Ферменты термин. Регуляция работы ферментов

Ферме́нты , или энзи́мы (от лат.Fermentum - закваска) - обычно белковые молекулыилимолекулы РНК(рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции вживыхсистемах.Реагентыв реакции, катализируемой ферментами, называютсясубстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазыфосфорилируеттолько фосфорилазу).

Ферментативная активность может регулироваться активаторамииингибиторами(активаторы - повышают, ингибиторы - понижают).

Белковые ферментысинтезируются нарибосомах, а РНК - в ядре.

Термины «фермент» и «энзим» давно используют как синонимы(первый в основном в русской и немецкой научной литературе, второй - в англо- и франкоязычной).

Наука о ферментах называется энзимологией , а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

История изучения

Термин фермент предложен в XVII веке химиком ван Гельмонтомпри обсуждении механизмовпищеварения.

В кон. ХVIII - нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, акрахмалпревращается всахарпод действием слюны. Однако механизм этих явлений был неизвестен .

В XIX в. Луи Пастер, изучая превращениеуглеводоввэтиловый спиртпод действиемдрожжей, пришёл к выводу, что этот процесс (брожение) катализируется некой жизненной силой, находящейся в дрожжевых клетках.

Более ста лет назад термины фермент и энзим отражали различные точки зрения в теоретическом споре Л. Пастерас одной стороны, иМ. БертлоиЮ. Либиха- с другой, о природе спиртового брожения. Собственноферментами (от лат.fermentum - закваска) называли «организованные ферменты» (то есть сами живые микроорганизмы), а термин энзим (от греч.ἐν- - в- и ζύμη - дрожжи, закваска) предложен в1876 годуВ. Кюне для «неорганизованных ферментов», секретируемых клетками, например, в желудок (пепсин) или кишечник (трипсин,амилаза). Через два года после смерти Л. Пастера в1897 годуЭ. Бухнер опубликовалработу «Спиртовое брожение без дрожжевых клеток», в которой экспериментально показал, что бесклеточный дрожжевой сок осуществляет спиртовое брожение так же, как и неразрушенные дрожжевые клетки. В1907 годуза эту работу он был удостоен Нобелевской премии. Впервые высокоочищенный кристаллический фермент (уреаза) был выделен в 1926 годуДж. Самнером. В течение последующих 10 лет было выделено ещё несколько ферментов, и белковая природа ферментов была окончательно доказана.

Каталитическая активность РНК впервые была обнаружена в 1980-е годы у пре-рРНК Томасом Чеком, изучавшимсплайсингРНК уинфузорииTetrahymena thermophila . Рибозимомоказался участок молекулы пре-рРНК Tetrahymena, кодируемыйинтрономвнехромосомного гена рДНК; этот участок осуществлял аутосплайсинг, то есть сам вырезал себя при созревании рРНК.

Функции ферментов

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. К 2013 году было описано более 5000 разных ферментов . Они играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществорганизма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активациипроцесса.Химическое равновесиепри этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокаяспецифичность-константа связываниянекоторых субстратов с белком может достигать 10 −10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка телёнка, створаживает около 10 6 молекул казеиногена молока за 10 мин при температуре 37 °C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов - ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы - в сотни и тысячи раз. См. также Каталитически совершенный фермент

Классификация ферментов

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например,пепсинимеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

    КФ 1: Оксидоредуктазы , катализирующие окисление или восстановление. Пример: каталаза,алкогольдегидрогеназа.

    КФ 2: Трансферазы , катализирующие перенос химических групп с одной молекулы субстратана другую. Среди трансфераз особо выделяюткиназы, переносящие фосфатную группу, как правило, с молекулыАТФ.

    КФ 3: Гидролазы , катализирующие гидролизхимических связей. Пример:эстеразы,пепсин,трипсин,амилаза,липопротеинлипаза.

    КФ 4: Лиазы , катализирующие разрыв химических связей без гидролизас образованиемдвойной связив одном из продуктов.

    КФ 5: Изомеразы , катализирующие структурные или геометрические изменения в молекуле субстрата.

    КФ 6: Лигазы , катализирующие образование химических связей между субстратами за счёт гидролиза АТФ. Пример:ДНК-полимераза.

Оксиредуктазы – это ферменты, катализирующие реакции окисления и восстановления, т.е. перенос электронов от донора к акцептору. Окисление представляет собой отнятие атомов водорода от субстрата, а восстановление это присоединение атомов водорода к акцептору.

К оксидоредуктазам относятся: дегидразы,оксидазы,оксигеназы, гидроксилазы, пероксидазы, каталазы. Например, ферменталкогольдегидрогеназакатализирует реакцию превращение спирта в альдегид.

