Единицы измерений физических величин системы единиц. Международная система единиц СИ

Физика. Предмет и задачи.

2.Физические величины и их измерение. Система СИ.

3. Механика. Задачи механики.

.

5. Кинематика точки МТ. Способы описания движения МТ.

6. Перемещение. Путь.

7. Скорость. Ускорение.

8. Тангенциальное и нормальное ускорения.

9. Кинематика вращательного движения.

10. Закон инерции Галилея. Инерциальные системы отсчета.

11. Преобразования Галилея. Закон сложения скоростей Галилея. Инвариантность ускорения. Принцип относительности.

12.Сила. Масса.

13. Второй закон. Импульс. Принцип независимости действия сил.

14. Третий закон Ньютона.

15. Виды фундаментальных взаимодействий. Закон всемирного тяготения. Закон Кулона. Сила Лоренца. Силы Ван-дер-Ваальса. Силы в классической механике.

16. Система материальных точек (СМТ).

17. Импульс системы. Закон сохранения импульса в замкнутой системе.

18. Центр масс. Уравнение движения СМТ.

19. Уравнение движения тела переменной массы. Формула Циолковского.

20. Работа сил. Мощность.

21.Потенциальное поле сил. Потенциальная энергия.

22. Кинетическая энергия МТ в силовом поле.

23. Полная механическая энергия. Закон сохранения энергии в механике.

24. Момент импульса. Момент силы. Уравнение моментов.

25. Закон сохранения момента импульса.

26. Собственный момент импульса.

27. Момент инерции ТТ относительно оси. Теорема Гюгенса - Штейнера.

28. Уравнение движения ТТ, вращающегося вокруг неподвижной оси.

29. Кинетическая энергия ТТ, совершающего поступательное и вращательное движения.

30. Место колебательного движения в природе и технике.

31. Свободные гармонические колебания. Метод векторных диаграмм.

32. Гармонический осциллятор. Пружинный, физический и математический маятники.

33. Динамические и статистические закономерности в физике. Термодинамический и статистический методы.

34. Свойства жидкостей и газов. Массовые и поверхностные силы. Закон Паскаля.

35. Закон Архимеда. Плавание тел.

36. Тепловое движение. Макроскопические параметры. Модель идеального газа. Давление газа с точки зрения молекулярно-кинетической теории. Понятие о температуре.

37. Уравнение состояния.

38. Опытные газовые законы.

39. Основное уравнение МКТ.

40. Средняя кинетическая энергия поступательного движения молекул.

41. Число степеней свободы. Закон равномерного распределения энергии по степеням свободы.

42. Внутренняя энергия идеального газа.

43. Длина свободного пробега газа.

44. Идеальный газ в силовом поле. Барометрическая формула. Закон Больцмана.

45. Внутренняя энергия системы – функция состояния.

46. Работа и теплота как функции процесса.

47. Первое начало термодинамики.

48. Теплоемкость многоатомных газов. Уравнение Роберта-Майера.

49. Применение первого начала термодинамики к изопроцессам.

50 Скорость звука в газе.

51..Обратимые и необратимые процессы. Круговые процессы.

52. Тепловые машины.

53. Цикл Карно.

54. Второе начало термодинамики.

55. Понятие об энтропии.

56. Теоремы Карно.

57. Энтропия при обратимых и необратимых процессах. Закон возрастания энтропии.

58. Энтропия как мера беспорядка в статистической системе.

59. Третье начало термодинамики.

60.Термодинамические потоки.

61. Диффузия в газах.

62. Вязкость.

63. Теплопроводность.

64.Термодиффузия.

65. Поверхностное натяжение.

66.Смачивание и несмачивание.

67. Давление под искривленной поверхностью жидкости.

68. Капиллярные явления.


Физика. Предмет и задачи.

Физика - естественная наука. В её основе лежит экспериментальное исследование явлений природы, а её задача - формулировка законов, которыми объясняются эти явления. Физика сосредоточена на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д.

Предмет её изучения составляет материя (в виде вещества и полей) и наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.

Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы. Физические теории почти всегда формулируются в виде математических уравнений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физической науки.

Размерность физической величины определяется используемой системой физических величин, которая представляет собой совокупность физических величин, связанных между собой зависимостями, и в которой несколько величин выбраны в качестве основных. Единица физической величины - это такая физическая величина, которой по соглашению присвоено числовое значение, равное единице.Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин.В расположенных ниже таблицах приведены физические величины и их единицы, принятые в Международной системе единиц (СИ), основанной на Международной системе величин.


Физические величины и единицы их измерения. Система СИ.

Физическая величина

Единица измерения физической величины

Механика

Масса m килограмм кг
Плотность килограмм на кубический метр кг/м 3
Удельный объем v кубический метр на килограмм м 3 /кг
Массовый расход Q m килограмм в секунду кг/с
Объемный расход Q V кубический метр в секунду м 3 /с
Импульс P килограмм-метр в секунду кг м/с
Момент импульса L килограмм-метр в квадрате в секунду кг м 2 /с
Момент инерции J килограмм-метр в квадрате кг м 2
Сила, вес F, Q ньютон Н
Момент силы M ньютон-метр Н м
Импульс силы I ньютон-секунда Н с
Давление, механическое напряжение p, паскаль Па
Работа, энергия A, E, U джоуль Дж
Мощность N ватт Вт

Международная система единиц (СИ) - система единиц, основанная на Международной системе величин, вместе с наименованиями и обозначениями, а также набором приставок и их наименованиями и обозначениями вместе с правилами их применения, принятая Генеральной конференцией по мерам и весам (CGPM).

Международный словарь по метрологии
СИ была принята XI Генеральной конференцией по мерам и весам (ГКМВ) в 1960 году, некоторые последующие конференции внесли в СИ ряд изменений.
СИ определяет семь основных единиц физических величин и производные единицы (сокращённо - единицы СИ или единицы), а также набор приставок. СИ также устанавливает стандартные сокращённые обозначения единиц и правила записи производных единиц.
Основные единицы: килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, то есть ни одна из основных единиц не может быть получена из других.
Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в СИ присвоены собственные наименования, например, единице радиан.
Приставки можно использовать перед наименованиями единиц. Они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.


Механика. Задачи механики.

Механика – раздел физики, в котором изучаются закономерности механического движения, а также причины, вызывающие или изменяющие движение.

