Что такое неравенства Белла.

Пусть первоначально имеется система в виде нескольких перепутанных частиц, затем подсистемы разносятся на некоторое расстояние. Физические характеристики и их флуктуации, описывающие подсистемы, остаются взаимно согласованными. Некоторая комбинация их корреляций, полученная в рамках теории с локальными физическими переменными, не превышает 2 согласно неравенству, доказанному Беллом в 1966 г. Та же комбинация корреляций, полученная в рамках квантовой механики для перепутанных состояний , достигает . Многочисленные экспериментальные проверки показали нарушениенеравенства Белла . Следовательно, любая локальная теория не может воспроизвести предсказания квантовой механики, содержащей существенно нелокальные свойства частиц.

Джон Стюарт Белл (1928–1990)

Итак, в общем случае физические характеристики микрочастицы не имеют определенных значений до измерения и формируются в процессе измерения . Две микрочастицы в перепутанном состоянии не существуют как самостоятельные объекты до регистрации одной из частиц . В момент регистрации вторая частица может обнаружиться сколь угодно далеко от первой с характеристиками, зависящими от характеристик, полученных при измерении первой частицы . Квантовая корреляция между частицами распространяется со скоростью, превышающей
, гдеС – скорость света в вакууме, как показали измерения 2013 г. При этом передача информации экспериментатором от одной перепутанной частицы к другой с неограниченной скоростью не возможна. Одной из причин является теорема о запрете клонирования квантового состояния .

Полученные результаты означают нелокальность квантовых явлений и нарушение локального реализма, лежащего в основе классической физики и повседневного опыта. Без усвоения нового физического мировоззрения не возможно интуитивное понимание квантовой механики и не удасться использовать новые возможности для разработки микроустройств и нанотехнологий, связанных с квантовой информацией и квантовым компьютером.

Изображение перепутанными фотонами

Традиционные способы получения изображения объекта при помощи очков, бинокля и других оптических устройств основаны на перераспределении интенсивности света, рассеянного объектом, путем использования преломляющих свет поверхностей, явлений дифракции и интерференции. Другой метод, основанный на корреляции, то есть согласовании кратковременных сигналов, приходящих от двух датчиков, регистрирующих излучение объекта, предложили Роберт Хэнбери Браун и Р. Твисс в 1957 г. Использование перепутанных состояний и метода двухфотонных корреляций позволило в 1995 г. получить изображение объекта фотоном, который не входил в контакт с объектом . Способ называется техникой скрытого изображения (ghost imaging). Его практическое применение возможно в квантовой метрологии и литографии.

Лазер Л на рис. 12 посылает фотон накачки 0 на нелинейный кристалл К с типом II спонтанного параметрического рассеяния. Рожденные перепутанные фотоны 1 и 2 имеют отличающиеся длины волн, двигаются коллинеарно и поляризованы взаимно перпендикулярно. Дисперсия в призме П уводит непрореагировавшие фотоны накачки 0 в сторону и они поглощаются. Поляризационная призма-делитель Д разводит фотоны 1 и 2 по взаимно перпендикулярным направлениям благодаря различию в их поляризации. Сигнальный фотон 1 проходит через линзу с фокусным расстоянием
мм и попадает на объект в виде транспаранта Т с коэффициентом пропускания
. Далее фотон направляется линзойс фокусным расстоянием 25 мм на неподвижный фотодетекторс диаметров входного отверстия 0,5 мм, который собирает все излучение, прошедшее через транспарант, не выделяя его формы. С фотодетектора электрический сигнал поступает на регистратор совпаденийA .

Рис. 12 . Получение изображения амплитудного объекта Т

Холостой фотон 2 попадает в открытый конец световода С диаметром 0,5 мм, который сканирует в поперечном направлении световой поток и положение которого отображается на экране. Фотосигнал со световода поступает к детектору
, откуда электрический сигнал попадает на регистратор A . На экране отображается пространственное положение конца световода С в случае одновременного прихода сигналов от детекторов и
. Линзыустановлена так, что выполняется

, (5)

где a – расстояние от транспаранта Т до линзы ;b – сумма расстояний вдоль оптического пути от линзы до кристалла К и от кристалла К до открытого конца световода С. На экране регистратора совпадений появляется изображение транспаранта Т с коэффициентом увеличения

.

Качество изображения высокое, его видность V достигает единицы, где

,

–интенсивность темного участка изображения, – интенсивность светлого участка изображения. Замечательно, что фотоны 2, у которых регистрируется поперечное пространственное положение, отображаемое на экране, не проходят через транспарант.

Для объяснения результатов эксперимента учитываем, что если известен импульс одного из перепутанных фотонов пары, то однозначно определяется импульс и направление движения второго фотона на основании (1) и (2). Тогда схему рис. 12 можно заменить эквивалентной схемой рис. 13. В случайных точках i, j, k кристалла К рождаются фотоны 1 и 2, распространяющиеся в противоположные стороны согласно законам сохранения (1). Условие одновременной регистрации фотонов 1 и 2 детекторами и
приводит к корреляции между фотоотсчетами в канале холостых фотонов 2 и вероятностью пропускания транспарантом Т сигнальных фотонов 1. Повышенная концентрация траекторий фотонов, создаваемая линзойс фокусным расстояниемf , образует сфокусированное изображение, регистрируемое детектором
и удовлетворяющее (5).

Рис. 13 . Изображение методом двухфотонных совпадений

В схеме рис. 12 транспарант имеет амплитудное пропускание и для получения изображения существенна согласованность между фотонами пары по моменту и месту рождения и по направлениям распространения. Это могут обеспечить не только перепутанные фотоны, но и прерывистый классический источник света, каждый импульс которого направляется по двум каналам. Перепутывание отличается согласованностью не только по времени и месту испускания фотонов пары, по их частоте и импульсу, но и по фазе, что существенно для получения изображения фазового объекта. Рассмотрим такой объект.

Рис. 14 . Получение изображений амплитудного и фазового объектов

Лазер Л на рис. 14 посылает фотон накачки 0 на кристалл К с типом I спонтанного параметрического рассеяния. Рождаются перепутанные фотоны 1 и 2. Непрореагировавший фотон 0 поглощается. Сигнальный фотон 1 проходит экран Э с двумя щелями. Дифрагированные волны интерферируют в параллельных лучах и собираются короткофокусной линзой на неподвижный фотодетектор, с которого электрический сигнал поступает на регистратор совпаденийA . Холостой фотон 2 проходит линзу с фокусным расстояниемf и попадает в световод С. Приемный конец световода сканирует световой канал в фокальной плоскости линзы , или в плоскости изображения
. Фотосигнал со световодапреобразуется детектором
в электрический сигнал, который поступает к регистратору совпадений A . Регистратор A отображает на экране случаи одновременного прихода сигналов от детекторов и
как функцию пространственного положения конца световода С.

