Движение по горизонтали. Движение тела, брошенного горизонтально и под углом к горизонту

Основные единицы измерения величин в системе СИ таковы:

  1. единица измерения длины - метр (1 м),
  2. времени - секунда (1 с),
  3. массы - килограмм (1 кг),
  4. количества вещества - моль (1 моль),
  5. температуры - кельвин (1 К),
  6. силы электрического тока - ампер (1 А),
  7. Справочно: силы света - кандела (1 кд, фактически не используется при решении школьных задач).

При выполнении расчетов в системе СИ углы измеряются в радианах.

Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее. При переводе величин пользуйтесь следующей таблицей.

Путь и перемещение

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать материальной точкой . Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела .

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещением может в процессе движение увеличиваться, уменьшаться и становиться равным нулю.

Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

Средняя скорость

Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

Средняя скорость пути – это отношение всего пути ко всему времени движения:

где: L полн – весь путь, который прошло тело, t полн – все время движения.

Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

  • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
  • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

Равноускоренное прямолинейное движение

Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

где: v 0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t ).

Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Аналогичные формулы получаются для остальных координатных осей.

Свободное падение по вертикали

На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х » писать «у ». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Горизонтальный бросок

При горизонтальном броске с начальной скоростью v 0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна v x = v 0 . А вертикальная возрастает по законам ускоренного движения v y = gt . При этом полная скорость тела может быть найдена по формулам:

При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

Угол между горизонтом и скоростью тела легко найти из соотношения:

Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали . Тогда этот угол будет находиться из соотношения:

Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

Бросок под углом к горизонту (с земли на землю)

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

Сложение скоростей

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны.

Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

Равномерное движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

В обеих формулах: N – количество оборотов за время t . Как видно из вышеприведенных формул, период и частота величины взаимообратные:

При равномерном вращении скорость тела будет определяется следующим образом:

где: l – длина окружности или путь, пройденный телом за время равное периоду T . При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt . Очевидно, что за время равное периоду T тело пройдет угол равный 2π , следовательно при равномерном движении по окружности выполняются формулы:

Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

Связь между модулем линейной скорости v и угловой скоростью ω :

При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением , так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Рассмотрим движение тела, брошенного горизонтально и движущегося под действием одной только силы тяжести (сопротивлением воздуха пренебрегаем). Например, представим себе, что шару, лежащему на столе, сообщают толчок, и он докатывается до края стола и начинает свободно падать, имея начальную скорость , направленную горизонтально (рис. 174).

    Спроектируем движение шара на вертикальную ось и на горизонтальную ось . Движение проекции шара на ось - это движение без ускорения со скоростью ; движение проекции шара на ось - это свободное падение с ускорением бее начальной скорости под действием силы тяжести. Законы обоих движений нам известны. Компонента скорости остается постоянной и равной . Компонента растет пропорционально времени: . Результирующую скорость легко найти по правилу параллелограмма, как показано на рис. 175. Она будет наклонена вниз, и ее наклон будет расти с течением времени.

    Рис. 174. Движение шара, скатившегося со стола

    Рис. 175. Шар, брошенный горизонтально со скоростью имеет в момент скорость

    Найдем траекторию тела, брошенного горизонтально. Координаты тела в момент времени имеют значения

    Чтобы найти уравнение траектории, выразим из (112.1) время через и подставим это выражение в (112.2). В результатё получим

    График этой функции показан на рис. 176. Ординаты точек траектории оказываются пропорциональными квадратам абсцисс. Мы знаем, что такие кривые называются параболами. Параболой изображался график пути равноускоренного движения (§ 22). Таким образом, свободно падающее тело, начальная скорость которого горизонтальна, движется по параболе.