Основной задачей механики является описание механического движения тел, то есть установление закона (уравнения) движения тела на основе характеристик, описывают (координаты, перемещение, длина пройденного пути, угол поворота, скорость, ускорение и т.п.).Иными словами, если с помощью составленного закона (уравнения) движения можно определить положение тела в любой момент времени, то основная задача механики считается решенной. В зависимости от выбранных физических величин и методов решения основной задачи механики ее разделяют на кинематику, динамику и статику.


4.Механическое движение. Пространство и время. Системы координат. Измерение времени. Система отсчета. Векторы.

Механическим движением называют изменение положения тел в пространстве относительно других тел с течением времени. Механическое движение делят на поступательное, вращательное и колебательное.

Поступательным называется такое движение, при котором любая прямая проведенная в теле, перемещается параллельно себе. Вращательным называется движение, при котором все точки тела описывают концентрические окружности относительно некоторой точки, называемой центром вращения. Колебательным называют движение, при котором тело совершает периодически повторяющиеся движения около среднего положения, то есть колеблется.

Для описания механического движения вводится понятие системы отсчета .виды систем отсчёта могут быть различными, например, неподвижная система отсчёта, подвижная система отсчёта, инерциальная система отсчёта, неинерциальная система отсчёта. Она включает в себя тело отсчета, систему координат и часы. Тело отсчета – это тело, к которому «привязывается» система координат. система координат , которая представляет из себя точку отсчёта (начало координат). Система координат имеет 1, 2 или 3 оси в зависимости от условий движения. Положение точки на линии (1 ось), плоскости (2 оси) или в пространстве (3 оси) определяют соответственно одной, двумя или тремя координатами. Для определения положения тела в пространстве в любой момент времени также необходимо задать начало отсчёта времени. Известны разные системы координат: декартова, полярная, криволинейная и т.д. На практике используют чаще всего декартову и полярную системы координат. Декартова система координат – это (например, в двухмерном случае) два взаимно перпендикулярных луча, выходящих из одной точки, называемой началом координат, с нанесенным на них масштабом (рис.2.1а). Полярная система координат – это в двухмерном случае радиус–вектор, выходящий из начала координат и угол θ, на который поворачивается радиус-вектор (рис.2.1б). Часы необходимы для измерения времени.

Линия, которую описывает материальная точка в пространстве, называют траекторией . Для двумерного движения на плоскости (х,у) это функция у(х). Расстояние, пройденное материальной точкой вдоль траектории, называют длиной пути (рис.2.2). Вектор , соединяющий начальное положение движущейся материальной точки r(t 1) с каким – либо ее последующим положением r(t 2) называют перемещением (рис.2.2):

.

Рис. 2.2. Длина пути (выделена жирной линией); – вектор перемещения.

Каждая из координат тела зависит от времени х=х(t), у=у(t), z=z(t). Эти функции изменения координат в зависимости от времени называют кинематическим законом движения, например, длях=х(t) (рис.2.3).

Рис.2.3. Пример кинематического закона движения х=х(t).

Вектор-направленный отрезок для которого указано его начало и конец.Пространство и время-понятия обозначающие основные формы существования материи. Пространство выражает порядок сосуществование отдельных объектов. Время определяет порядок смены явлений.

В принципе, можно представить себе какое угодно большое число разных систем единиц, но широкое распространение получили лишь несколько. Во всем мире для научных и технических измерений и в большинстве стран в промышленности и быту пользуются метрической системой.

Основные единицы.

В системе единиц для каждой измеряемой физической величины должна быть предусмотрена соответствующая единица измерения. Таким образом, отдельная единица измерения нужна для длины, площади, объема, скорости и т.д., и каждую такую единицу можно определить, выбрав тот или иной эталон. Но система единиц оказывается значительно более удобной, если в ней всего лишь несколько единиц выбраны в качестве основных, а остальные определяются через основные. Так, если единицей длины является метр, эталон которого хранится в Государственной метрологической службе, то единицей площади можно считать квадратный метр, единицей объема – кубический метр, единицей скорости – метр в секунду и т.д.

Удобство такой системы единиц (особенно для ученых и инженеров, которые гораздо чаще встречаются с измерениями, чем остальные люди) в том, что математические соотношения между основными и производными единицами системы оказываются более простыми. При этом единица скорости есть единица расстояния (длины) в единицу времени, единица ускорения – единица изменения скорости в единицу времени, единица силы – единица ускорения единицы массы и т.д. В математической записи это выглядит так: v = l /t , a = v /t , F = ma = ml /t 2 . Представленные формулы показывают «размерность» рассматриваемых величин, устанавливая соотношения между единицами. (Аналогичные формулы позволяют определить единицы для таких величин, как давление или сила электрического тока.) Такие соотношения носят общий характер и выполняются независимо от того, в каких единицах (метр, фут или аршин) измеряется длина и какие единицы выбраны для других величин.

В технике за основную единицу измерения механических величин обычно принимают не единицу массы, а единицу силы. Таким образом, если в системе, наиболее употребительной в физических исследованиях, металлический цилиндр принимается за эталон массы, то в технической системе он рассматривается как эталон силы, уравновешивающей действующую на него силу тяжести. Но поскольку сила тяжести неодинакова в разных точках на поверхности Земли, для точной реализации эталона необходимо указание местоположения. Исторически было принято местоположение на уровне моря на географической широте 45° . В настоящее же время такой эталон определяется как сила, необходимая для того, чтобы придать указанному цилиндру определенное ускорение. Правда, в технике измерения проводятся, как правило, не со столь высокой точностью, чтобы нужно было заботиться о вариациях силы тяжести (если речь не идет о градуировке измерительных приборов).

Немало путаницы связано с понятиями массы, силы и веса. Дело в том, что существуют единицы всех этих трех величин, носящие одинаковые названия. Масса – это инерционная характеристика тела, показывающая, насколько трудно выводится оно внешней силой из состояния покоя или равномерного и прямолинейного движения. Единица силы есть сила, которая, воздействуя на единицу массы, изменяет ее скорость на единицу скорости в единицу времени.

Все тела притягиваются друг к другу. Таким образом, всякое тело вблизи Земли притягивается к ней. Иначе говоря, Земля создает действующую на тело силу тяжести. Эта сила называется его весом. Сила веса, как указывалось выше, неодинакова в разных точках на поверхности Земли и на разной высоте над уровнем моря из-за различий в гравитационном притяжении и в проявлении вращения Земли. Однако полная масса данного количества вещества неизменна; она одинакова и в межзвездном пространстве, и в любой точке на Земле.