Положения плоскости изображения
и экрана Э удовлетворяют формуле линзы

,

где
см,
см,
см,
см. При сканировании световодом плоскости
формируется изображение щелей экрана Э аналогично рис. 12 и 13.

При сканировании фокальной плоскости возникает картина дифракции на двух щелях с интерференцией в параллельных лучах, показанная на рис. 15.

Рис. 15 . Дифракция на двух щелях

В 1935 году Альберт Эйнштейн поставил под сомнение принцип квантовой теории о том, что наблюдение одной частицы мгновенно влияет на состояние связанной с ней частицы, где бы она ни находилась. Это означает, что информация от частицы к частице передаётся быстрее скорости света, что Эйнштейн считал невозможным и несовместимым с теорией относительности.

Физики с 70-х гг пытались проверить данное свойство частиц. Для этого были сформулированы так называемые неравенства Белла и условия эксперимента Белла. Но учёным никак не удавалось избавиться от проблем экспериментальной установки или «лазеек» (loopholes), которые не позволяли назвать эксперимент чистым и корректным, действительно опровергающим теорию относительности и демонстрирующим передачу информации быстрее скорости света. Эти лазейки позволяли объяснить передачу информации якобы быстрее скорости света другими локальными факторами.

Только сейчас исследователям из технологического университета Делфта (Нидерланды) удалось впервые в истории провести корректный эксперимент Белла, избавленный от обеих известных проблем экспериментальной установки: лазейки местоположения (locality loophole) и лазейки обнаружения (detection loophole).

Экспериментаторы из технологического университета Делфта проверили состояние частиц на расстоянии 1,3 км (на территории кампуса) и зарегистрировали совпадение ~96%. Это больше, чем предсказано теоремой Белла.

Результаты и техника эксперимента опубликованы в статье "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres ", журнал Nature, дата публикации 21 октября 2015 года (pdf).

На иллюстрации: слева точка А с одним из двух алмазов, другой алмаз находится на противоположном конце кампуса справа. Между ними - точка С, где располагается сплитер (разделитель) луча.

Теорема Белла показывает, что вне зависимости от реального наличия в квантово-механической теории неких скрытых параметров, влияющих на любую физическую характеристику квантовой частицы, можно провести серийный эксперимент, статистические результаты которого подтвердят либо опровергнут наличие таких скрытых параметров в квантово-механической теории. Условно говоря, в одном случае статистическое соотношение составит не более 2:3, а в другом - не менее 3:4.

Условия эксперимента Белла объясняются на видео на примере пары «связанных» любовными узами посетителей ресторана, которые должны заказать разное вино в бокале и бутылке. Они могут заранее договориться о стратегии, но не могут обмениваться информацией во время «игры».

Главным достижением группы экспериментаторов в последнем эксперименте является продвинутая техника, которая позволила избавиться от лазеек местоположения и обнаружения. Для этого они использовали два алмазных детектора (в точках А и С на схеме вверху) и разделитель сигнала посередине между ними. Спины электронов измерялись с помощью микроволновых и лазерных импульсов в детекторах на противоположных сторонах кампуса. Архитектура установки с разделением луча и детектированием спина связанных электронов спроектирована таким образом, что связанные электроны не могли обмениваться информацией с помощью никакой из известных лазеек во время измерения.

Эксперимент доказал нарушение концепции локального реализма , который сочетает принцип локальности с «реалистичным» предположением, что все объекты обладают «объективно существующими» значениями своих параметров и характеристик для любых возможных измерений, могущих быть произведенными над этими объектами, перед тем как эти измерения производятся.

В реальности же подтвердился принцип квантовой механики, что у электронов нет характеристик до тех пор, пока их не наблюдают с помощью детектора. До этого момента частицы существуют в нескольких состояниях одновременно.

Правда, некоторые независимые эксперты говорят , что есть ещё третья лазейка, от которой во время эксперимента не избавились. Дело в том, что случайное разделение электронов с разными спинами может быть не совсем случайным, а происходить с некоей скрытой закономерностью. Так что о нарушении теории относительности и неправоте Эйнштейна пока рано говорить с полной уверенностью.

В следующем году в Массачусетском технологическом институте пройдёт более продвинутый эксперимент, в котором детекторы будут проверять характеристики фотонов с разных частей Галактики - там уже наверняка не будет действовать никакая из трёх лазеек.

Мы добрались до заключительной части обсуждения характера физических законов на пальцах™ , где читателя ждет самое интересное, самая вкуснота. Можно сказать, что две предыдущие части ( и ) были лишь приготовлением, являлись очень растянутым лирическим вступлением к обсуждению основного научного вопроса, рассматриваемого на пальцах™ - что такое "неравенства Белла" и почему эти два слова являются не только разрешением векового спора гениальнейших ученых планеты, но и определяют истинное устройство Вселенной вокруг нас.

Быстренько напомню, в чем заключалась суть спора. Нильс Бор и сотоварищи говорят нам - неопределенность есть истинное положение вещей в окружающем нас мире. У Вселенной и ее частей (частиц) вообще нет никаких определенных свойств до тех пор, как мы эту частицу не поймали и не измерили те самые свойства. А Луны не существует, покуда на нее никто не смотрит.

Эйнштейн же с друзьями (в основном П и Р) твердят обратное - невозможно поступиться принципами! Мы итак отдали целую руку на растерзание - принцип неопределенности работает и неоднократно экспериментально проверен, мы с этим даже уже почти не спорим. Но оставьте нам хотя бы какой–то островок стабильности в океане бушующего хаоса случайностей! Пусть мы никогда одновременно не сможем узнать всех свойств какой–то частицы, но давайте признаем, что они у частицы все–таки есть ! До измерения или после - частица обладает своими внутренними свойствами, то, что мы их не можем узнать , это наша, человеческая проблема. То, что их изначально не было до момента измерения - это уже проблема Вселенной, проблема Бога, который играет в кости и сам не знает, какая комбинация выпадет следующей - а это, уже, извините как минимум богохульство и научная ересь...

Как я уже говорил, и Эйнштейн, и Бор умерли так и не дождавшись разрешения этого фундаментального научного конфликта. Четкое, простое и оттого гениальное решение пришло в голову ирландскому ученому Джону Беллу в виде одноименных неравенств лишь в 1964м году и еще 20 лет после этого ждало своего экспериментального подтверждения.

Обязательно должен предупредить. Этот пост технически и научно потяжелее двух предыдущих. Чуть–чуть все же придется пораскинуть мозгами. Но не такой, чтобы прям совсем сложный, доступный для понимания вполне себе на пальцах™ .