    Путь, проходимый в вертикальном направлении, не зависит от начальной скорости. Но путь, проходимый в горизонтальном направлении пропорционален начальной скорости. Поэтому при большой горизонтальной начальной скорости парабола, по которой падает тело, более вытянута в горизонтальном направлении. Если из расположенной горизонтально трубки выпускать струю воды (рис. 177), то отдельные частицы воды будут, так же как и шарик, двигаться по параболе. Чем больше открыт кран, через который поступает вода в трубку, тем больше начальная скорость воды и тем дальше от крана попадает струя на дно кюветы. Поставив позади струи экран с заранее начерченными на нем параболами, можно убедиться, что струя воды действительно имеет форму параболы.

    Рис. 176. Траектория тела, брошенного горизонтально

    Здесь – начальная скорость тела, – скорость тела в момент времени t , s – дальность полета по горизонтали, h – высота над поверхностью земли, с которой тело брошено горизонтально с скоростью .

    1.1.33. Кинематические уравнения проекции скорости :

    1.1.34. Кинематические уравнения координат :

    1.1.35. Скорость тела в момент времени t :

    В момент падения на землю y = h , x = s (рис. 1.9).

    1.1.36. Максимальная дальность полета по горизонтали:

    1.1.37. Высота над поверхностью земли , с которой тело брошено

    горизонтально:

    Движение тела, брошенного под углом α к горизонту
    с начальной скоростью

    1.1.38. Траекторией является парабола (рис. 1.10). Криволинейное движение по параболе обусловлено результатом сложения двух прямолинейных движений: равномерного движения по горизонтальной оси и равнопеременного движения по вертикальной оси.

    Рис. 1.10

    ( – начальная скорость тела, – проекции скорости на оси координат в момент времени t , – время полета тела, h max – максимальная высота подъема тела, s max – максимальная дальность полета тела по горизонтали).

    1.1.39. Кинематические уравнения проекции:

    ;

    1.1.40. Кинематические уравнения координат:

    ;

    1.1.41. Высота подъема тела до верхней точки траектории:

    В момент времени , (рис 1.11).

    1.1.42. Максимальная высота подъема тела:

    1.1.43. Время полета тела:

    В момент времени , (рис. 1.11).

    1.1.44. Максимальная дальность полета тела по горизонтали:

    1.2. Основные уравнения классической динамики

    Динамика (от греч. dynamis – сила) – раздел механики, посвященный изучению движения материальных тел под действием приложенных к ним сил. В основе классической динамикилежатзаконы Ньютона . Из них получаются все уравнения и теоремы, необходимые для решения задач динамики.

    1.2.1. Инерциальная система отчета – этосистема отсчета, в которой тело находится в покое или движется равномерно и прямолинейно.

    1.2.2. Сила – это результат взаимодействия тела с окружающей средой. Одно из простейших определений силы: влияние одного тела (или поля), вызывающее ускорение. В настоящее время различают четыре типа сил или взаимодействий:

    · гравитационные (проявляются в виде сил всемирного тяготения);

    · электромагнитные (существование атомов, молекул и макротел);

    · сильные (ответственны за связь частиц в ядрах);

    · слабые (ответственны за распад частиц).

    1.2.3. Принцип суперпозиции сил: если на материальную точку действует несколько сил , то результирующую силу можно найти по правилу сложения векторов:

    .

    Масса тела – мера инертности тела. Всякое тело оказывает сопротивление при попытках привести его в движение или изменить модуль или направление его скорости. Это свойство называется инертность.

    1.2.5. Импульс (количество движения) – это произведение массы т тела на его скорость υ:

    1.2.6. Первый закон Ньютона :Всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её (его) изменить это состояние.

    1.2.7. Второй закон Ньютона (основное уравнение динамики материальной точки): скорость изменения импульса тела равна действующей на него силе (рис. 1.11):

    Рис. 1.11 Рис. 1.12

    Это же уравнение в проекциях на касательную и нормаль к траектории точки:

    и .

