномальным веществом во многих отношениях.

В твердой фазе вода также обладает аномальными свойствами. Поражает огромное разнообразие форм ледяных кристаллов (снежинок) в атмосфере. В атмосферных условиях существует только одна из возможных кристаллических структур льда - гексагональная, тогда как при температурах ниже -70° С кристаллы льда приобретают кубическую структуру, при еще более низких температурах лед вообще теряет свою кристаллическую структуру - он становится аморфным.

Молекулярный вес обычной воды 18 молей. Однако из-за существования трех изотопов водорода и шести изотопов кислорода может образоваться большое число разновидностей воды, из которых в природных условиях встречается в очень небольших количествах практически только тяжелая вода с дейтерием или и . В природной воде (дождевой, речной и т. п.) содержится около 0,02% тяжелой воды. Поэтому на строение атмосферной воды присутствие тяжелой воды не оказывает какого-либо заметного влияния.

При объединении атомов в молекулы могут возникнуть ионные или полярные связи, а чаще всего те и другие одновременно ( Соколов ). В случае ионной связи атом, у которого на внешней орбите имеется избыток электронов, соединяется с атомом, на внешней орбите которого имеется недостаток электронов. Типичной является реакция соединения атомов с образованием ионов . В случае полярной связи происходит объединение орбит электронов вокруг протонов атомов, входящих в состав молекулы; к такому типу принадлежат и молекулы воды.

Вода является полярным веществом, т. е. ее молекулы представляют собой электрические диполи с моментом Вследствие этого расположение атомов водорода в молекуле воды не может быть линейным и симметричным относительно атома кислорода. Асимметричное линейное расположение атомов водорода также невозможно, ибо такая молекула воды оказывается неустойчивой. Поэтому необходимо предположить, что атомы расположены в вершинах равнобедренного треугольника с одинаковыми сторонами На основании экспериментальных исследований было установлено, что длина сторон в треугольнике равна а угол между этими сторонами составляет Длина стороны равна 1,52 А.

В газообразном состоянии вода содержит в основном отдельные молекулы, но какая-то часть их соединяется в комплексы по две молекулы или более. Так как электронное облачко атома водорода только частично захватывается своим атомом кислорода, то атом водорода со стороны открытого конца проявляется как слабый положительный заряд, который и притягивается к атому

кислорода другой молекулы (рис. 17). Эту связь называют протонной или водородной. Протонная связь много слабее полярной. Вследствие этого образование ассоциированных молекул воды носит статистический характер и длительность существования комплекса весьма мала - порядка Закономерности образования таких комплексов в атмосфере были исследованы В. Я. Никандровым .

В жидком состоянии плотность упаковки молекул воды весьма велика. Поэтому вероятность ассоциации молекул возрастает. Так как плотность жидкой воды мало зависит от давления, вероятность ассоциации молекул зависит только от температуры.

Рис. 17. Строение

Полярная связь - сплошная линня, водородная (протонная) связь - штриховая линня.

Рис. 18. Тетраэдрическая структура кристаллической решетки льда.

При температурах воды, близких к 0° С, образуются комплексы из пяти-шести молекул.

Исследования кристаллов льда рентгеновскими лучами показали, что в кристаллической решетке каждый атом кислорода окружен четырьмя другими атомами кислорода. При равном расстоянии «периферийных» атомов кислорода от «центрального» образуется тетраэдр (рис. 18); внутренние углы тетраэдра должны быть равны 109° 28. Каждый «периферийный» атом может играть роль «центрального», в результате чего образуется кристаллическая решетка льда. Надо полагать, что в жидкой фазе при температурах, близких к упомянутые комплексы из пяти молекул также образуют тетраэдры, своего рода жидкие кристаллы.

Из исследований дифракции нейтронов в кристаллах льда было получено, что атомы водорода располагаются на расстоянии 1 А от атомов кислорода. Энергия связи каждого атома водорода с ближайшим атомом кислорода совершенно одинакова, поэтому при переходе одного из атомов водорода на место, ранее занятое другим, их энергия не изменяется. Такой переход возможен только

в том случае, если появляется внешнее воздействие в виде электрического поля, нагревания и т. п. и атом получает необходимую энергию для перехода. Но возможны также спонтанные переходы вследствие так называемого «туннельного» эффекта, при которых дополнительная энергия может быть меньше энергии перехода атома водорода из одного положения в другое.

Пусть при наложении внешнего электрического поля произойдет перемещение одного из атомов водорода по линии связи из одного положения в другое. Тогда первый атом кислорода потеряет ион водорода, а второй приобретет. Вследствие этого появится диполь Восстановление равновесия произойдет в том случае, если в эту пару перескочит ион водорода из другой пары, и т. д. В результате появится электрический ток. Таким образом, электропроводность чистого льда можно объяснить переходом ионов водорода под действием внешнего электрического поля, т. е. лед имеет протонную проводимость.

На поверхности ледяных кристаллов молекулы находятся в несколько особом состоянии, чем во внутренних частях. У этих молекул некоторые связи отсутствуют, и у них дополнительно к колебательным появляется возможность совершать вращательные движения. Вследствие этого на поверхности ледяных кристаллов должен существовать молекулярный квазижидкий слой, проводимость которого должна быть выше проводимости собственно ледяного кристалла.



Понравилась статья? Поделитесь с друзьями!