Вот, что удивительно, оказалось не так–то легко найти информацию на русском языке, что же это за зверь такой - "неравенства Белла". Вроде бы такое эпохальное открытие, лежащее в фундаменте определения сути устройства окружающего мира, разрешающее вековой спор ученых светил и определяющее, чем наши знания о реальности отличаются от того, какова реальность есть на самом деле . Но попробуйте поискать и разобраться в этом вопросе сами, скорее всего вас ждет разочарование.

Нет, вы попробуйте, попробуйте, я серьезно!

Википедия, луркоморье, просто тупой перебор выдачи гугла по ключевой фразе мало чем помогут. Кругом либо расплывчатые описания из серии "как показал Белл в своих неравенствах...", и дальше идут выводы и следствия без четкого определения - что же это были за неравенства, в чем была их суть и что там конкретно в эксперименте мерили, либо разговор резко уходит в область матана волновой функции, где 300 формул на одной странице и вообще ничего не понятно.

Позвольте изложить свою версию сущности идей, предложенных Беллом, и в миллионный раз напомнить - далее последуют объяснения на пальцах™ в виде набора несложных аналогий, которые, хоть и верны в принципе, тем не менее остаются всего лишь аналогиями , не более, ведь суть неравенств Белла можно выразить очень по–разному.

Скажу больше. То, как Белл изначально записал свои неравенства, вообще экспериментальной проверке не поддается. Однако это был действительный прорыв научной мысли, ибо хоть теоретически, хоть и оставаясь в философско–рассуждательной области, Белл все равно показал, что спор Эйшнтейна с Бором можно было разрешить хотя бы в принципе. А это многого стоит.

Экспериментально, как я уже сказал, проверялись совсем другие вещи. Причем по–разному, несколькими физическими экспериментами с разными выкладками и аппаратом.

Я же и вовсе буду рассказывать третью историю. В науке так бывает - если невозможно что–то проверить напрямую, есть шансы построить логическую цепочку в сторону, посмотреть, какие выводы нас ожидают в этом случае и проверить результаты подобных выводов. Математически все четко и последовательно вытекает друг из друга, но физические проявления и аспекты могут сильно разниться. Настоящий физик при всем богатстве выбора всегда предпочтет тот аспект, который легче всего экспериментально проверить, я же выбираю такой, который легче всего объяснить на пальцах™ . Лишь бы все они математически (и, что важно - физически) оставались эквивалентны друг другу, это главное.

Мы помним, что в случае двух противоположных (некоммутирующих ) параметров, например, координата частицы и ее скорость, или энергия и время, или когда спины "вверх–вниз" - никаким образом невозможно понять, были ли у частицы (в смысле у двух запутанных частиц) эти свойства изначально, или они появились одновременно у обоих в процессе измерения. Эйнштейн говорит, что были раньше, хоть и были скрыты от нашего знания (теория скрытых параметров), Бор говорит, что происходит "жуткое дальнодействие" и все всем платится прямо на месте. Когда мы измеряли состояние одной частицы, это тут же в мгновение ока сказывалось на поведении второй.

Экспериментально обе ситуации абсолютно идентичны. Чего гадать, было что–то у частицы или не было до того, как мы ее поймали и измерили. Вопрос скорее философский, чем научный, ибо физика занимается тем, что можно непосредственно пощупать и измерить. Фантазировать о том, что могло бы произойти в случае, о котором мы никогда ничего не узнаем - антинаучная ерунда , не так ли?

Очень может быть. Но давайте сперва рассмотрим поближе, что же представляет собой спин частицы или системы.

Согласно википедии спин (англ. spin - вращение ) определяет угловой момент вращения частицы вокруг своей оси.

И сразу стоп!

Тут важно уяснить раз и навсегда. Ничего на самом деле никуда и нигде не вращается. По всем современным понятиям, скажем, элементарная частица электрон не имеет пространственных размеров и представляет собой реальную, хоть и математическую точку. Что не мешает ей в то же время быть одновременно и волной (ну, корпускулярно–волновой дуализм же!).

Спин это просто очередная характеристика частицы, рассуждать о спине как о реальном вращении лишь помогает проводить параллели с привычным нам миром, но не более. Легко и удобно думать о пути перемещения баскетбольного мяча (сопоставляя с путем перемещения частицы, что не совсем верно, ибо как говорилось выше, у нее нет пути в нашем человеческом понимании), так и о вращении мяча вокруг своей оси (сопоставляя со спином частицы, что тоже неверно, ибо нет там никакого вращения!).

Ближе всего к спину можно подобраться со стороны симметрии и ее нарушения. Ведь когда мяч (электрон) просто сам по себе мяч (электрон) он со всех сторон симметричен. Мяч со всех сторон круглый, электрон со всех сторон точка.

Но когда у мяча появляется вращение (а у электрона спин) симметрия нарушается. Например, если мяч вращается вокруг вертикальной оси, он не вращается вокруг горизонтальной - симметрия нарушена. Мяч не может одновременно вращаться и так и так. Он может вращаться в наклоненном состоянии, т.е. как бы "по диагонали", но это ведь не совсем то же самое, что одновременное вращение сразу по вертикали и по горизонтали.

То же самое и со спином электрона. Спин - мера его симметрии. И эту симметрию можно разложить на оси координат X и Y (точнее на оси X, Y и Z, все ведь трехмерное, но для простоты останемся пока в двух координатах, чтобы заранее не усложнять).

Сначала посмотрим на классический объект (мяч) и его спин. Пусть у нас есть баскетбольный мяч, который вращается со скоростью 8.12 оборотов в минуту. Если ось вращения расположена вертикально, можно считать, что мяч "весь" вращается вокруг оси Y, его Y–спин, или спин относительно оси Y равен 8.12 об/мин, и при этом он совершенно не вращается вокруг оси X (его X–спин равняется нулю). Ну, или если он вращается вокруг горизонтально расположенной оси, будет все то же самое, только наоборот.

Если ось вращения расположена под углом к горизонту, допустимо разложить спин мяча на Y - и X–компоненты, Y - и X–спины. Напомню, мяч не вращается одновременно вокруг осей Y и Х, он вращается вокруг своей собственной оси L, наклоненной под некоторым углом к горизонту, но момент его вращения можно разложить на Y - и X - составляющие. Тут все просто. Спин мяча остается 8.12 оборотов в минуту, на приведенном рисунке это получается гипотенуза, а Y - и X - спины вычисляются через синус (косинус) угла, ну, или по теореме Пифагора.

В квантовом мире все одновременно проще и сложней. Проще, потому что мир квантовый , и подчиняется законам квантовой механики, а это, кроме всего прочего, чисто по названию означает, что все в этом мире квантуется . И спин в том числе. Вращение обычного предмета вокруг своей оси (спин этого предмета) может быть любым. Он может совершать 1 оборот в минуту, может полтора, может 8.12 (как в случае с нашим баскетбольным мячом), может даже крутиться 100500 оборотов в минуту - никаких проблем.