    1.2.8. Третий закон Ньютона : силы, с которыми действуют друг на друга два тела, равны по величине и противоположны по направлению (рис. 1.12):

    1.2.9. Закон сохранения импульса для замкнутой системы: импульс замкнутой системы не изменяется во времени (рис. 1.13):

    ,

    где п – число материальных точек (или тел), входящих в систему.

    Рис. 1.13

    Закон сохранения импульса не является следствие законов Ньютона, а является фундаментальным законом природы , не знающим исключений, и является следствием однородности пространства.

    1.2.10. Основное уравнение динамики поступательного движения системы тел:

    где ускорение центра инерции системы; – общая масса системы из п материальных точек.

    1.2.11. Центр масс системы материальных точек (рис. 1.14, 1.15):

    .

    Закон движения центра масс: центр масс системы двигается, как материальная точка, масса которой равна массе всей системы и на которую действует сила, равная векторной сумме всех сил, действующих на систему.

    1.2.12. Импульс системы тел :

    где скорость центра инерции системы.

    Рис. 1.14 Рис. 1.15

    1.2.13. Теорема о движении центра масс : если система находится во внешнем стационарном однородном поле сил, то никакими действия ми внутри системы невозможно изменить движение центра масс системы :

    .

    1.3. Силы в механике

    1.3.1. Связь веса тела с силой тяжести и реакцией опоры :

    Ускорение свободного падения (рис. 1.16).

    Рис. 1.16

    Невесомость – состояние, при котором вес тела равен нулю. В гравитационном поле невесомость возникает при движении тела только под действием силы тяжести. Если a = g , то P = 0.

    1.3.2. Соотношение между весом, силой тяжести и ускорением :

    1.3.3. Сила трения скольжения (рис. 1.17):

    где – коэффициент трения скольжения; N – сила нормального давления.

    1.3.5. Основные соотношения для тела на наклонной плоскости (рис. 1.19).:

    · сила трения : ;

    · равнодействующая сила : ;

    · скатывающая сила : ;

    · ускорение :


    Рис. 1.19

    1.3.6. Закон Гука для пружины : удлинение пружины х пропорционально силе упругости или внешней силе:

    где k – жесткость пружины.

    1.3.7. Потенциальная энергия упругой пружины :

    1.3.8. Работа, совершённая пружиной :

    1.3.9. Напряжение – мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий (рис. 1.20):

    где площадь поперечного сечения стержня, d – его диаметр, – первоначальная длина стержня, – приращение длины стержня.

    Рис. 1.20 Рис. 1.21

    1.3.10. Диаграмма деформации – график зависимости нормального напряжения σ = F /S от относительного удлинения ε = Δl /l при растяжении тела (рис. 1.21).

    1.3.11. Модуль Юнга – величина, характеризующая упругие свойства материала стержня:

    1.3.12. Приращение длины стержня пропорционально напряжению:

    1.3.13. Относительное продольное растяжение (сжатие) :

    1.3.14. Относительное поперечное растяжение (сжатие) :

    где начальный поперечный размер стержня.

    1.3.15. Коэффициент Пуассона – отношение относительного поперечного растяжения стержня к относительному продольному растяжению :

    1.3.16. Закон Гука для стержня : относительное приращение длины стержня прямо пропорционально напряжению и обратно пропорционально модулю Юнга:

    1.3.17. Объемная плотность потенциальной энергии :

    1.3.18. Относительный сдвиг (рис1.22, 1.23):

    где абсолютный сдвиг.

    Рис. 1.22 Рис.1.23

    1.3.19. Модуль сдвига G – величина, зависящая от свойств материала и равная такому тангенциальному напряжению, при котором (если бы столь огромные упругие силы были возможны).

    1.3.20. Тангенциальное упругое напряжение :

    1.3.21. Закон Гука для сдвига :

    1.3.22. Удельная потенциальная энергия тела при сдвиге:

    1.4. Неинерциальные системы отсчета

    Неинерциальная система отсчёта – произвольная система отсчёта, не являющаяся инерциальной. Примеры неинерциальных систем: система, движущаяся прямолинейно с постоянным ускорением, а также вращающаяся система.