Точные эксперименты показали, что сила тяжести, действующая на разные тела (т.е. их вес), пропорциональна их массе. Следовательно, массы можно сравнивать на весах, и массы, оказавшиеся одинаковыми в одном месте, будут одинаковы и в любом другом месте (если сравнение проводить в вакууме, чтобы исключить влияние вытесняемого воздуха). Если же некое тело взвешивать на пружинных весах, уравновешивая силу тяжести силой растянутой пружины, то результаты измерения веса будут зависеть от места, где проводятся измерения. Поэтому пружинные весы нужно корректировать на каждом новом месте, чтобы они правильно показывали массу. Простота же самой процедуры взвешивания явилась причиной того, что сила тяжести, действующая на эталонную массу, была принята за независимую единицу измерения в технике. ТЕПЛОТА.

Метрическая система единиц.

Метрическая система – это общее название международной десятичной системы единиц, основными единицами которой являются метр и килограмм. При некоторых различиях в деталях элементы системы одинаковы во всем мире.

История.

Метрическая система выросла из постановлений, принятых Национальным собранием Франции в 1791 и 1795 по определению метра как одной десятимиллионной доли участка земного меридиана от Северного полюса до экватора.

Декретом, изданным 4 июля 1837, метрическая система была объявлена обязательной к применению во всех коммерческих сделках во Франции. Она постепенно вытеснила местные и национальные системы в других странах Европы и была законодательно признана как допустимая в Великобритании и США. Соглашением, подписанным 20 мая 1875 семнадцатью странами, была создана международная организация, призванная сохранять и совершенствовать метрическую систему.

Ясно, что, определяя метр как десятимиллионную долю четверти земного меридиана, создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. За единицу массы они взяли грамм, определив его как массу одной миллионной кубического метра воды при ее максимальной плотности. Поскольку было бы не очень удобно проводить геодезические измерения четверти земного меридиана при каждой продаже метра ткани или уравновешивать корзинку картофеля на рынке соответствующим количеством воды, были созданы металлические эталоны, с предельной точностью воспроизводящие указанные идеальные определения.

Вскоре выяснилось, что металлические эталоны длины можно сравнивать друг с другом, внося гораздо меньшую погрешность, чем при сравнении любого такого эталона с четвертью земного меридиана. Кроме того, стало ясно, что и точность сравнения металлических эталонов массы друг с другом гораздо выше точности сравнения любого подобного эталона с массой соответствующего объема воды.

В связи с этим Международная комиссия по метру в 1872 постановила принять за эталон длины «архивный» метр, хранящийся в Париже, «такой, каков он есть». Точно так же члены Комиссии приняли за эталон массы архивный платино-иридиевый килограмм, «учитывая, что простое соотношение, установленное создателями метрической системы, между единицей веса и единицей объема представляется существующим килограммом с точностью, достаточной для обычных применений в промышленности и торговле, а точные науки нуждаются не в простом численном соотношении подобного рода, а в предельно совершенном определении этого соотношения». В 1875 многие страны мира подписали соглашение о метре, и этим соглашением была установлена процедура координации метрологических эталонов для мирового научного сообщества через Международное бюро мер и весов и Генеральную конференцию по мерам и весам.

Новая международная организация незамедлительно занялась разработкой международных эталонов длины и массы и передачей их копий всем странам-участницам.

Эталоны длины и массы, международные прототипы.

Международные прототипы эталонов длины и массы – метра и килограмма – были переданы на хранение Международному бюро мер и весов, расположенному в Севре – пригороде Парижа. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X-образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0° С. За международный прототип килограмма была принята масса цилиндра, сделанного из того же платино-иридиевого сплава, что и эталон метра, высотой и диаметром около 3,9 см. Вес этой эталонной массы, равной 1 кг на уровне моря на географической широте 45° , иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы.

Международные прототипы были выбраны из значительной партии одинаковых эталонов, изготовленных одновременно. Другие эталоны этой партии были переданы всем странам-участницам в качестве национальных прототипов (государственных первичных эталонов), которые периодически возвращаются в Международное бюро для сравнения с международными эталонами. Сравнения, проводившиеся в разное время с тех пор, показывают, что они не обнаруживают отклонений (от международных эталонов), выходящих за пределы точности измерений.

Международная система СИ.

Метрическая система была весьма благосклонно встречена учеными 19 в. частично потому, что она предлагалась в качестве международной системы единиц, частично же по той причине, что ее единицы теоретически предполагались независимо воспроизводимыми, а также благодаря ее простоте. Ученые начали выводить новые единицы для разных физических величин, с которыми они имели дело, основываясь при этом на элементарных законах физики и связывая эти единицы с единицами длины и массы метрической системы. Последняя все больше завоевывала различные европейские страны, в которых ранее имело хождение множество не связанных друг с другом единиц для разных величин.

Хотя во всех странах, принявших метрическую систему единиц, эталоны метрических единиц были почти одинаковы, возникли различные расхождения в производных единицах между разными странами и разными дисциплинами. В области электричества и магнетизма появились две отдельные системы производных единиц: электростатическая, основанная на силе, с которой действуют друг на друга два электрических заряда, и электромагнитная, основанная на силе взаимодействия двух гипотетических магнитных полюсов.

Положение еще более усложнилось с появлением системы т.н. практических электрических единиц, введенной в середине 19 в. Британской ассоциацией содействия развитию науки для удовлетворения запросов быстро развивающейся техники проводной телеграфной связи. Такие практические единицы не совпадают с единицами обеих названных выше систем, но от единиц электромагнитной системы отличаются лишь множителями, равными целым степеням десяти.

Таким образом, для столь обычных электрических величин, как напряжение, ток и сопротивление, существовало несколько вариантов принятых единиц измерения, и каждому научному работнику, инженеру, преподавателю приходилось самому решать, каким из этих вариантов ему лучше пользоваться. В связи с развитием электротехники во второй половине 19 и первой половине 20 вв. находили все более широкое применение практические единицы, которые стали в конце концов доминировать в этой области.