В мире элементарных частиц спин может занимать только вполне конкретные, квантованные числа. Скажем, у электрона он может иметь только два значения или +1/2 или –1/2. И ничего больше.

Почему + и - понятно. Это просто смотря в какую сторону электрон "вращается", вправо или влево. С мячом была та же история, если оставить его вращаться, но перевернуть вверх ногами, спин получится –8.12 оборотов в минуту, что по сути то же самое вращение, только в другую сторону.

С 1/2 чуточку сложнее. Во–первых, это уже никакие не "обороты в минуту". Это вообще не обороты, если вы помните, электрон на самом деле не вращается, и уж тем более не "в минуту". Это просто некая удобная для записи величина, некоторое безразмерное число. Можно было бы принять спин электрона за +10 и –10. Или +100 и –100. Как вы догадываетесь, лучше всего было тупо принять спин электрона за +1 и –1, но ученые, как истинные комсомольцы, любят некоторые трудности. Были исторические причины, почему спин электрона оказался 1/2 а не 1, но так как величина все равно формальная и безразмерная, это все не суть. Главное, что спин любой частицы может изменяться только квантованными порциями–половинками - 0 (нет вращения, нет спина), 1/2, 1, 3/2, 2, 5/2 и т.д. И то же самое, но со знаком минус, если вращение в другую сторону.

Читателю со звездочкой (*) наверняка будет интересно узнать, что все частицы, имеющие полуцелый спин (кратный 1/2), составляют нашу материю и их называют фермионами за то, что они подчиняются статистике Ферми–Дирака.
Это уже знакомые нам электроны, а также протоны, нейтроны, кварки и прочие нейтрино - т.н. "материальные частицы". В 1925м году Вольфганг Паули запретил фермионам занимать одно квантовое состояние (грубо говоря - садиться друг другу на шею) и с тех пор электроны не падают на ядра атомов, а наша Вселенная получила законное основание занимать некий объем в пространстве.

Частицы с целым спином называют бозоны , они статистике Ферми–Дирака не подчиняются, у них своя статистика - Бозе–Эйнштейна. (Да, этот хитрый еврей и сюда пролез. Всю жизнь он ненавидел "жуткие дальнодействующие" кванты, хотя в свое время лично положил начало всему этому беспределу, отчего его имя встречается не только в законах теории относительности, но и в законах квантовой механики). Бозонам ("полевым частицам", "частицам энергии") пофигу на законодательные запреты Паули, наоборот, они любят занимать одинаковые квантовые состояния (садиться друг другу на голову), тем самым поддерживая и усиливая друг друга, именно поэтому лазерный луч может легко резать стальные листы.

Лазер - ни что иное как физическое воплощение квантовых микроэффектов статистики Бозе–Эйнштейна в нашем макромире, вот и все описание его работы на пальцах™ .

Но это я отвлекся, так вот. С одной стороны ситуация со спином в квантовом мире гораздо проще, чем в мире реальном, значения спина все сплошь квантовые и их буквально всего несколько штук, максимальный спин самого замороченного бариона вроде бы 15/2 и баста. У электрона их вообще может быть всего два, +1/2 и –1/2, или как я их называл в прошлой части "вверх" и "вниз". Теперь понятно, кстати, почему? Только там не просто "вверх" и "вниз", эти "вверх–вниз" (+1/2 или –1/2) могут быть вдоль любой из осей X и Y (еще и Z, не забываем про Z!), или вообще вдоль любой "неперпендикулярной" оси, но зато на любой оси их может поместиться всего два, они всегда будут противоположны, потому–то и "вверх–вниз".

С другой стороны, все сильно сложнее, потому что спин–компоненты вдоль разных осей - некоммутирующие параметры .

Задумайтесь над предыдущей фразой. Помните, что такое некоммутирующие параметры? Это те, что Гейзенберг запрещает одновременно измерять, вроде координаты и скорости частицы.

В нашем мире, если мы знаем X–спин (Х–компоненту вращения), то Y–спин элементарно вычисляется по теореме Пифагора. В квантовом мире, если мы знаем X–спин, мы абсолютно ничего не знаем про его Y–спин, он может оказаться каким угодно. Ну, как сказать "каким угодно"... Я же только что заявил, спин электрона бывает лишь или +1/2 или –1/2 (или "вверх" или "вниз"). Но какой он окажется конкретно , померить и узнать (одновременно с первым измерением) совершенно невозможно. Такая вот несправедливость, такая вот неопределенность.

И тут начинается самое интересное. Помните суть грызни Эйнштейна с Бором насчет запутанных частиц? У запутанных частиц спин всегда занимает противоположные значения. Если у одной он "вниз", то у другой обязательно "вверх". Или же один сапог правый, а второй левый, помните? И невозможно узнать, какой был какой, покуда не было произведено измерения. Но вся фишка в том, что в отличие от правых–левых сапогов, спин у электронов может быть так сказать "вдоль любых осей".

Нет, все предыдущие выкладки пока в силе. Если у первого из запутанных электронов X-спин был "вверх", значит у второго X-спин будет "вниз". Если у первого Y-спин был "вниз", значит у второго Y-спин будет "вверх". Но одновременно получить X- и Y-спин у любой из частиц мы не можем. Тут покуда никаких новостей, Эйнштейн все это знал и учитывал, что теперь при измерении нам придется не только говорить какой у электрона спин, "вверх" или "вниз", но и сообщать вдоль какой оси мы его мерили. Необязательно X или Y, кстати, можно измерить спин вдоль оси под углом 17.5 градусов к горизонту, почему нет? И у второй частицы по этой же оси будет противоположный спин.

А вот теперь хитрый финт ушами, который провернул Белл. Для начала продолжим оставаться лишь в трех перпендикулярных осях X, Y и Z, чтобы не морочиться с дробными вероятностями. Напомню, что если мы знаем спин электрона относительно оси X (скажем "вверх"), то мы понятия не имеем, каким он будет относительно оси Y, может быть "вверх", а может быть "вниз" с одинаковой вероятностью 50% на 50%. Вдоль же оси, расположенной под углом 45 о к X, вероятность "вверх–вниз" будет не 75% на 25%, как казалось бы (ведь 45 о это половина от 90 о), а ~86% на ~14%. Там сложная формула, не будем забивать ей голову.

Далее представим себе, что мы меряем спин у первой частицы по произвольной оси, а потом у второй частицы, опять таки по случайно выбранной произвольной оси. Какова вероятность, что и там и там мы обнаружим, что спины совпадают (окажутся оба вверх или оба вниз)?

Напомню, если мы меряем спины у этих частиц по одинаковым осям , они всегда будут противоположны, частицы же запутаны. Если у одной из них спин "вверх" у второй запутанной частицы по этой оси спин будет "вниз", а значит вероятность обнаружения одинакового спина - 0%.