    Силы инерции обусловлены не взаимодействием тел, а свойствами самих неинерциальных систем отсчета. На силы инерции законы Ньютона не распространяются. Силы инерции неинвариантны относительно перехода из одной системы отсчета в другую.

    В неинерциальной системе также можно воспользоваться законами Ньютона, если ввести силы инерции. Они фиктивны. Их вводят специально, чтобы воспользоваться уравнениями Ньютона.

    1.4.1. Уравнение Ньютона для неинерциальной системыотсчета

    где – ускорение тела массы т относительно неинерциальной системы; – сила инерции – фиктивная сила, обусловленная свойствами системы отсчета.

    1.4.2. Центростремительная сила – сила инерции второго рода, приложенная к вращающемуся телу и направленная по радиусу к центру вращения (рис. 1.24):

    ,

    где центростремительное ускорение.

    1.4.3. Центробежная сила – сила инерции первого рода, приложенная к связи и направленная по радиусу от центра вращения (рис.1.24, 1.25):

    ,

    где центробежное ускорение.

    Рис. 1.24 Рис. 1.25

    1.4.4. Зависимость ускорения свободного падения g от широты местности приведена на рис. 1.25.

    Сила тяжести есть результат сложения двух сил: и ; таким образом, g (а значит и mg ) зависит от широты местности :

    ,

    где ω– угловая скорость вращения Земли.

    1.4.5. Сила Кориолиса – одна из сил инерции, существующая в неинерциальной системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения (рис. 1.26, 1.27).

    где угловая скорость вращения.

    Рис. 1.26 Рис. 1.27

    1.4.6. Уравнение Ньютона для неинерциальных систем отсчета с учетом всех сил примет вид

    где – сила инерции, обусловленная поступательным движением неинерциальной системы отсчета; и – две силы инерции, обусловленные вращательным движением системы отсчета; – ускорение тела относительно неинерциальной системы отсчета.

    1.5. Энергия. Работа. Мощность.
    Законы сохранения

    1.5.1. Энергия – универсальная мера различных форм движения и взаимодействия всех видов материи.

    1.5.2. Кинетическая энергия – функция состояния системы, определяемая только скоростью её движения:

    Кинетическая энергия тела – скалярная физическая величина, равная половине произведения массы m тела на квадрат его скорости.

    1.5.3. Теорема об изменении кинетической энергии. Работа равнодействующих сил, приложенная к телу, равна изменению кинетической энергии тела, или, другими словами, изменение кинетической энергии тела равно работе A всех сил, действующих на тело.

    1.5.4. Связь кинетической энергии с импульсом :

    1.5.5. Работа силы – количественная характеристика процесса обмена энергией между взаимодействующими телами. Работа в механике .

    1.5.6. Работа постоянной силы:

    Если тело двигается прямолинейно и на него воздействует постоянная сила F , которая составляет некоторый угол α с направлением перемещения (рис. 1.28), то работа этой силы определяется по формуле:

    ,

    где F – модуль силы, ∆r – модуль перемещения точки приложения силы, – угол между направлением силы и перемещения.

    Если < /2, то работа силы положительна. Если > /2, то работа силы отрицательна. При = /2 (сила направлена перпендикулярно перемещению), то работа силы равна нулю.

    Рис. 1.28 Рис. 1.29

    Работа постоянной силы F при перемещении вдоль оси x на расстояние (рис. 1.29) равна проекции силы на эту ось умноженной на перемещение :

    .

    На рис. 1.27 показан случай, когда A < 0, т.к. > /2 – тупой угол.