Оксиредуктазы, переносящие атом водорода или электроны непосредственно на атомы кислорода, называются аэробными дегидрогеназами (оксидазами), тогда как оксидоредуктазы, переносящие атом водорода или электроны от одного компонентадыхательной цепи ферментов к другому, называются анаэробными дегидрогеназами. Распространённым вариантом окислительно-восстановительного процесса в клетках является окисление атомов водорода субстрата при участии оксиредуктаз. Оксидоредуктазы являются двухкомпонентными ферментами, у которых один и тот же кофермент может связываться с различными апоферментами. Например, многие оксидоредуктазы в качестве кофермента содержат НАД и НАДФ. В конце многочисленного класса оксиредуктаз (на 11 позиции) находятся ферменты типа каталаз и пероксидаз. Из всего количества белков пероксисом клеток до 40 процентов приходится на каталазу. Каталаза и пероксидаза расщепляют пероксид водорода в следующих реакциях: Н2О2 + Н2О2 = О2 + 2Н2О H2O2 + HO – R – OH = O=R=O + 2H2O Из данных уравнений сразу становятся видны как аналогия, так и существенное отличие между этими реакциями и ферментами. В этом смыслекаталазное расщепление пероксида водорода представляет собой особый случай пероксидазной реакции, когда пероксид водорода служит и в качестве субстрата, и акцептора в первой реакции.

Трансфера́зы - отдельный класс ферментов, катализирующих перенос функциональных групп и молекулярных остатков от одной молекулы к другой. Широко распространены в растительных и животных организмах, участвуют в превращениях углеводов, липидов, нуклеиновых и аминокислот.

Реакции, катализируемые трансферазами, в общем случае выглядят так:

A-X + B ↔ A + B-X.

Молекула A здесь выступает в качестве донора группы атомов (X ), а молекулаB является акцептором группы. Часто в качестве донора в подобных реакциях переноса выступает один изкоферментов. Многие из катализируемых трансферазами реакций являются обратимыми. Систематические названия ферментов класса образуются по схеме:

«донор:акцептор + группа + трансфераза ».

Или же используются чуть более общие названия, когда в название фермента включается имя либо донора, либо акцептора группы:

«донор + группа + трансфераза » или «акцептор + группа + трансфераза ».

Например, аспартатаминотрансферазакатализирует переносаминной группыс молекулыглутаминовой кислоты,катехол-О-метилтрансферазаосуществляет переносметильной группыS-аденозилметионина на бензольное кольцо различныхкатехоламинов, агистон-ацетилтрансферазапереносит ацетильную группу с ацетил-кофермента А нагистонв процессе активациитранскрипции.

Кроме того ферменты 7 подгруппытрансфераз, переносящие остаток фосфорной кислоты, используя в качестве донора фосфатной группыАТФ, часто называют также киназами; аминотрансферазы (6 подгруппа) часто называюттрансаминазами

Гидролазы (КФ3) - это классферментов, катализирующийгидролизковалентной связи. Общий вид реакции, катализируемой гидролазой выглядит следующим образом:

A–B + H 2 O → A–OH + B–H

Систематическое название гидролаз включает название расщепляемого субстрата с последующим добавлением -гидролаза . Однако, как правило в тривиальном названии слово гидролаза опускается и остаётся только суффикс «-аза».

Важнейшие представители

Эстеразы: нуклеаза, фосфодиэстераза, липаза, фосфотаза;

Гликозидазы: амилаза, лизоцим и др;

Протеазы: трипсин, химотрипсин, эластаза, тромбин, ренин и др;

Кислотный ангидрид-гидролаза (хеликаза, ГТФаза)

Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию - присоединение по двойным связям.

Лиа́зы - отдельный класс ферментов, катализирующих реакции негидролитического и неокислительного разрыва различных химических связей (C-C , C-O , C-N , C-S и других) субстрата, обратимые реакции образования и разрыва двойных связей, сопровождающиеся отщеплением или присоединением групп атомов по её месту, а также образованием циклических структур.

В общем виде названия ферментов образуются по схеме «субстрат + лиаза». Однако чаще в названии учитывают подкласс фермента. Лиазы отличаются от других ферментов тем, что в катализируемых реакциях в одном направлении участвуют два субстрата, а в обратной реакции только один. В названии фермента присутствуют слова "декарбоксилаза" и "альдолаза" или "лиаза" (пируват-декарбоксилаза, оксалат-декарбоксилаза, оксалоацетат-декарбоксилаза, треонин-альдолаза, фенилсерин-альдолаза, изоцитрат-лиаза, аланин-лиаза, АТФ-цитрат-лиаза и др.), а для ферментов, катализирующих реакции отщепления воды от субстрата - "дегидратаза" (карбонат-дегидратаза, цитрат-дегидратаза, серин-дегидратаза и др.). В тех случаях, когда обнаружена только обратная реакция, или это направление в реакциях более существенно, в названии ферментов пристутствует слово "синтаза" (малат-синтаза, 2-изопропилмалат-синтаза, цитрат-синтаза, гидроксиметилглутарил-CoA-синтаза и др.).

Примеры: гистидиндекарбоксилаза,фумаратгидратаза.

Изомеразы - ферменты,катализирующиеструктурные превращенияизомеров(рацемизация или эпимеризация). Изомеразы катализируютреакции, подобные следующей: A → B, где B является изомером A.

В названии фермента присутствует слово "рацемаза " (аланин-рацемаза, метионин-рацемаза, гидроксипролин-рацемаза, лактат-рацемаза и др.), "эпимераза " (альдоза-1-эпимераза, рибулозофосфат-4-эпимераза, УДФ-глюкуронат-4-эпимераза и др.), "изомераза " (рибозофосфат-изомераза, ксилозоизомераза, глюкозаминфосфат-изомераза, эноил-СоА изомераза и др.), "мутаза " (фосфоглицерат-мутаза, метиласпартат-мутаза, фосфоглюкомутазаи др.).