Для устранения такой путаницы в начале 20 в. было выдвинуто предложение объединить практические электрические единицы с соответствующими механическими, основанными на метрических единицах длины и массы, и построить некую согласованную (когерентную) систему. В 1960 XI Генеральная конференция по мерам и весам приняла единую Международную систему единиц (СИ), дала определение основных единиц этой системы и предписала употребление некоторых производных единиц, «не предрешая вопроса о других, которые могут быть добавлены в будущем». Тем самым впервые в истории международным соглашением была принята международная когерентная система единиц. В настоящее время она принята в качестве законной системы единиц измерения большинством стран мира.

Международная система единиц (СИ) представляет собой согласованную систему, в которой для любой физической величины, такой, как длина, время или сила, предусматривается одна и только одна единица измерения. Некоторым из единиц даны особые названия, примером может служить единица давления паскаль, тогда как названия других образуются из названий тех единиц, от которых они произведены, например единица скорости – метр в секунду. Основные единицы вместе с двумя дополнительными геометрического характера представлены в табл. 1. Производные единицы, для которых приняты особые названия, даны в табл. 2. Из всех производных механических единиц наиболее важное значение имеют единица силы ньютон, единица энергии джоуль и единица мощности ватт. Ньютон определяется как сила, которая придает массе в один килограмм ускорение, равное одному метру за секунду в квадрате. Джоуль равен работе, которая совершается, когда точка приложения силы, равной одному ньютону, перемещается на расстояние один метр в направлении действия силы. Ватт – это мощность, при которой работа в один джоуль совершается за одну секунду. Об электрических и других производных единицах будет сказано ниже. Официальные определения основных и дополнительных единиц таковы.

Метр – это длина пути, проходимого в вакууме светом за 1/299 792 458 долю секунды. Это определение было принято в октябре 1983.

Килограмм равен массе международного прототипа килограмма.

Секунда – продолжительность 9 192 631 770 периодов колебаний излучения, соответствующего переходам между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.

Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Моль равен количеству вещества, в составе которого содержится столько же структурных элементов, сколько атомов в изотопе углерода-12 массой 0,012 кг.

Радиан – плоский угол между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Для образования десятичных кратных и дольных единиц предписывается ряд приставок и множителей, указываемых в табл. 3.

Таблица 3. ПРИСТАВКИ И МНОЖИТЕЛИ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ МЕЖДУНАРОДНОЙ СИСТЕМЫ СИ

экса деци
пета санти
тера милли
гига микро

мк

мега нано
кило пико
гекто фемто
дека

да

атто

Таким образом, километр (км) – это 1000 м, а миллиметр – 0,001 м. (Эти приставки применимы ко всем единицам, как, например, в киловаттах, миллиамперах и т.д.)

Первоначально предполагалось, что одной из основных единиц должен быть грамм, и это отразилось в названиях единиц массы, но в настоящее время основной единицей является килограмм. Вместо названия мегаграмм употребляется слово «тонна». В физических дисциплинах, например для измерения длины волны видимого или инфракрасного света, часто применяется миллионная доля метра (микрометр). В спектроскопии длины волн часто выражают в ангстремах (Å); ангстрем равен одной десятой нанометра, т.е. 10 - 10 м. Для излучений с меньшей длиной волны, например рентгеновского, в научных публикациях допускается пользоваться пикометром и икс-единицей (1 икс-ед. = 10 –13 м). Объем, равный 1000 кубических сантиметров (одному кубическому дециметру), называется литром (л).

Масса, длина и время.

Все основные единицы системы СИ, кроме килограмма, в настоящее время определяются через физические константы или явления, которые считаются неизменными и с высокой точностью воспроизводимыми. Что же касается килограмма, то еще не найден способ его реализации с той степенью воспроизводимости, которая достигается в процедурах сравнения различных эталонов массы с международным прототипом килограмма. Такое сравнение можно проводить путем взвешивания на пружинных весах, погрешность которых не превышает 1Ч 10 –8 . Эталоны кратных и дольных единиц для килограмма устанавливаются комбинированным взвешиванием на весах.

Поскольку метр определяется через скорость света, его можно воспроизводить независимо в любой хорошо оборудованной лаборатории. Так, интерференционным методом штриховые и концевые меры длины, которыми пользуются в мастерских и лабораториях, можно проверять, проводя сравнение непосредственно с длиной волны света. Погрешность при таких методах в оптимальных условиях не превышает одной миллиардной (1Ч 10 –9). С развитием лазерной техники подобные измерения весьма упростились, и их диапазон существенно расширился.

Точно так же секунда в соответствии с ее современным определением может быть независимо реализована в компетентной лаборатории на установке с атомным пучком. Атомы пучка возбуждаются высокочастотным генератором, настроенным на атомную частоту, и электронная схема измеряет время, считая периоды колебаний в цепи генератора. Такие измерения можно проводить с точностью порядка 1Ч 10 –12 – гораздо более высокой, чем это было возможно при прежних определениях секунды, основанных на вращении Земли и ее обращении вокруг Солнца. Время и его обратная величина – частота – уникальны в том отношении, что их эталоны можно передавать по радио. Благодаря этому всякий, у кого имеется соответствующее радиоприемное оборудование, может принимать сигналы точного времени и эталонной частоты, почти не отличающиеся по точности от передаваемых в эфир.

Механика.

Температура и теплота.

Механические единицы не позволяют решать все научные и технические задачи без привлечения каких-либо других соотношений. Хотя работа, совершаемая при перемещении массы против действия силы, и кинетическая энергия некой массы по своему характеру эквивалентны тепловой энергии вещества, удобнее рассматривать температуру и теплоту как отдельные величины, не зависящие от механических.

Термодинамическая шкала температуры.

Единица термодинамической температуры Кельвина (К), называемая кельвином, определяется тройной точкой воды, т.е. температурой, при которой вода находится в равновесии со льдом и паром. Эта температура принята равной 273,16 К, чем и определяется термодинамическая шкала температуры. Данная шкала, предложенная Кельвином, основана на втором начале термодинамики. Если имеются два тепловых резервуара с постоянной температурой и обратимая тепловая машина, передающая тепло от одного из них другому в соответствии с циклом Карно, то отношение термодинамических температур двух резервуаров дается равенством T 2 /T 1 = –Q 2 Q 1 , где Q 2 и Q 1 – количества теплоты, передаваемые каждому из резервуаров (знак «минус» говорит о том, что у одного из резервуаров теплота отбирается). Таким образом, если температура более теплого резервуара равна 273,16 К, а теплота, отбираемая у него, вдвое больше теплоты, передаваемой другому резервуару, то температура второго резервуара равна 136,58 К. Если же температура второго резервуара равна 0 К, то ему вообще не будет передана теплота, поскольку вся энергия газа была преобразована в механическую энергию на участке адиабатического расширения в цикле. Эта температура называется абсолютным нулем . Термодинамическая температура, используемая обычно в научных исследованиях, совпадает с температурой, входящей в уравнение состояния идеального газа PV = RT , где P – давление, V – объем и R – газовая постоянная. Уравнение показывает, что для идеального газа произведение объема на давление пропорционально температуре. Ни для одного из реальных газов этот закон точно не выполняется. Но если вносить поправки на вириальные силы, то расширение газов позволяет воспроизводить термодинамическую шкалу температуры.