    1.5.7. Элементарной работой dA силы F на элементарном перемещении dr называется скалярная физическая величина, равная скалярному произведению силы на перемещение:

    1.5.8. Работа переменной силы на участке траектории 1 – 2 (рис. 1.30):

    Рис. 1.30

    1.5.9. Мгновенная мощность равна работе, совершаемой в единицу времени:

    .

    1.5.10. Средняя мощность за промежуток времени :

    1.5.11. Потенциальная энергия тела в данной точке – скалярная физическая величина, равная работе, совершаемой потенциальной силой при перемещении тела из этой точки в другую , принятую за нуль отсчета потенциальной энергии.

    Потенциальная энергия определяется с точностью до некоторой произвольной постоянной. Это не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела или производная потенциальной энергии по координатам.

    Поэтому потенциальную энергию в каком-то определенном положении считают равной нулю, а энергию тела отсчитывают относительно этого положения (нулевого уровня отсчета).

    1.5.12. Принцип минимума потенциальной энергии . Любая замкнутая система стремится перейти в такое состояние, в котором ее потенциальная энергия минимальна.

    1.5.13. Работа консервативных сил равна изменению потенциальной энергии

    .

    1.5.14. Теорема о циркуляции вектора : если циркуляция какого-либо вектора силы равна нулю, то эта сила консервативна.

    Работа консервативных сил вдоль замкнутого контура L равна нулю (рис. 1.31):

    Рис. 1.31

    1.5.15. Потенциальная энергия гравитационного взаимодействия между массами m и M (рис. 1.32):

    1.5.16. Потенциальная энергия сжатой пружины (рис. 1.33):

    Рис. 1.32 Рис. 1.33

    1.5.17. Полная механическая энергия системы равна сумме кинетической и потенциально энергий:

    Е = Е к + Е п.

    1.5.18. Потенциальная энергия тела на высоте h над землей

    Е п = mgh .

    1.5.19. Связь между потенциальной энергией и силой :

    Или или

    1.5.20. Закон сохранения механической энергии (для замкнутой системы): полная механическая энергия консервативной системы материальных точек остается постоянной:

    1.5.21. Закон сохранения импульса для замкнутой системы тел:

    1.5.22. Закон сохранения механической энергии и импульса при абсолютно упругом центральном ударе (рис. 1.34):

    где m 1 и m 2 – массы тел; и – скорости тел до удара.

    Рис. 1.34 Рис. 1.35

    1.5.23. Скорости тел после абсолютно упругого удара (рис. 1.35):

    .

    1.5.24. Скорость движения тел после абсолютно неупругого центрального удара (рис. 1.36):

    1.5.25. Закон сохранения импульса при движении ракеты (рис.1.37):

    где и – масса и скорость ракеты; и масса и скорость выбрасываемых газов.

    Рис. 1.36 Рис. 1.37

    1.5.26. Уравнение Мещерского для ракеты.

    Рассмотрим движение тела, брошенного горизонтально и движущегося под действием одной только силы тяжести (сопротивлением воздуха пренебрегаем). Например, представим себе, что шару, лежащему на столе, сообщают толчок, и он докатывается до края стола и начинает свободно падать, имея начальную скорость , направленную горизонтально (рис. 174).

    Спроектируем движение шара на вертикальную ось и на горизонтальную ось . Движение проекции шара на ось - это движение без ускорения со скоростью ; движение проекции шара на ось - это свободное падение с ускорением бее начальной скорости под действием силы тяжести. Законы обоих движений нам известны. Компонента скорости остается постоянной и равной . Компонента растет пропорционально времени: . Результирующую скорость легко найти по правилу параллелограмма, как показано на рис. 175. Она будет наклонена вниз, и ее наклон будет расти с течением времени.