Лигаза (лат.ligāre - сшивать, соединять) - фермент,катализирующийсоединение двух молекул с образованием новой химической связи (лигирование ). При этом обычно происходит отщепление (гидролиз) небольшой химической группы от одной из молекул.

Лигазы относятся к классу ферментов EC 6.

В молекулярной биологии лигазы подкласса 6.5 классифицируют на РНК-лигазы и ДНК-лигазы.

ДНК-лигазы

ДНК-лигаза, осуществляющая репарациюДНК

ДНК-лигазы - ферменты(EC 6.5.1.1),катализирующиековалентное сшиваниецепейДНКв дуплексе прирепликации,репарацииирекомбинации. Они образуют фосфодиэфирные мостики между 5"-фосфорильной и 3"-гидроксильной группами соседнихдезоксинуклеотидовв местах разрыва ДНК или между двумя молекулами ДНК. Для образования этих мостиков лигазы используют энергиюгидролизапирофосфорильной связиАТФ. Один из самых распространённых коммерчески доступных ферментов - ДНК-лигазабактериофагаТ4.

ДНК-лигазы млекопитающих

У млекопитающих классифицируют три основных типа ДНК-лигаз.

    ДНК-лигаза I лигирует фрагменты Оказакив ходерепликацииотстающей цепи ДНК и участвует в эксцизионной репарации .

    ДНК-лигаза III в комплексе с белком XRCC1участвует вэксцизионной репарациии в рекомбинации.

    ДНК-лигаза IV в комплексе с XRCC4катализирует окончательный этап негомологичного соединения (non-homologous end joining - NHEJ) двунитевых разрывов ДНК. Также требуется для V(D)J рекомбинации геновиммуноглобулинов.

Ранее выделяли ещё один тип лигаз - ДНК-лигазу II, которая позднее была признана артефактом выделения белков, а именно продуктом протеолиза ДНК-лигазы III .

Соглашения о наименовании ферментов

Обычно ферменты именуют по типу катализируемой реакции, добавляя суффикс -аза к названию субстрата(например , лактаза- фермент, участвующий в превращениилактозы). Таким образом, у различных ферментов, выполняющих одну функцию, будет одинаковое название. Такие ферменты различают по другим свойствам, например, по оптимальномуpH(щелочная фосфатаза) или локализации в клетке (мембраннаяАТФаза).

Структура и механизм действия ферментов

Активность ферментов определяется их трёхмерной структурой .

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс.Третичная структурабелков разрушается при нагревании или воздействии некоторых химических веществ.

Активный центр ферментов

Изучение механизма химической реакции, катализируемой ферментом наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп егомолекулы, обеспечивающих специфичность действия и высокую каталитическую активность на данныйсубстрат, а также химической природы участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Обычно молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. Таким образом, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи - «активный центр» - уникальная комбинация остатков аминокислот в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа .

В активном центре условно выделяют :

    каталитический центр - непосредственно химически взаимодействующий с субстратом;

    связывающий центр (контактная или «якорная» площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторовили ионов металлов.

Фермент, соединяясь с субстратом:

    очищает субстрат от водяной «шубы»

    располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом

    подготавливает к реакции (например, поляризует) молекулы субстратов.

Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко - за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), например:

В отсутствие фермента:

В присутствии фермента:

  • АФ+В = АВФ

    АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. Например, реакции синтеза биополимеровчасто сопрягаются с реакциейгидролизаАТФ.

Для активных центров некоторых ферментов характерно явление кооперативности.

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидазатрипсинразрывает пептидную связь только послеаргининаилилизина, если за ними не следует пролин, апепсингораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

В 1890 г. Эмиль Фишерпредположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата . Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия

В 1958 г. Дениел Кошландпредложил модификацию модели «ключ-замок» . Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации - присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой. Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Ещё один распространенный тип посттранляционных модификаций - расщепление полипептидной цепи. Например, химотрипсин(протеаза, участвующая впищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется вподжелудочной железе. Неактивная форма транспортируется вжелудок, где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например, флавинилигем). Органические кофакторы, прочно связанные с ферментом, называют также простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.

Фермент, который требует наличия кофактора для проявления каталитической активности, но не связан с ним, называется апо-фермент. Апо-фермент в комплексе с кофактором носит название холо-фермента. Большинство кофакторов связано с ферментом нековалентными, но довольно прочными взаимодействиями. Есть и такие простетические группы, которые связаны с ферментом ковалентно, например, тиаминпирофосфат в пируватдегидрогеназе.

Регуляция работы ферментов

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Ингибирование конечным продуктом

Метаболический путь - цепочка последовательных ферментативных реакций. Часто конечный продукт метаболического пути является ингибитором фермента, ускоряющего первую из реакций данного метаболического пути. Если конечного продукта слишком много, то он действует как ингибитор для самого первого фермента, а если после этого конечного продукта стало слишком мало, то первый фермент опять активируется. Таким образом, ингибирование конечным продуктом по принципу отрицательной обратной связи- важный способ поддержаниягомеостаза(относительного постоянства условий внутренней среды организма).

Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме - давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.

Множественные формы ферментов

Множественные формы ферментов можно разделить на две категории:

    Изоферменты

    Собственно множественные формы (истинные)

Изоферменты - это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

    Органные - ферменты гликолизав печени и мышцах.