Международная температурная шкала.

В соответствии с изложенным выше определением температуру можно с весьма высокой точностью (примерно до 0,003 К вблизи тройной точки) измерять методом газовой термометрии. В теплоизолированную камеру помещают платиновый термометр сопротивления и резервуар с газом. При нагревании камеры увеличивается электросопротивление термометра и повышается давление газа в резервуаре (в соответствии с уравнением состояния), а при охлаждении наблюдается обратная картина. Измеряя одновременно сопротивление и давление, можно проградуировать термометр по давлению газа, которое пропорционально температуре. Затем термометр помещают в термостат, в котором жидкая вода может поддерживаться в равновесии со своими твердой и паровой фазами. Измерив его электросопротивление при этой температуре, получают термодинамическую шкалу, поскольку температуре тройной точки приписывается значение, равное 273,16 К.

Существуют две международные температурные шкалы – Кельвина (К) и Цельсия (С). Температура по шкале Цельсия получается из температуры по шкале Кельвина вычитанием из последней 273,15 К.

Точные измерения температуры методом газовой термометрии требуют много труда и времени. Поэтому в 1968 была введена Международная практическая температурная шкала (МПТШ). Пользуясь этой шкалой, термометры разных типов можно градуировать в лаборатории. Данная шкала была установлена при помощи платинового термометра сопротивления, термопары и радиационного пирометра, используемых в температурных интервалах между некоторыми парами постоянных опорных точек (температурных реперов). МПТШ должна была с наибольшей возможной точностью соответствовать термодинамической шкале, но, как выяснилось позднее, ее отклонения весьма существенны.

Температурная шкала Фаренгейта.

Температурную шкалу Фаренгейта, которая широко применяется в сочетании с британской технической системой единиц, а также в измерениях ненаучного характера во многих странах, принято определять по двум постоянным опорным точкам – температуре таяния льда (32° F) и кипения воды (212° F) при нормальном (атмосферном) давлении. Поэтому, чтобы получить температуру по шкале Цельсия из температуры по шкале Фаренгейта, нужно вычесть из последней 32 и умножить результат на 5/9.

Единицы теплоты.

Поскольку теплота есть одна из форм энергии, ее можно измерять в джоулях, и эта метрическая единица была принята международным соглашением. Но поскольку некогда количество теплоты определяли по изменению температуры некоторого количества воды, получила широкое распространение единица, называемая калорией и равная количеству теплоты, необходимому для того, чтобы повысить температуру одного грамма воды на 1° С. В связи с тем что теплоемкость воды зависит от температуры, пришлось уточнять величину калории. Появились по крайней мере две разные калории – «термохимическая» (4,1840 Дж) и «паровая» (4,1868 Дж). «Калория», которой пользуются в диететике, на самом деле есть килокалория (1000 калорий). Калория не является единицей системы СИ, и в большинстве областей науки и техники она вышла из употребления.

Электричество и магнетизм.

Все общепринятые электрические и магнитные единицы измерения основаны на метрической системе. В согласии с современными определениями электрических и магнитных единиц все они являются производными единицами, выводимыми по определенным физическим формулам из метрических единиц длины, массы и времени. Поскольку же большинство электрических и магнитных величин не так-то просто измерять, пользуясь упомянутыми эталонами, было сочтено, что удобнее установить путем соответствующих экспериментов производные эталоны для некоторых из указанных величин, а другие измерять, пользуясь такими эталонами.

Единицы системы СИ.

Ниже дается перечень электрических и магнитных единиц системы СИ.

Ампер, единица силы электрического тока, – одна из шести основных единиц системы СИ. Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины с ничтожно малой площадью кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2Ч 10 - 7 Н.

Вольт, единица разности потенциалов и электродвижущей силы. Вольт – электрическое напряжение на участке электрической цепи с постоянным током силой 1 А при затрачиваемой мощности 1 Вт.

Кулон, единица количества электричества (электрического заряда). Кулон – количество электричества, проходящее через поперечное сечение проводника при постоянном токе силой 1 А за время 1 с.

Фарада, единица электрической емкости. Фарада – емкость конденсатора, на обкладках которого при заряде 1 Кл возникает электрическое напряжение 1 В.

Генри, единица индуктивности. Генри равен индуктивности контура, в котором возникает ЭДС самоиндукции в 1 В при равномерном изменении силы тока в этом контуре на 1 А за 1 с.

Вебер, единица магнитного потока. Вебер – магнитный поток, при убывании которого до нуля в сцепленном с ним контуре, имеющем сопротивление 1 Ом, протекает электрический заряд, равный 1 Кл.

Тесла, единица магнитной индукции. Тесла – магнитная индукция однородного магнитного поля, в котором магнитный поток через плоскую площадку площадью 1 м 2 , перпендикулярную линиям индукции, равен 1 Вб.

Практические эталоны.

Свет и освещенность.

Единицы силы света и освещенности нельзя определить на основе только механических единиц. Можно выразить поток энергии в световой волне в Вт/м 2 , а интенсивность световой волны – в В/м, как в случае радиоволн. Но восприятие освещенности есть психофизическое явление, в котором существенна не только интенсивность источника света, но и чувствительность человеческого глаза к спектральному распределению этой интенсивности.

Международным соглашением за единицу силы света принята кандела (ранее называвшаяся свечой), равная силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540Ч 10 12 Гц (l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср. Это примерно соответствует силе света спермацетовой свечи, которая когда-то служила эталоном.

Если сила света источника равна одной канделе во всех направлениях, то полный световой поток равен 4 p люменов. Таким образом, если этот источник находится в центре сферы радиусом 1 м, то освещенность внутренней поверхности сферы равна одному люмену на квадратный метр, т.е. одному люксу.