Несложно догадаться, что в варианте истинно случайного квантового мира, в котором каждый раз спин (и любая другая характеристика) появляется у частицы лишь в непосредственный момент измерения, если мы случайным образом выбираем ось измерения у первой частицы, и случайным образом выбираем ось измерения второй частицы вероятность обнаружить два одинаковых спина у этих двух частиц по разным осям равна 50%. Все это в истинно случайном квантовом мире Бора.

В мире скрытых переменных Эйнштейна оказывается совсем другая песня. Эксперимент протекает точно так же - мы случайным образом выбираем направления осей, что будем мерить, и мы заранее наперед не знаем, что за параметры были у частицы, которую мы будем измерять. Но главное, мы верим, что они у нее заранее были .

Если вам действительно интересно разобраться во всей этой хитрости, обратите, пожалуйста пристальное внимание на следующие несколько абзацев. Ничего сложного там нет, никаких формул и подавно, но чуть–чуть мозг и немножко логики таки придется напрячь, читайте внимательно, можно даже и два раза.

Предположим, к нам в руки попала частица, у которой заранее были предопределены спины по осям X, Y и Z. Пусть это были спины "вниз", "вниз" и "вверх" вдоль этих осей соответственно. Это все равно, что сказать, что в первой коробке–частице лежали левый, левый и правые сапоги. В то же время вторая запутанная частица имеет спины наоборот "вверх", "вверх" и "вниз" вдоль этих осей, или же вторая коробка–частица содержит правый, правый и левый сапог. Мы всего этого пока не знаем (и никогда полностью не узнаем), но если верить Эйнштейну, эти свойства у частиц уже есть , хоть они и скрытые и навсегда останутся скрытыми.

Посмотрим, какие варианты опытов у нас могут получиться с этими (конкретно этими) частицами. Всего мы можем выбрать 9 вариантов проведения эксперимента. Тут внимательный читатель можно взять две реальные коробки, положить в них указанные правые и левые сапоги и начать случайным образом доставать по одному из каждой коробки, пытаясь не наткнуться на пару.

Измерять спин у первой частицы вдоль одной оси, а у второй вдоль другой, дозволено в комбинациях осей:

X1 и X2, X1 и Y2, X1 и Z2
Y1 и X2, Y1 и Y2, Y1 и Z2
Z1 и X2, Z1 и Y2, Z1 и Z2

Все девять, других вариантов нет.

Если оси у частиц совпадают, спины точно не совпадают и будут противоположны, мы это помним, они же запутанные! Значит варианты X1 и X2, Y1 и Y2, Z1 и Z2 заведомо дадут отрицательный результат несовпадения спинов или же совпадения пар обуви, что в данном случае нам не нужно, мы ищем когда спины–сапоги совпадают, т.е. когда встретятся два левых или два правых, а не когда получается пара.

Так же у этих (у конкретных этих!) частиц не совпадут спины при измерении X1 и Y2, а так же при измерении Y1 и Х2, потому что состояние конкретно этой пары частиц мы написали (поглядите!) абзацем ранее, где было предопределено - у первой было X1–"вниз" Y1–"вниз", а у второй X2–"вверх" Y2–"вверх".

Выходит, что в пяти случаях из девяти возможных вариантов, результаты эксперимента по поиску одинаково направленных спинов (хоть и по разным осям) дадут отрицательный ответ! Пять из девяти это больше половины, значит более чем в половине случаев мы не найдем, что хотели, а найдем это лишь в 4х из 9ти, что составляет вероятность примерно в 44%. Вместо вероятности в 50%, что была у нас при истинно случайном квантовом распределении.

Да, мы все еще не забываем, что это только лишь в конкретном случае двух конкретно сконфигурированных заранее частиц "вниз", "вниз", "вверх" и "вверх", "вверх", "вниз". Ведь при другой конфигурации все может оказаться иначе!

Неа. Не может. И тут вторая фишка (или вторая часть фишки) придуманной Беллом. Как бы мы ни конфигурировали частицы, в смысле, как бы они сами не конфигурировались изначально и скрыто от нас, все равно это будут некие наборы из "два плюс один". Например "два вверха" плюс "вниз" и "два вниза" плюс "вверх", или "вверх" плюс "два вниза" и "вниз" плюс "два вверха" или какая–то другая комбинация из "два чего–то плюс один". Данная ситуация абсолютно идентична уже рассмотренному случаю. Все выкладки окажутся теми же самыми, можете сами проверить, а можете поверить мне на слово. Все равно в случайном квантовом мире вероятность успеха будет 50%, а в мире скрытых параметров - 44%.

Встречается, правда, еще один вариант, когда все три спина у частицы совпадают, т.е. редкий случай "три против трех". Например "вверх", "вверх", "вверх" против "вниз", "вниз", "вниз" или наоборот. Но тут даже считать ничего не придется. Итак понятно, что если в первой коробке лежат все левые сапоги, а во второй все правые, доставая случайным образом по одному сапогу из каждой коробки мы всегда будем получать пару, что в нашем случае означает - спины никогда не будут совпадать и всегда будут противоположными. Вероятность совпадения ровно 0%.

Теперь нужно просуммировать вероятности, когда у нас получается конфигурация "два плюс один" и когда конфигурация "три против трех". Потому что в мире Эйнштейна частицы могут случайно, но заранее быть сконфигурированными либо так, либо так. Причем вариант "два плюс один" встречается чаще, чем "три против трех", от чего суммарная вероятность будет где-то между 44% и 0%, но не ровно посредине, а ближе к 44%, ибо "два плюс один" встречается чаще. Итого 50% в одном случае и что–то среднее между 44% и 0%, мне уже влом считать, пусть будет где–то около 33% во втором. Такова разница вариантов исхода одинаковых экспериментов, проведенных в мирах Бора и Эйнштейна.

Конечно же, все это точно весьма теоретически, практически нужно проводить сотни и тысячи экспериментов, набирать статистику, потому что оборудование не идеальное, погрешности всегда есть, плюс все же статистическое, можем не точно 50% вероятности получить, а сначала примерно 52%, а потом 48% и т.д. Опять таки, это всего лишь один из вариантов проведения эксперимента (точнее даже его аналогия), у самого Белла все было чуточку иначе, а реальный эксперимент и вовсе был в другую степь. Например, помните я говорил, что это упрощение - пользоваться лишь осями X, Y и Z. Если мерить спины по осям "под углом", начинаются сложные формулы расчета вероятностей, но зато, кстати, можно обойтись всего двумя некоммутирующими осями (а они там все относительно друг друга некоммутирующие). Угол между осями будет выступать в качестве "третьей составляющей" конфигурации частиц, ибо от него по хитрой формуле зависит конкретный процент вероятности в итоге.