    Клеточные - малатдегидрогеназацитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).

    Гибридные - ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа- 4 субъединицы 2 типов).

    Мутантные - образуются в результате единичной мутации гена.

    Аллоферменты - кодируются разными аллелями одного и того же гена.

Собственно множественные формы (истинные) - это ферменты, синтез которых кодируется одним и тем же аллелем одного и того же гена, у них одинаковая первичная структура и свойства, но после синтеза на рибосомахони подвергаются модификации и становятся разными, хотя и катализируют одну и ту же реакцию.

Изоферменты разные на генетическом уровне и отличаются от первичной последовательности, а истинные множественные формы становятся разными на посттрансляционном уровне.

Медицинское значение

Связь между ферментами и наследственными болезнями обмена веществ была впервые установлена А. Гэрродом в 1910-е гг. Гэррод назвал заболевания, связанные с дефектами ферментов, «врожденными ошибками метаболизма».

Если происходит мутация в гене, кодирующем определенный фермент, может измениться аминокислотная последовательность фермента. При этом в результате большинства мутаций его каталитическая активность снижается или полностью пропадает. Если организм получает два таких мутантных гена (по одному от каждого из родителей), в организме перестает идти химическая реакция, которую катализирует данный фермент. Например, появление альбиносов связано с прекращением выработки фермента тирозиназы, отвечающего за одну из стадий синтеза темного пигмента меланина.Фенилкетонуриясвязана с пониженной или отсутствующей активностью фермента фенилаланин-4-гидроксилазы в печени.

В настоящее время известны сотни наследственных заболеваний, связанные с дефектами ферментов. Разработаны методы лечения и профилактики многих из таких болезней.

Практическое использование

Ферменты широко используются в народном хозяйстве - пищевой, текстильной промышленности, в фармакологии и медицине. Большинство лекарств влияют на течение ферментативных процессов в организме, запуская или приостанавливая те или иные реакции.

Ещё шире область использования ферментов в научных исследованиях и в медицине.

Различные химические процессы – основа жизнедеятельности любого организма. Главная роль в них отведена ферментам. Ферменты или энзимы являются природными биокатализаторами. В организме человека они принимают активное участие в процессе переваривания пищи, функционировании центральной нервной системы и стимуляции роста новых клеток. По своей природе ферменты относятся к белкам, предназначенным для ускорения различных биохимических реакций в организме. Расщепление белков, жиров, углеводов и минералов – процессы, в которых энзимы выступают одними из основных действующих компонентов.

Существует довольно много разновидностей ферментов, каждая из которых предназначена для воздействия на то или иное вещество. Белковые молекулы уникальны и не способны заменять друг друга. Для их активности необходим определенный температурный диапазон. Для ферментов человека идеальной является нормальная температура тела. Кислород и солнечный свет разрушает ферменты.

Общая характеристика ферментов

Являясь органическими веществами белкового происхождения, ферменты действуют по принципу неорганических катализаторов, ускоряя реакции в клетках, в которых они синтезируются. Синоним к названию таких белковых молекул – энзимы. Почти все реакции в клетках происходят с участием специфических ферментов. В их составе выделяют две части. Первая представляет собой непосредственно белковую часть, представленную белком третичной структуры и именуемую апоферментом, вторая – активный центр энзима, получивший название кофермент. Последний может представлять собой органические/неорганические вещества, и именно он выступает основным «ускорителем» биохимических реакций в клетке. Обе части образуют единую белковую молекулу, названную холоферментом.

Каждый фермент предназначен для воздействия на конкретное вещество, именуемое субстратом. Результат произошедшей реакции называется продуктом. Названия самих ферментов довольно часто образуется на основе названия субстрата с добавлением окончания «-аза». К примеру, энзим, предназначенный для расщепления янтарной кислоты (сукцината), носит название сукцинатдегидрогеназа. Кроме того, название белковой молекулы определяется и типом реакции, выполнение которой она обеспечивает. Так, дегидрогеназы отвечают за процесс регенерации и окисления, а гидролазы – за расщепление химической связи.

Действие ферментов различных видов направлено на определенные субстраты. То есть участие белковых молекул в тех или иных биохимических реакциях индивидуально. Каждый фермент связан со своим субстратом и может работать только с ним. За неразрывность этой связи отвечает апофермент.

Ферменты могут пребывать в свободном состоянии в цитоплазме клетки или же взаимодействовать с более сложными структурами. Также существуют определенные их виды, действующие вне клетки. К ним относятся, например, ферменты, расщепляющие белки и крахмал. Кроме того, энзимы могут вырабатываться различными микроорганизмами.

Для изучения ферментов и процессов, происходящих с их участием, предназначена отдельная область биохимической науки – энзимология. Впервые информация об особых белковых молекулах, действующих по принципу катализаторов, появилась в результате изучения пищеварительных процессов и реакций брожения, происходящих в организме человека. Существенный вклад в развитие современной энзимологии приписывается Л. Пастеру, который считал, что все биохимические реакции в организме происходят при участии исключительно живых клеток. О неживых «участниках» таких реакций впервые было заявлено Э. Бухнером в начале ХХ ст. В то время исследователю удалось определить, что катализатором в процессе сбраживания сахарозы с последующим выделением этилового спирта и диоксида углерода выступает бесклеточный дрожжевой экстракт. Данное открытие стало решительным толчком для подробного изучения так называемых катализаторов различных биохимических процессов в организме.