Рентгеновское и гамма-излучение, радиоактивность.

Рентген (Р) – это устаревшая единица экспозиционной дозы рентгеновского, гамма- и фотонного излучений, равная количеству излучения, которое с учетом вторичноэлектронного излучения образует в 0,001 293 г воздуха ионы, несущие заряд, равный одной единице заряда СГС каждого знака. В системе СИ единицей поглощенной дозы излучения является грэй, равный 1 Дж/кг. Эталоном поглощенной дозы излучения служит установка с ионизационными камерами, которые измеряют ионизацию, производимую излучением.



1. Понятие величины. Основные свойства однородных величин.

2. Измерение величины. Численное значение величины.

3. Длина, площадь, масса, время.

4. Зависимости между величинами.

4.1. Понятие величины

Величина – одно из основных математических понятий, воз­никшее в древности и в процессе длительного развития подверг­шееся ряду обобщений. Длина, площадь, объем, масса, скорость и многие другие – все это величины.

Величина - это особое свойство реальных объектов или явле­ний. Например, свойство предметов «иметь протяженность» назы­вается «длиной». Величину рассматривают как обобщение свойств некоторых объектов и как индивидуальную характеристику свой­ства конкретного объекта. Величины можно оценивать количест­венно на основе сравнения.

Например, понятие длины возникает:

    при обозначении свойств класса объектов («многие окружающие нас предметы имеют длину»);

    при обозначении свойства конкретного объекта из этого класса («этот стол имеет длину»);

    при сравнении объектов по этому свойству («длина стола больше длины парты»).

Однородные величины – величины, которые выражают одно и то же свойство объектов некоторого класса.

Разнородные величины выражают различные свойства объ­ектов (один предмет может иметь массу, объем и др.).

Свойства однородных величин:

1. Однородные величины можно сравнивать.

Для любых величин а и b справедливо только одно из отно­шений: а < b , а > b , а = b .

Например, масса книги больше массы карандаша, а длина ка­рандаша меньше длины комнаты.

2. Однородные величины можно складывать и вычитать. В результате сложения и вычитания получается величина того же рода.

Величины, которые можно складывать, называются аддитив­ ными. Например, можно складывать длины предметов. В резуль­тате получается длина. Существуют величины, которые не явля­ются аддитивными, например, температура. При соединении воды разной температуры из двух сосудов, получается смесь, темпера­туру которой нельзя определить сложением величин.

Мы будем рассматривать только аддитивные величины.

Пусть: а – длина ткани, b – длина куска, который отрезали, тогда: (а - b ) – длина оставшегося куска.

3. Величину можно умножать на действительное число. В результате получается величина того же рода.

Пример: «Налей в банку 6 стаканов воды».

Если объем воды в стакане – V, то объем воды в банке – 6V.

4. Однородные величины делят. В результате получается не­отрицательное действительное число, его называют отношением величин.

Пример: «Сколько ленточек длиной b, можно получить из ленты длиной а?» (х = а : b )

5. Величину можно измерить.

4.2. Измерение величины

Сравнивая величины непосредственно мы можем установить их равенство или неравенство. Например, сравнивая полоски по длине наложением или приложением, можно установить, равны они или нет:

Если концы совпадают, то полоски имеют равную длину;

Если левые концы совпадают, а правый конец нижней полоски выступает, то ее длина больше.

Для получения более точного результата сравнения величины измеряют.

Измерение заключается в сравнении данной величины с неко­ торой величиной, принятой за единицу.

Измеряя массу арбуза на весах, сравнивают ее с массой гири.

Измеряя длину комнаты шагами, сравнивают ее с длиной шага.

Процесс сравнения зависит от рода величины: длину измеря­ют с помощью линейки, массу - используя весы. По каким бы ни был этот процесс, в результате измерения получается определен­ное число, зависящее от выбранной единицы величины.

Цель измерения – получить численную характеристику дан­ной величины при выбранной единице.

Если дана величина а и выбрана единица величины е, то в ре­ зультате измерения величины а находят такое действительное число х, что а = х е. Это число х называют численным значе­ нием величины а при единице величины е.

1) Масса дыни 3кг.

3кг = 3∙1 кг, где 3 – численное значение массы дыни при единице массы 1кг.

2) Длина отрезка 10см.

10см = 10 1см, где 10 – численное значение длины отрезка при единице длины 1см.

Величины, определяемые одним численным значением, назы­ваются скалярными (длина, объем, масса и др.). Существуют еще векторные величины, которые определяются численным значе­нием и направлением (скорость, сила и др.).

Измерение позволяет свести сравнение величин к сравнению чисел, а действия с величинами – к действиям над числами.

1. Если величины а иb измерены при помощи единицы ве­личины е , то отношения между величинами а иb будут такими же, как и отношения между их численными значениями (и наобо­рот):

Пусть а = т е, b = п е, тогда a =b <= > m = n ,

а > b < = > т > п,

а < b < = > т < п.

Пример: «Масса арбуза 5кг. Масса дыни 3кг. Масса арбуза больше массы дыни, т.к. 5 > 3».

2. Если величины а иb измерены при помощи единицы вели­чины е, то чтобы найти численное значение суммы + b ), достаточно сложить численные значения величин а и b .

Пусть а=т е, b =п е, с= k е, тогда а + b < = > т + п = k .

Например, для определения массы купленного картофеля, наcыпанного в два мешка, необязательно ссыпать их вместе и взве­шивать, достаточно сложить численные значения массы каждого мешка.

3. Если величины а и b таковы, что b = х а, где х – положитель-ное действительное число, и величина а измерена при помощи единицы величины е, то, чтобы найти численное значение величины b при единице е, достаточно число х умножить на численное значение величины а.

Пусть а = т е, b = х а, тогда b =(х т) е.

Пример: «Длина голубой полоски 2 дм. Длина желтой в 3 раза больше. Какова длина желтой полоски?»

2дм 3 = (2 1дм) 3 = (2 3) 1дм = 6 1дм = 6дм.

Дошкольники знакомятся с измерением величин сначала с по­мощью условных мерок. В процессе практической деятельности они осознают взаимосвязь величины и ее численного значения, а также численного значения величины от выбранной единицы из­мерения.

«Измерь шагами длину дорожки от дома до дерева, а теперь от дерева до забора. Какова длина всей дорожки?».