Это все математические, технические и ситуационные детали. Основная идея всей затеи такова - если мы проведем тысячи и тысячи опытов и в итоге получим одну вероятность какого–то искомого результата, значит, мы имеем дело с квантовым миром Бора. Если же получим другую вероятность (а еще точнее убедимся, что эта вероятность никогда не превышает или наоборот всегда превышает какое–то определенное значение, всегда чего–то больше или всегда меньше, отсюда и "неравенства Белла", кстати, разные для каждого конкретного эксперимента), следовательно, мы живем в детерминистическом мире Эйнштейна, где истинных случайностей не случается (каламбур), все заранее предопределено, хоть мы этого никогда и не узнаем.

Опыты были поставлены. Тысячи и тысячи их, разной аппаратурой в разных конфигурациях для разных неравенств Белла. Прав оказался Бор. Природа нашего мира абсолютно случайна на квантовом уровне, нет никакой возможности предсказать результат следующего эксперимента, любое событие во Вселенной может произойти лишь с некой долей вероятности, чисто статистически, а может не произойти вовсе.

Характер физических законов природы оказался истинно случаен.
Нет судьбы.
Так и живем.

См. также: Портал:Физика

Теорема Белла (как её теперь называют) показывает, что вне зависимости от реального наличия в квантово-механической теории неких скрытых параметров , влияющих на любую физическую характеристику квантовой частицы , можно провести серийный эксперимент , статистические результаты которого подтвердят либо опровергнут наличие таких скрытых параметров в квантово-механической теории. Условно говоря, в одном случае статистическое соотношение составит не более 2:3, а в другом - не менее 3:4.

Локальный реализм и опыты Аспе

Неравенства Белла возникают при анализе эксперимента типа эксперимента Эйнштейна-Подольского-Розена из предположения, что вероятностный характер предсказаний квантовой механики объясняется наличием скрытых параметров, то есть неполнотой описания. Существование такого параметра означало бы справедливость концепции локального реализма . В этом случае ещё до измерения квантовый объект можно было бы охарактеризовать определенным значением некоторой физической величины, например, проекцией спина на фиксированную ось.

Расчет вероятностей различных результатов измерения по законам квантовой механики приводит к нарушению неравенств Белла. Поэтому если абсолютно верить квантовой механике, предположение о «локальном реализме» нужно отвергнуть. Однако локальный реализм кажется столь естественным, что для проверки неравенств Белла были поставлены эксперименты. Выполнение этих неравенств было проверено различными группами ученых. Первый результат был опубликован Аленом Аспе с соавторами. Оказалось, что неравенства Белла нарушаются. Следовательно, неверным оказывается привычное представление о том, что динамические свойства квантовой частицы, наблюдаемые при измерении, реально существуют ещё до измерения, а измерение лишь ликвидирует наше незнание того, какое именно свойство имеет место.

Нарушение принципа локального реализма и свободы выбора в опытах Шайдла и др.

1 ноября 2010 г. в журнале Proceedings of the National Academy of Sciences была опубликована статья Шайдла и др. , в которой рассказывается об экспериментах, проведённых в июне-июле 2008 г. на Канарских островах Пальма и Тенерифе , расстояние между которыми составляет 144 км. На Пальме генерировалась пара запутанных фотонов , один из которых затем передавался по свёрнутому в кольцо световоду длиной 6 км на детектор Alice, расположенный рядом с источником (задержка 29,6 мкс), а другой передавался по открытому воздуху на детектор Bob, расположенный на Тенерифе (задержка 479 мкс). Также была введена электронная задержка в детекторе Bob, так что в системе координат воображаемого наблюдателя, летящим параллельно одному из фотонов с Пальмы на Тенерифе, события детектирования происходили приблизительно одновременно. Таким образом, экспериментаторам удалось закрыть лазейки для локального реализма и свободы выбора во всех системах координат.

Было проведено четыре измерения по 600 с каждое, детектировано 19 917 фотонных пар, неравенство Белла было нарушено с уровнем достоверности , превышающим 16 среднеквадратических отклонений (2,37±0,02, тогда как предельное максимальное значение составляет 2,828).

Авторы полагают, что их эксперимент опровергает большой класс детерминистических теорий, оставляя только такие, которые практически невозможно ни подтвердить, ни опровергнуть экспериментально, а именно, теории, позволяющее путешествовать во времени в прошлое и производить там действия, а также теории «суперреализма», согласно которым далёкое общее прошлое до возникновения запутанной пары заранее определяет как её поведение, так и все скрытые переменные, связанные с её детектированием.

Проведённые к настоящему моменту эксперименты

См. также

  • Неравенства Леггетта - Гарга

Напишите отзыв о статье "Неравенства Белла"

Примечания

Ссылки

  • J. S. Bell. // Physics 1, 3. - 1964. - С. 195-200 .
  • A. Aspect, P. Grangier, G. Roger. // Phys. Rev. Lett. 49, 1. - 1982. - С. 91-94 .
  • A. Aspect, J. Dalibard, G. Roger. // Phys. Rev. Lett. 49, 25. - 1982. - С. 1804-1807 .
  • A. Aspect. = Bell"s Theorem: The naive view of an experimentalist // Springer. - 2002.
  • Б.И. Спасский, А.В. Московский. // Успехи физических наук. - 1984. - Вып. 142 . - С. 599 – 617 .
  • Анализ Белла является доказательством с нулевым разглашением .