Уже в 1926 году был выделен первый фермент – уреаза. Автором открытия стал Дж. Самнер, сотрудник Корнеллского университета. После этого в течение одного десятилетия учеными был выделен ряд других энзимов, а белковая природа всех органических катализаторов – доказана окончательно. На сегодняшний день миру известно свыше 700 различных ферментов. Но при этом современная энзимология продолжает активное изучение, выделение и изучение свойств отдельных видов белковых молекул.

Ферменты: белковая природа

Так же как и белки, ферменты принято делить на простые и сложные. Первые представляют собой соединения, состоящие из аминокислот, например, трипсина, пепсина или лизоцима. Сложные энзимы, как упоминалось выше, состоят из белковой части с аминокислотами (апофермента) и небелковой составляющей, получившей названием кофактора. Только сложные ферменты могут участвовать в биореакциях. Кроме того, подобно белкам ферменты бывают моно- и полимерами, то есть состоят из одной или нескольких субъединиц.

Общими свойствами ферментов как белковых структур являются:

  • эффективность действия, подразумевающая значительное ускорение химических реакций в организме;
  • избирательность к субстрату и типу выполняемой реакции;
  • чувствительность к показателям температуры, кислотно-щелочного баланса и другим неспецифическим физико-химическим факторам среды, в которой действуют ферменты;
  • чувствительность к действию химических реагентов и др.

Основная роль ферментов в организме человека – преобразование одних веществ в другие, то есть субстратов в продукты. Они выступают катализаторами свыше чем в 4 тысячах биохимических жизненно важных реакций. Функции ферментов заключаются в направлении и регуляции метаболических процессов. Как неорганические катализаторы, энзимы могут в разы ускорять прямую и обратную биореакцию. Стоит отметить, что при их действии химическое равновесие не нарушается. Происходящие реакции обеспечивают распад и окисление питательных веществ, попадающих в клетки. Каждая белковая молекула может выполнять огромное множество действий в минуту. При этом белок ферментов, вступая в реакцию с различными веществами, остается неизменным. Энергия, вырабатываемая в процессе окисления питательных веществ, используется клеткой так же, как и продукты расщепления веществ, необходимые для синтеза органических соединений.

Сегодня широкое применение нашли не только ферменты-препараты медицинского назначения. Энзимы также используются в пищевой и текстильной промышленности, в современной фармакологии.

Классификация ферментов

На собрании V Международного биохимического союза, прошедшем в Москве в 1961 году, была принята современная классификация ферментов. Данная классификация подразумевает их деление на классы, в зависимости от типа реакции, в которой энзим выступает катализатором. Кроме того, каждый класс ферментов делится на подклассы. Для их обозначения используется код из четырех чисел, разделенных точками:

  • первое число обозначает механизм реакции, в которой фермент выступает катализатором;
  • второе число указывает на подкласс, к которому принадлежит данный энзим;
  • третье число – подкласс описываемого фермента;
  • и четвертое – порядковый номер энзима в подклассе, к которому он принадлежит.

Всего в современной классификации ферментов выделяют шесть их классов, а именно:

  • Оксидоредуктазы – энзимы, выступающие катализаторами в различных окислительно-восстановительных реакциях, происходящих в клетках. В данный класс входит 22 подкласса.
  • Трансферазы – класс ферментов с 9 подклассами. В него входят энзимы, обеспечивающие реакции транспорта между разными субстратами, ферменты, принимающие участие в реакциях взаимопревращения веществ, а также обезвреживания различных органических соединений.
  • Гидролазы – энзимы, разрывающие внутримолекулярные связи субстрата посредством присоединения к нему молекул воды. В данном классе насчитывается 13 подклассов.
  • Лиазы – класс, в составе которого находятся только сложные ферменты. В нем насчитывается семь подклассов. Энзимы, относящиеся к данному классу, выступают катализаторами в реакциях разрыва С-О, С-С, С-N и прочих типов органических связей. Также ферменты класса лиазы участвуют в обратимых биохимических реакциях отщепления негидролитическим путем.
  • Изомеразы – энзимы, выступающие катализаторами в химических процессах изомерных превращений, происходящих в одной молекуле. Как и к предыдущему классу к ним относятся только сложные ферменты.
  • Лигазы, иначе именуемые синтетазами – класс, включающий шесть подклассов и представляющий энзимы, катализирующие процесс соединения двух молекул под воздействием АТФ.

Состав ферментов объединяет в себе отдельные области, отвечающие за выполнение конкретных функций. Так, в составе ферментов, как правило, выделяют активный и аллостерический центры. Последний, к слову, есть далеко не у всех белковых молекул. Активный центр представляет собой сочетание остатков аминокислот, отвечает за контакт с субстратом и выполнение катализа. Активный центр в свою очередь делится на две части: якорную и каталитическую. Энзимы, состоящие их нескольких мономеров, могут содержать более одного активного центра.

Аллостерический центр отвечает за активность ферментов. Свое название такая часть ферментов получила из-за того что его пространственная конфигурация не имеет ничего общего с молекулой субстрата. Изменение скорости реакции, происходящей с участием фермента, обуславливается связыванием различных молекул именно с аллостерическим центром. Энзимы, содержащие в своем составе аллостерические центры, являются полимерными белками.