(Дети складывают величины, пользуясь их численными зна­чениями.)

Какова длина дорожки, измеренная шагами Маши? (5 ша­гов Маши.)

    Какова длина этой же дорожки, измеренная шагами Коли? (4 шага Коли.)

    Почему мы измеряли длину одной и той же дорожки, а получили разные результаты?

(Длина дорожки измерена разными шагами. Шаги Коли длин­нее, поэтому их получилось меньше).

Численные значения длины дороги отличаются из-за приме­нения разных единиц измерения.

Потребность в измерении величин возникла в практической деятельности человека в процессе его развития. Результат измере­ния выражается числом и дает возможность глубже осознать суть понятия числа. Сам процесс измерения учит детей логически мыс­лить, формирует практические навыки, обогащает познавательную деятельность. В процессе измерения дети могут получить не толь­ко натуральные числа, но и дроби.

Измерения основаны на сравнении одинаковых свойств материаль­ных объектов. Для свойств, при количественном сравнении которых при­меняются физические методы, в метрологии установлено единое обоб­щенное понятие - физическая величина. Физическая величина- свойство, общее в качественном отношении многим физическим объектам, но в количественном отношении индивидуальное для каждого объекта, напри­мер, длина, масса, электропроводность и теплоемкость тел, давление газа в сосуде и т. п. Но запах не является физической величиной, так как он устанавливается с помощью субъективных ощущений.

Мерой для количественного сравнения одинаковых свойств объек­тов служит единица физической величины - физическая величина, которой по соглашению присвоено числовое значение, равное 1. Единицам физи­ческих величин присваивается полное и сокращенное символьное обозна­чение - размерность. Например, масса - килограмм (кг), время - се­кунда (с), длина - метр (м), сила - Ньютон (Н).

Значение физической величины - оценка физической величины в виде некоторого числа принятых для нее единиц - характеризует количествен­ную индивидуальность объектов. Например, диаметр отверстия - 0,5 мм, радиус земного шара - 6378 км, скорость бегуна - 8 м/с, скорость све­та - 3 10 5 м/с.

Измерением называется нахождение значения физической величины с помощью специальных технических средств. Например, измерение ди­аметра вала штангенциркулем или микрометром, температуры жидкости - термометром, давления газа - манометром или вакуумметром. Значение физической величины х^, полученное при измерении, определяют по формуле х^ = аи, где а- числовое значение (размер) физической величины; и - единица физической величины.

Так как значения физических величин находят опытным путем, они содержат погрешность измерений. В связи с этим различают истинное и действительное значения физических величин. Истинное значение - зна­чение физической величины, которое идеальным образом отражает в качественном и количественном отношениях соответствующее свойство объекта. Оно является пределом, к которому приближается значение физической величины с повышением точности измерений.

Действительное значение - значение физической величины, найден­ное экспериментальным путем и настолько приближающееся к истинно­му значению, что для определенной цели может быть использовано вме­сто него. Это значение изменяется в зависимости от требуемой точнос­ти измерений. При технических измерениях значение физической вели­чины, найденное с допустимой погрешностью, принимается за действи­тельное значение.

Погрешность измерения есть отклонение результата измерений от истинного значения измеряемой величины. Абсолютной погрешностью называют погрешность измерения, выраженную в единицах измеряемой величины: Ах = х^- х, где х- истинное значение измеряемой величи­ны. Относительная погрешность - отношение абсолютной погрешности измерения к истинному значению физической величины: 6=Ах/х. Отно­сительная погрешность может быть выражена также в процентах.

Поскольку истинное значение измерения остается неизвестным, на практике можно найти лишь приближенную оценку погрешности изме­рения. При этом вместо истинного значения принимают действительное значение физической величины, полученное при измерениях той же ве­личины с более высокой точностью. Например, погрешность измерения линейных размеров штангенциркулем составляет ±0,1 мм, а микромет­ром - ± 0,004 мм.

Точность измерений может быть выражена количественно как обрат­ная величина модуля относительной погрешности. Например, если по­грешность измерения ±0,01, то точность измерения равна 100.

По своему назначению и предъявляемым требованиям различают следующие виды эталонов.

Первичный эталон – обеспечивает воспроизведение и хранение единицы физической величины с наивысшей в стране (по сравнению с другими эталонами той же величины) точностью. Первичные эталоны – уникальные измерительные комплексы, созданные с учетом новейших достижений науки и техники и обеспечивающие единства измерений в стране.

Специальный эталон - обеспечивает воспроизведение единицы физической величины в особых условиях, в которых прямая передача размера единицы от первичного эталона с требуемой точностью не осуществима, и служит для этих условий первичным эталоном.

Первичный или специальный эталон, официально утвержденный в качестве исходного для страны, называется государственным. Государственные эталоны утверждаются Госстандартом, и на каждый их них утверждается государственный стандарт. Государственные эталоны создаются, хранятся и применяются центральными научными метрологическими институтами страны.

Вторичный эталон – хранит размеры единицы физической величины, полученной путем сличения с первичным эталоном соответствующей физической величины. Вторичные эталоны относятся к подчиненным средствам хранения единиц и передачи их размеров при проведении поверочных работ и обеспечивают сохранность и наименьший износ государственных первичных эталонов.

По своему метрологическому назначению вторичные эталоны подразделяются на эталоны-копии, эталоны сравнения, эталоны-свидетели и рабочие эталоны.

Эталон-копия – предназначен для передачи размера единицы физической величины рабочим эталоном при большом объеме поверочных работ. Он является копией государственного первичного эталона только по метрологическому назначению, но не всегда является физической копией.

Эталон сравнения – применяется для сличения эталонов, которые по тем или иным причинам не могут непосредственно сличаться друг с другом.

Эталон-свидетель – предназначен для проверки сохранности и неизменности государственного эталона и замены его в случае порчи или утраты. Поскольку большинство государственных эталонов создано на основе использования наиболее устойчивых физических явлений и являются по этому неразрушаемыми, в настоящее время только эталон килограмма имеет эталон-свидетеля.

Рабочий эталон – применяется для передачи размера единицы физической величины рабочим средством измерения. Это самый распространенный вид эталонов, которые используются для проведения поверочных работ территориальными и ведомственными метрологическими службами. Рабочие эталоны подразделяются на разряды, определяющие порядок их соподчинения в соответствии с поверочной схемой.

Эталоны основных единиц СИ.