    Рис. 174. Движение шара, скатившегося со стола

    Рис. 175. Шар, брошенный горизонтально со скоростью имеет в момент скорость

    Найдем траекторию тела, брошенного горизонтально. Координаты тела в момент времени имеют значения

    Чтобы найти уравнение траектории, выразим из (112.1) время через и подставим это выражение в (112.2). В результатё получим

    График этой функции показан на рис. 176. Ординаты точек траектории оказываются пропорциональными квадратам абсцисс. Мы знаем, что такие кривые называются параболами. Параболой изображался график пути равноускоренного движения (§ 22). Таким образом, свободно падающее тело, начальная скорость которого горизонтальна, движется по параболе.

    Путь, проходимый в вертикальном направлении, не зависит от начальной скорости. Но путь, проходимый в горизонтальном направлении пропорционален начальной скорости. Поэтому при большой горизонтальной начальной скорости парабола, по которой падает тело, более вытянута в горизонтальном направлении. Если из расположенной горизонтально трубки выпускать струю воды (рис. 177), то отдельные частицы воды будут, так же как и шарик, двигаться по параболе. Чем больше открыт кран, через который поступает вода в трубку, тем больше начальная скорость воды и тем дальше от крана попадает струя на дно кюветы. Поставив позади струи экран с заранее начерченными на нем параболами, можно убедиться, что струя воды действительно имеет форму параболы.

    112.1. Какова будет через 2с полета скорость тела, брошенного горизонтально со скоростью 15м/с? В какой момент скорость будет направлена под углом 45° к горизонту? Сопротивлением воздуха пренебречь.

    112.2. Шарик, скатившийся со стола высоты 1м, упал на расстоянии 2м от края стола. Какова была горизонтальная скорость шарика? Сопротивлением воздуха пренебречь.

    Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила -- сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси ах = 0, ау = - g.

    Рисунок 1. Кинематические характеристики тела, брошенного под углом к горизонту

    Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

    Проекции скорости тела, следовательно, изменяются со временем следующим образом:

    где $v_0$ - начальная скорость, ${\mathbf \alpha }$ - угол бросания.

    При нашем выборе начала координат начальные координаты (рис. 1) $x_0=y_0=0$. Тогда получим:

    (1)

    Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

    Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

    Дальность полета получим из первой формулы (1). Дальность полета - это значение координаты х в конце полета, т.е. в момент времени, равный $t_0$. Подставляя значение (2) в первую формулу (1), получаем:

    Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

    Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

    Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

    и подставить его во второе уравнение. Тогда получим:

    Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания $\alpha $ и его функции -- здесь просто константы, т.е. постоянные числа.

    Тело брошено со скоростью v0 под углом ${\mathbf \alpha }$ к горизонту. Время полета $t = 2 с$. На какую высоту Hmax поднимется тело?

    $$t_В = 2 с$$ $$H_max - ?$$

    Закон движения тела имеет вид:

    $$\left\{ \begin{array}{c} x=v_{0x}t \\ y=v_{0y}t-\frac{gt^2}{2} \end{array} \right.$$

    Вектор начальной скорости образует с осью ОХ угол ${\mathbf \alpha }$. Следовательно,

    \ \ \

    С вершины горы бросают под углом = 30${}^\circ$ к горизонту камень с начальной скоростью $v_0 = 6 м/с$. Угол наклонной плоскости = 30${}^\circ$. На каком расстоянии от точки бросания упадет камень?

    $$ \alpha =30{}^\circ$$ $$v_0=6\ м/с$$ $$S - ?$$

    Поместим начало координат в точку бросания, ОХ -- вдоль наклонной плоскости вниз, OY -- перпендикулярно наклонной плоскости вверх. Кинематические характеристики движения:

    Закон движения:

    $$\left\{ \begin{array}{c} x=v_0t{cos 2\alpha +g\frac{t^2}{2}{sin \alpha \ }\ } \\ y=v_0t{sin 2\alpha \ }-\frac{gt^2}{2}{cos \alpha \ } \end{array} \right.$$ \

    Подставив полученное значение $t_В$, найдём $S$:



    Понравилась статья? Поделитесь с друзьями!