Механизм действия ферментов

Действие ферментов можно разделить на несколько этапов, в частности:

  • первый этап подразумевает присоединение субстрата к энзиму, вследствие чего формируется фермент-субстратный комплекс;
  • второй этап заключается в преобразовании полученного комплекса в один или сразу несколько переходных комплексов;
  • третий этап – образование комплекса фермент-продукт;
  • и, наконец, четвертый этап подразумевает разделение конечного продукта реакции и фермента, остающегося в неизменном виде.

Кроме того, действие ферментов может происходить с участием различных механизмов катализа. Так, выделяют кислотно-основной и ковалентный катализ. В первом случае в реакции участвуют энзимы, содержащие в своем активном центре специфические остатки аминокислот. Такие группы ферментов являются отличными катализаторами многочисленных реакций в организме. Ковалентный катализ подразумевает действие ферментов, которые при контакте с субстратами формируют нестабильные комплексы. Результатом таких реакций является образование продуктов посредством внутримолекулярных перестроек.

Также выделяют три основных типа ферментативных реакций:

  • «Пинг-понг» – реакция, при которой энзим соединяется с одним субстратом, заимствуя у него определенные вещества, а потом взаимодействует с другим субстратом, отдавая ему полученные химические группы.
  • Последовательные реакции подразумевают поочередное присоединение к ферменту сначала одного, а потом и другого субстрата, в результате чего формируется так называемый «тройной комплекс», в котором и происходит катализ.
  • Случайные взаимодействия – реакции, при которых субстраты взаимодействуют с ферментом неупорядоченно, а после катализа в таком же порядке и отщепляются.

Активность ферментов является непостоянной и во многом зависит от различных факторов среды, в которой им приходится действовать. Так основным показателями для активности ферментов являются факторы внутреннего и внешнего воздействия на клетку. Активность ферментов изменяют в каталах, показывающих количество энзима, превращающего за секунду 1 моль субстрата, с которым он взаимодействует. Международная единица измерения – Е, демонстрирующая количество энзима, способного за 1 минуту преобразовать 1 мкмоль субстрата.

Ингибирование ферментов: процесс

Одним из основных направлений в современной медицине и энзимологии в частности является разработка методов управления скоростью метаболических реакций, происходящих с участием энзимов. Ингибированием принято называть уменьшение активности ферментов посредством использования различных соединений. Соответственно, вещество, обеспечивающее специфичное снижение активности белковых молекул, получило название ингибитора. Существует различные виды ингибирования. Так, в зависимости от прочности связывания энзима с ингибитором процесс их взаимодействия может быть обратимым и, соответственно, необратимым. А в зависимости от того, как воздействует ингибитор на активный центр энзима, процесс ингибирования может быть конкурентным и неконкурентным.

Активирование ферментов в организме

В отличие от ингибирования, активация ферментов подразумевает увеличение их действия в происходящих реакциях. Вещества, позволяющие получить необходимый результат, называются активаторами. Такие вещества могут иметь органическую и неорганическую природу. Например, органическими активаторами могут выступать желчные кислоты, глутатион, энтерокиназа, витамин С, разные тканевые ферменты и др. В качестве неорганических активаторов могут использоваться пепсиноген и ионы различных металлов, чаще всего двухвалентных.

Различные ферменты, реакции, происходящие с их участием, а также их результат нашли свое широкое применения в многообразных сферах. На протяжении многих лет действие ферментов активно используется в пищевой, кожевенной, текстильной, фармацевтической и многих других промышленных отраслях. Например, с помощью природных энзимов исследователи пытаются повысить эффективность спиртового брожения при изготовлении алкогольных напитков, улучшить качество продуктов питания, разработать новые методы похудения и др. Но стоит отметить, что использование ферментов в различных отраслях промышленности по сравнению с применением химических катализаторов значительно проигрывает. Ведь основная сложность воплощения такой задачи на практике является термическая неустойчивость энзимов и их повышенная чувствительность к воздействию различных факторов. Также невозможно многократное использование ферментов в производстве из-за сложности их отделения от готовых продуктов выполненных реакций.

Кроме того, свое активное применение действие ферментов обрело в медицине, сельскохозяйственной и химической отрасли. Рассмотрим подробнее, как и где может использоваться действие ферментов:

  • Пищевая промышленность. Всем известно, что хорошее тесто при выпекании должно подняться и разбухнуть. Но далеко не все понимают, как именно это происходит. В муке, из которой и готовится тесто, имеется множество различных ферментов. Так, амилаза в составе муки участвует в процессе разложения крахмала, при котором активно выделяется углекислый газ, способствующий так называемому «разбуханию» теста. Клейкость теста и удерживание в нем СО2 обеспечивается за счет действия фермента под названием протеаза, который также содержится в муке. Получается, что такие, казалось бы. простые вещи, как приготовление теста для выпечки, подразумевают под собой сложнейшие химические процессы. Также особую востребованность некоторые ферменты, реакции, происходящие с их участием, обрели в области производства алкоголя. Различные энзимы используются в составе дрожжей, обеспечивающих качество процесса брожения спирта. Кроме того, некоторые ферменты (например, папаин или пепсин) помогают растворять осадок в спиртосодержащих напитках. Также активно применяются ферменты в производстве кисломолочных продуктов и сыра в том числе.
  • В кожевенной отрасли ферменты используются для эффективного расщепления белков, что наиболее актуально при выведении стойких пятен от различных продуктов питания, крови и др.
  • В производстве стиральных порошков может использоваться целлюлаза. Но при использовании таких порошков для получения заявленного результата необходимо соблюдать допустимый температурный режим стирки.