Эталон единицы времени . Единицу времени – секунду – долгое время определяли как 1/86400 часть средних солнечных суток. Позднее обноружили, что вращение Земли вокруг соей оси происходит неравномерно. Тогда в основу определения единицы времени положили период вращения Земли вокруг Солнца – тропический год, т.е. интервал времени между двумя весенними равноденствиями, следующими одно за другим. Размер секунды был определен как 1/31556925,9747 часть тропического года. Это позволило почти в 1000 раз повысить точность определения единицы времени. Однако в 1967 году 13-я Генеральная конференция по мерам и весам приняла новое определение секунды как интервала времени, в течении которого совершается 9192631770 колебаний, соответствующих резонансной частоте энергетического перехода между уровнями сверхтонкой структуры основного состояния атома цезия-133 при отсутствии возмущения внешними полями. Данное определение реализуется с помощью цезиевых реперов частоты.

В 1972 году осуществлен переход на систему всемирного координированного времени. Начиная с 1997 года, государственный первичный контроль и государственная поверочная схема для средств измерения времени и частоты определяются правилами межгосударственной стандартизации ПМГ18-96 «Межгосударственная поверочная схема для средств измерения времени и частоты».

Государственный первичный эталон единицы времени, состоящий из комплекса измерительных средств, обеспечивает воспроизведение единиц времени со средним квадратическим отклонением результата измерений, не превышающим 1*10 -14 за три месяца.

Эталон единицы длины. В1889 году метр был принят равным расстоянию между двумя штрихами, нанесенными на металлическом стержне Х-образного поперечного сечения. Хотя международный и национальные эталоны метра были изготовлены из сплава платины и иридия, отличающегося значительной твердостью и большим сопротивлением окислению, однако не было полной уверенности в том, что длина эталона с течением времени не изменится. Кроме того, погрешность сличения между собой платино-иридиевых штриховых метров составляет + 1,1*10 -7 м (+0,11 мкм), а так как штрихи имеют значительную ширину, существенно повысить точность этого сличения нельзя.

После изучения спектральных линий ряда элементов было найдено, что наибольшую точность воспроизведения единицы длины обеспечивает оранжевая линия изотопа криптона-86. В 1960 году 11-я Генеральная конференция по мерам и весам приняла выражение размера метра в длинах этих волн как наиболее точное его значение.

Криптоновый метр позволил на порядок повысить точность воспроизведения единицы длины. Однако дальнейшее исследование позволило получить более точный эталон метра, основанный на длине волны в вакууме монохроматического излучения, генерируемого стабилизированным лазером. Разработка новых эталонных комплексов по воспроизведению метра привела к определению метра как расстояния, которое проходит свет в вакууме за 1/299792458 долю секунды. Данное определение метра закреплено законодательно в 1985 году.

Новый эталонный комплекс по воспроизведению метра кроме повышения точности измерения в необходимых случаях позволяет так же следить за постоянством платино-иридиевого эталона, ставшего теперь вторичным эталоном, используемым для передачи размера единицы рабочим эталоном.

Эталон единицы массы. При установлении метрической системы мер в качестве единицы времени приняли массу одного кубического дециметра чистой воды при температуре ее наибольшей плотности (4 0 С).

В этот период были проведены точные определения массы известного объема воды путем последовательного взвешивания в воздухе и воде пустого бронзового цилиндра, размеры которого были тщательно определены.

Изготовленный на основе этих взвешиваний первый прототип килограмма представлял собой платиновую цилиндрическую гирю высотой 39 мм, равной ее диаметру. Как и прототип метра, он был передан на хранение в Национальный архив Франции. В 19 веке повторно осуществили несколько тщательных измерений массы одного кубического дециметра чистой воды при температуре 4 0 С. При этом было установлено, что эта масса немного (приблизительно на 0, 028г) меньше прототипа килограмма Архива. Для того, чтобы при дальнейших, более точных, взвешиваниях не менять значение исходной единицы массы, Международной комиссией по прототипам метрической системы в 1872г. было решено за единицу массы принять массу прототипа килограмма Архива.

При изготовлении платино-иридиевых эталонов килограмма за международной прототип был принят тот, масса которого меньше всего отличалась от массы прототипа килограмма Архива.

В связи с принятием условного прототипа единицы массы литр оказался не равным кубическому дециметру. Значение этого отклонения (1л=1, 000028 дм 3) соответствует разности между массой международного прототипа килограмма и массой кубического дециметра воды. В 1964 году 12-я Генеральная конференция по мерам и весам приняла решение о приравнивании объема 1 л к 1дм 3 .

Следует отметить, что в момент установления метрической системы мер не было четкого разграничения понятий массы и веса, поэтому международный прототип килограмма считался эталоном единицы веса. Однако уже при утверждении международного прототипа килограмма на 1-й Генеральной конференции по мерам и весам в 1889 году килограмм был утвержден в качестве прототипа массы.

Четкое разграничение килограмма как единицы массы и килограмма как единицы силы было дано в решениях 3-й Генеральной конференции по мерам и весам (1901г).

Государственный первичный эталон и поверочная схема для средств изменения массы определяется ГОСТ 8.021 – 84. Государственный эталон состоит из комплекса мер и измерительных средств:

· национального прототипа килограмма – копии № 12 международного прототипа килограмма, представляющего собой гирю из платино-иридиевого сплава и предназначенного для передачи размера единицы массы гире R1;

· национального прототипа килограмма – копия № 26 международного прототипа килограмма, представляющего собой гирю из платино-иридиевого сплава и предназначенного для проверки неизменности размера единицы массы, воспроизводимый национальным прототипом килограмма – копии № 12, и замены последнего в период его сличений в Международном бюро мер и весов;

· гири R1 и набора гирь, изготовленных из платино-иридиевого сплава и предназначенных для передачи размера единицы массы эталонам – копиям;

· эталонных весов.

Номинальное значение массы, воспроизводимое эталоном, составляет 1кг. Государственный первичный эталон обеспечивает воспроизведение единицы массы со средним квадратическим отклонением результата измерений при сличении с международным прототипом килограмма, не превышающим 2*10 -3 мг.

Эталонные весы, с помощью которых производится сличение эталона массы, с диапазоном взвешивания 2*10 -3 … 1кг имеют среднее квадратическое отклонение результата наблюдения на весах 5*10 -4 … 3*10 -2 мг.



Понравилась статья? Поделитесь с друзьями!