Отрывок, характеризующий Неравенства Белла

– Да, да. А где полк князя Болконского, не можете вы указать мне? – спросил Пьер.
– Андрея Николаевича? мы мимо проедем, я вас проведу к нему.
– Что ж левый фланг? – спросил Пьер.
– По правде вам сказать, entre nous, [между нами,] левый фланг наш бог знает в каком положении, – сказал Борис, доверчиво понижая голос, – граф Бенигсен совсем не то предполагал. Он предполагал укрепить вон тот курган, совсем не так… но, – Борис пожал плечами. – Светлейший не захотел, или ему наговорили. Ведь… – И Борис не договорил, потому что в это время к Пьеру подошел Кайсаров, адъютант Кутузова. – А! Паисий Сергеич, – сказал Борис, с свободной улыбкой обращаясь к Кайсарову, – А я вот стараюсь объяснить графу позицию. Удивительно, как мог светлейший так верно угадать замыслы французов!
– Вы про левый фланг? – сказал Кайсаров.
– Да, да, именно. Левый фланг наш теперь очень, очень силен.
Несмотря на то, что Кутузов выгонял всех лишних из штаба, Борис после перемен, произведенных Кутузовым, сумел удержаться при главной квартире. Борис пристроился к графу Бенигсену. Граф Бенигсен, как и все люди, при которых находился Борис, считал молодого князя Друбецкого неоцененным человеком.
В начальствовании армией были две резкие, определенные партии: партия Кутузова и партия Бенигсена, начальника штаба. Борис находился при этой последней партии, и никто так, как он, не умел, воздавая раболепное уважение Кутузову, давать чувствовать, что старик плох и что все дело ведется Бенигсеном. Теперь наступила решительная минута сражения, которая должна была или уничтожить Кутузова и передать власть Бенигсену, или, ежели бы даже Кутузов выиграл сражение, дать почувствовать, что все сделано Бенигсеном. Во всяком случае, за завтрашний день должны были быть розданы большие награды и выдвинуты вперед новые люди. И вследствие этого Борис находился в раздраженном оживлении весь этот день.
За Кайсаровым к Пьеру еще подошли другие из его знакомых, и он не успевал отвечать на расспросы о Москве, которыми они засыпали его, и не успевал выслушивать рассказов, которые ему делали. На всех лицах выражались оживление и тревога. Но Пьеру казалось, что причина возбуждения, выражавшегося на некоторых из этих лиц, лежала больше в вопросах личного успеха, и у него не выходило из головы то другое выражение возбуждения, которое он видел на других лицах и которое говорило о вопросах не личных, а общих, вопросах жизни и смерти. Кутузов заметил фигуру Пьера и группу, собравшуюся около него.
– Позовите его ко мне, – сказал Кутузов. Адъютант передал желание светлейшего, и Пьер направился к скамейке. Но еще прежде него к Кутузову подошел рядовой ополченец. Это был Долохов.
– Этот как тут? – спросил Пьер.
– Это такая бестия, везде пролезет! – отвечали Пьеру. – Ведь он разжалован. Теперь ему выскочить надо. Какие то проекты подавал и в цепь неприятельскую ночью лазил… но молодец!..
Пьер, сняв шляпу, почтительно наклонился перед Кутузовым.
– Я решил, что, ежели я доложу вашей светлости, вы можете прогнать меня или сказать, что вам известно то, что я докладываю, и тогда меня не убудет… – говорил Долохов.
– Так, так.
– А ежели я прав, то я принесу пользу отечеству, для которого я готов умереть.
– Так… так…
– И ежели вашей светлости понадобится человек, который бы не жалел своей шкуры, то извольте вспомнить обо мне… Может быть, я пригожусь вашей светлости.
– Так… так… – повторил Кутузов, смеющимся, суживающимся глазом глядя на Пьера.
В это время Борис, с своей придворной ловкостью, выдвинулся рядом с Пьером в близость начальства и с самым естественным видом и не громко, как бы продолжая начатый разговор, сказал Пьеру:
– Ополченцы – те прямо надели чистые, белые рубахи, чтобы приготовиться к смерти. Какое геройство, граф!
Борис сказал это Пьеру, очевидно, для того, чтобы быть услышанным светлейшим. Он знал, что Кутузов обратит внимание на эти слова, и действительно светлейший обратился к нему:
– Ты что говоришь про ополченье? – сказал он Борису.
– Они, ваша светлость, готовясь к завтрашнему дню, к смерти, надели белые рубахи.
– А!.. Чудесный, бесподобный народ! – сказал Кутузов и, закрыв глаза, покачал головой. – Бесподобный народ! – повторил он со вздохом.
– Хотите пороху понюхать? – сказал он Пьеру. – Да, приятный запах. Имею честь быть обожателем супруги вашей, здорова она? Мой привал к вашим услугам. – И, как это часто бывает с старыми людьми, Кутузов стал рассеянно оглядываться, как будто забыв все, что ему нужно было сказать или сделать.
Очевидно, вспомнив то, что он искал, он подманил к себе Андрея Сергеича Кайсарова, брата своего адъютанта.
– Как, как, как стихи то Марина, как стихи, как? Что на Геракова написал: «Будешь в корпусе учитель… Скажи, скажи, – заговорил Кутузов, очевидно, собираясь посмеяться. Кайсаров прочел… Кутузов, улыбаясь, кивал головой в такт стихов.
Когда Пьер отошел от Кутузова, Долохов, подвинувшись к нему, взял его за руку.
– Очень рад встретить вас здесь, граф, – сказал он ему громко и не стесняясь присутствием посторонних, с особенной решительностью и торжественностью. – Накануне дня, в который бог знает кому из нас суждено остаться в живых, я рад случаю сказать вам, что я жалею о тех недоразумениях, которые были между нами, и желал бы, чтобы вы не имели против меня ничего. Прошу вас простить меня.
Пьер, улыбаясь, глядел на Долохова, не зная, что сказать ему. Долохов со слезами, выступившими ему на глаза, обнял и поцеловал Пьера.
Борис что то сказал своему генералу, и граф Бенигсен обратился к Пьеру и предложил ехать с собою вместе по линии.
– Вам это будет интересно, – сказал он.
– Да, очень интересно, – сказал Пьер.
Через полчаса Кутузов уехал в Татаринову, и Бенигсен со свитой, в числе которой был и Пьер, поехал по линии.

Бенигсен от Горок спустился по большой дороге к мосту, на который Пьеру указывал офицер с кургана как на центр позиции и у которого на берегу лежали ряды скошенной, пахнувшей сеном травы. Через мост они проехали в село Бородино, оттуда повернули влево и мимо огромного количества войск и пушек выехали к высокому кургану, на котором копали землю ополченцы. Это был редут, еще не имевший названия, потом получивший название редута Раевского, или курганной батареи.

Можно экспериментально определить, имеются ли в квантовой механике неучтенные скрытые параметры.

«Бог не играет в кости со Вселенной».

Этими словами Альберт Эйнштейн бросил вызов коллегам, разрабатывавшим новую теорию — квантовую механику. По его мнению, принцип неопределенности Гейзенберга и уравнение Шрёдингера вносили в микромир нездоровую неопределенность. Он был уверен, что Создатель не мог допустить, чтобы мир электронов так разительно отличался от привычного мира ньютоновских бильярдных шаров. Фактически, на протяжении долгих лет Эйнштейн играл роль адвоката дьявола в отношении квантовой механики, выдумывая хитроумные парадоксы, призванные завести создателей новой теории в тупик. Тем самым, однако, он делал доброе дело, серьезно озадачивая теоретиков противоположного лагеря своими парадоксами и заставляя глубоко задумываться над тем, как их разрешить, что всегда бывает полезно, когда разрабатывается новая область знаний.

Есть странная ирония судьбы в том, что Эйнштейн вошел в историю как принципиальный оппонент квантовой механики, хотя первоначально сам стоял у ее истоков. В частности, Нобелевскую премию по физике за 1921 год он получил вовсе не за теорию относительности, а за объяснение фотоэлектрического эффекта на основе новых квантовых представлений, буквально захлестнувших научный мир в начале ХХ века.