Кроме того, в производстве кормовых добавок ферменты используются с целью увеличения их питательной ценности, гидролиза белков и некрахмальных полисахаридов. В текстильной промышленности ферменты позволяют изменять свойства поверхности текстильных изделий, а в целлюлозно-бумажной промышленности – удалять чернила и тонеры в процессе вторичной переработки бумаги.

Огромная роль ферментов в жизни современного человека неоспорима. Уже сегодня их свойства активно используются различными сферами, но также непрерывно ведутся поиски новых вариантов применения уникальных свойств и функций ферментов.

Ферменты человека и наследственные заболевания

Многие заболевания развиваются на фоне энзимопатий – нарушений функций ферментов. Выделяют первичные и вторичные энзимопатии. Первичные нарушения являются наследственными, вторичные – приобретенными. Наследственные энзимопатии относят, как правило, к метаболическим заболеваниям. Наследование генетических дефектов или снижения активности ферментов происходит преимущественно по аутосомно-рецессивному типу. К примеру, такое заболевание как фенилкетонурия является следствием дефекта такого фермента как фенилаланин-4-монооксигеназа. Данный фермент в норме отвечает за преобразование фенилаланина в тирозин. В результате нарушений функций фермента происходит накопление аномальных метаболитов фенилаланина, являющихся токсичными для организма.

Также к энзимопатиям относят подагру, развитие которой вызвано нарушением обмена пуриновых оснований и как следствие стабильным увеличением уровня мочевой кислоты в крови. Галактоземия – еще одно заболевание, вызванное наследственным нарушением функциональности ферментов. Развивается данная патология из-за нарушения углеводного обмена, при котором организм не может преобразовывать галактозу в глюкозу. Следствием такого нарушения является накопление галактозы и ее метаболических продуктов в клетках, что приводит к поражениям печени, ЦНС и других жизненно важных систем организма. Основными проявлениями галактоземии выступают диарея, рвота, появляющиеся сразу после рождения ребенка, механическая желтуха, катаракта, задержка физического и интеллектуального развития.

Разные гликогенозы и липидозы также относятся к наследственным энзимопатиям, иначе именуемым энзимопатологиями. Развитие таких нарушений обусловлено низкой ферментной активностью в организме человека или полным ее отсутствием. Наследственные метаболические дефекты, как правило, сопровождаются развитием заболеваний с различной степенью тяжести. При этом некоторые энзимопатии могут протекать бессимптомно и определяются лишь при проведении соответствующих диагностических процедур. Но в основном первые симптомы наследственных метаболических нарушений проявляются уже в раннем детстве. Реже это происходит у старших детей и тем более у взрослых.

При диагностике наследственных энзимопатий немаловажную роль играет генеалогический метод исследования. При этом реакции ферментов специалисты проверяют лабораторным путем. Наследственные ферментопатии могут приводить к нарушениям выработки гормонов, характеризующихся особым значением для полноценной жизнедеятельности организма. Например, корой надпочечников вырабатываются глюкокортикоиды, отвечающие за регуляцию обмена углеводов, минералокортикоиды, участвующие в водно-солевом обмене, а также андрогенные гормоны, оказывающие непосредственное влияние на развитие вторичных половых признаков у подростков. Таким образом, нарушение выработки перечисленных гормонов может привести к развитию многочисленных патологий со стороны различных систем органов.

Процесс переработки пищи в организме человека происходит с участием различных пищеварительных ферментов. В процессе переваривания пищи все вещества расщепляются до небольших молекул, ведь исключительно низкомолекулярные соединения способны проникать сквозь стенку кишечника и всасываться в кровоток. Особая роль в данном процессе отводится ферментам, расщепляющим белки до аминокислот, жиров до глицерина и жирных кислот, а крахмала до сахаров. Расщепление белков обеспечивается действием фермента пепсина, содержащегося в основном органе пищеварительной системы – желудке. Часть пищеварительных ферментов вырабатывается в кишечник поджелудочной железой. В частности к ним относится:

  • трипсин и химотрипсин, основным предназначением которых выступает гидролиз белков;
  • амилаза – ферменты, расщепляющие жиры;
  • липаза – пищеварительные ферменты, расщепляющие крахмал.

Такие пищеварительные энзимы, как трипсин, пепсин, химотрипсин вырабатываются в форме проферментов, и только после их попадания в желудок и кишечник они становятся активными. Подобная особенность защищает ткани желудка и поджелудочной железы от агрессивного их воздействия. Кроме того, внутренняя оболочка этих органов дополнительно покрыта слоем слизи, что обеспечивает еще большую их безопасность.