Больше всего Эйнштейн протестовал против необходимости описывать явления микромира в терминах вероятностей и волновых функций (см. Квантовая механика), а не с привычной позиции координат и скоростей частиц. Вот что он имел в виду под «игрой в кости». Он признавал, что описание движения электронов через их скорости и координаты противоречит принципу неопределенности. Но, утверждал Эйнштейн, должны существовать еще какие-то переменные или параметры, с учетом которых квантово-механическая картина микромира вернется на путь целостности и детерминизма. То есть, настаивал он, нам только кажется, будто Бог играет с нами в кости, потому что мы не всё понимаем. Тем самым он первым сформулировал гипотезу скрытой переменной в уравнениях квантовой механики. Она состоит в том, что на самом деле электроны имеют фиксированные координаты и скорость, подобно ньютоновским бильярдным шарам, а принцип неопределенности и вероятностный подход к их определению в рамках квантовой механики — результат неполноты самой теории, из-за чего она и не позволяет их доподлинно определить.

Теорию скрытой переменной можно наглядно представить примерно так: физическим обоснованием принципа неопределенности служит то, что измерить характеристики квантового объекта, например электрона, можно лишь через его взаимодействие с другим квантовым объектом; при этом состояние измеряемого объекта изменится. Но, возможно, есть какой-то иной способ измерения с использованием неизвестных нам пока что инструментов. Эти инструменты (назовем их «субэлектронами»), возможно, будут взаимодействовать с квантовыми объектами, не изменяя их свойств, и принцип неопределенности будет неприменим к таким измерениям. Хотя никаких фактических данных в пользу гипотез такого рода не имелось, они призрачно маячили на обочине главного пути развития квантовой механики — в основном, я полагаю, по причине психологического дискомфорта, испытываемого многими учеными из-за необходимости отказа от устоявшихся ньютоновских представлений об устройстве Вселенной.

И вот в 1964 году Джон Белл получил новый и неожиданный для многих теоретический результат. Он доказал, что можно провести определенный эксперимент (подробности чуть позже), результаты которого позволят определить, действительно ли квантово-механические объекты описываются волновыми функциями распределения вероятностей, как они есть, или же имеется скрытый параметр, позволяющий точно описать их положение и импульс, как у ньютоновского шарика. Теорема Белла, как ее теперь называют, показывает, что как при наличии в квантово-механической теории скрытого параметра, влияющего на любую физическую характеристику квантовой частицы, так и при отсутствии такового можно провести серийный эксперимент, статистические результаты которого подтвердят или опровергнут наличие скрытых параметров в квантово-механической теории. Условно говоря, в одном случае статистическое соотношение составит не более 2:3, а в другом — не менее 3:4.

(Тут я хочу в скобках заметить, что в том году, когда Белл доказал свою теорему, я был студентом-старшекурсником в Стэнфорде. Рыжебородого, с сильным ирландским акцентом Белла было трудно не заметить. Помню, я стоял в коридоре научного корпуса Стэнфордского линейного ускорителя, и тут он вышел из своего кабинета в состоянии крайнего возбуждения и во всеуслышание заявил, что только что обнаружил по-настоящему важную и интересную вещь. И, хотя доказательств на этот счет у меня нет никаких, мне очень хотелось бы надеяться, что я в тот день стал невольным свидетелем его открытия.)

Однако опыт, предлагаемый Беллом, оказался простым только на бумаге и поначалу казался практически невыполнимым. Эксперимент должен был выглядеть так: под внешним воздействием атом должен был синхронно испустить две частицы, например два фотона, причем в противоположных направлениях. После этого нужно было уловить эти частицы и инструментально определить направление спина каждой и сделать это тысячекратно, чтобы накопить достаточную статистику для подтверждения или опровержения существования скрытого параметра по теореме Белла (выражаясь языком математической статистики, нужно было рассчитать коэффициенты корреляции ).

Самым неприятным сюрпризом для всех после публикации теоремы Белла как раз и стала необходимость проведения колоссальной серии опытов, которые в ту пору казались практически невыполнимыми, для получения статистически достоверной картины. Однако не прошло и десятилетия, как ученые-экспериментаторы не только разработали и построили необходимое оборудование, но и накопили достаточный массив данных для статистической обработки. Не вдаваясь в технические подробности, скажу лишь, что тогда, в середине шестидесятых, трудоемкость этой задачи казалась столь чудовищной, что вероятность ее реализации представлялась равной тому, как если бы кто-то задумал посадить за пишущие машинки миллион дрессированных обезьян из пословицы в надежде отыскать среди плодов их коллективного труда творение, равное Шекспиру.

Когда в начале 1970-х годов результаты экспериментов были обобщены, всё стало предельно ясно. Волновая функция распределения вероятностей совершенно безошибочно описывает движение частиц от источника к датчику. Следовательно, уравнения волновой квантовой механики не содержат скрытых переменных. Это единственный известный случай в истории науки, когда блестящий теоретик доказал возможность экспериментальной проверки гипотезы и дал обоснование метода такой проверки, блестящие экспериментаторы титаническими усилиями провели сложный, дорогостоящий и затяжной эксперимент, который в итоге лишь подтвердил и без того господствующую теорию и даже не внес в нее ничего нового, в результате чего все почувствовали себя жестоко обманутыми в ожиданиях!

Однако не все труды пропали даром. Совсем недавно ученые и инженеры к немалому собственному удивлению нашли теореме Белла весьма достойное практическое применение. Две частицы, испускаемые источником на установке Белла, являются когерентными (имеют одинаковую волновую фазу), поскольку испускаются синхронно. И это их свойство теперь собираются использовать в криптографии для шифровки особо секретных сообщений, направляемых по двум раздельным каналам. При перехвате и попытке дешифровки сообщения по одному из каналов когерентность мгновенно нарушается (опять же в силу принципа неопределенности), и сообщение неизбежно и мгновенно самоуничтожается в момент нарушения связи между частицами.

А Эйнштейн, похоже, был неправ: Бог все-таки играет в кости со Вселенной. Возможно, Эйнштейну все-таки следовало прислушаться к совету своего старого друга и коллеги Нильса Бора, который, в очередной раз услышав старый припев про «игру в кости», воскликнул: «Альберт, перестань же ты, наконец, указывать Богу, что ему делать!»

John Stewart Bell, 1928-91

Физик из Северной Ирландии. Родился в Белфасте, в бедной семье. В 1949 году окончил Белфастский Королевский университет, после чего недолгое время работал там же в должности ассистента физической лаборатории. После нескольких лет работы в Институте атомной энергии в г. Харвелл (Harwell) в 1960 году Белл был приглашен в Европейский центр ядерных исследований (ЦЕРН) в Женеве и проработал там оставшуюся часть жизни. Жена ученого Мэри Белл также была физиком и сотрудником ЦЕРНа. Принесшую ему известность теорему Белл сформулировал во время краткосрочной стажировки в США.



Понравилась статья? Поделитесь с друзьями!