Часть пищеварительных ферментов вырабатывается также в тонком кишечнике. За переработку целлюлозы, поступающей в организм вместе с растительной пищей, отвечает фермент с созвучным названием целлюлаза. Другими словами, практически в каждом отделе желудочно-кишечного тракта вырабатываются пищеварительные ферменты, начиная со слюнных желез и заканчивая толстой кишкой. Каждый вид энзимов выполняет свои функции, в совокупности обеспечивая качественное переваривание пищи и полноценное всасывание всех полезных веществ в организме.

Ферменты поджелудочной железы

Поджелудочная железа является органом смешанной секреции, то есть выполняет и эндо- и экзогенные функции. Поджелудочная железа, как упоминалось выше, вырабатывает ряд ферментов, которые активируются под воздействием желчи, поступающей вместе с энзимами в органы пищеварения. Ферменты поджелудочной железы отвечают за расщепление жиров, белков и углеводов на простые молекулы, способные проникать сквозь клеточную мембрану в кровоток. Таким образом, благодаря ферментам поджелудочной железы происходит полное усвоение полезных веществ, поступающих в организм вместе с пищей. Рассмотрим подробнее действие энзимов, синтезируемых клетками данного органа ЖКТ:

  • амилаза вместе с такими энзимами тонкого кишечника, как мальтаза, инвертаза и лактаза обеспечивают процесс расщепления сложных углеводов;
  • протеазы, иначе именуемые протеолитическими ферментами в организме человека, представлены трипсином, карбоксипептидазой и эластазой и отвечают за расщепление белков;
  • нуклеазы – ферменты поджелудочной железы, представленные дезоксирибонуклеазой и рибонуклеазой, воздействующими на аминокислоты РНК, ДНК;
  • липаза – фермент поджелудочной железы, отвечающий за преобразование жиров в жирные кислоты.

Также поджелудочной железой синтезируется фосфолипаза, эстераза и щелочная фасфтаза.

Наиболее опасными в активном виде являются протеолитические ферменты, вырабатываемые органом. Если процесс их выработки и выделения в другие органы пищеварительной системы нарушается, энзимы активируются непосредственно в поджелудочной железе, что приводит к развитию острого панкреатита и сопутствующих тому осложнений. Ингибиторами протеолитических энзимов, позволяющими затормозить их действие, являются панкреатический полипептид и глюкагон, соматостатин, пептид YY, энкефалин и панкреастатин. Перечисленные ингибиторы способны затормозить выработку панкреатических энзимов путем воздействия на активные элементы пищеварительной системы.

В тонкой кишке происходят основные процессы переваривания поступающей в организм пищи. В данном отделе ЖКТ также синтезируются ферменты, процесс активации которых происходит совместно с энзимами поджелудочной железы и желчного пузыря. Тонкая кишка – отдел пищеварительного тракта, в котором происходят завершающие этапы гидролиза питательных веществ, поступающих в организм вместе с продуктами питания. В нем синтезируются различные ферменты, расщепляющие олиго- и полимеры на мономеры, которые без проблем могут всасываться слизистой тонкой кишки и поступать в лимфо- и кровоток.

Под воздействием энзимов тонкой кишки происходит процесс расщепления белков, прошедших предварительное преобразование в желудке, на аминокислоты, сложных углеводов на моносахариды, жиров – на жирные кислоты и глицерин. В составе кишечного сока насчитывается свыше 20 видов ферментов, участвующих в процессе переваривания пищи. С участием панкреатических и кишечных ферментов обеспечивается полная отработка химуса (частично переваренной пищи). Все процессы в тонком кишечнике происходят в течение 4 часов после поступления химуса в данный отдел пищеварительного тракта.

Важную роль в переваривании пищи в тонкой кишке играет желчь, поступающая в двенадцатиперстную кишку в процессе пищеварения. В составе самой желчи ферменты отсутствуют, но при этом данная биологическая жидкость усиливает действие энзимов. Наиболее значимой желчь оказывается для расщепления жиров, превращая их в эмульсию. Такой эмульгированный жир намного быстрее расщепляется под воздействием ферментов. Жирные кислоты, взаимодействуя с желчными кислотами, преобразуются в легкорастворимые соединения. Кроме того, выделение желчи стимулирует перистальтику кишечника и выработку пищеварительного сока поджелудочной железой.

Кишечный сок синтезируется железами, расположенными в слизистой тонкой кишки. В составе такой жидкости и присутствуют пищеварительные ферменты, а также энтерокиназа, предназначенная для активации действия трипсина. Кроме того, в кишечном соке имеется фермент под названием эрепсин, необходимый для завершающего этапа расщепления белков, энзимы, действующие на различные виды углеводов (например, амилаза и лактаза), а также липаза, предназначенная для преобразования жиров.

Желудочные ферменты

Процесс переваривания пищи поэтапно происходит в каждом отделе желудочно-кишечного тракта. Так, начинается он еще в ротовой полости, где пища измельчается зубами и смешивается со слюной. Именно в слюне содержатся ферменты, расщепляющие сахар и крахмал. После ротовой полости измельченная пища поступает по пищеводу в желудок, где и начинается следующий этап ее переваривания. Основным желудочным ферментом является пепсин, предназначенный для преобразования белков в пептиды. Также в желудке присутствует желатиназа – фермент, процесс расщепления коллагена и желатина для которого выступает основной задачей. Плюс ко всему пища в полости данного органа подвергается действию амилазы и липазы, соответственно, расщепляющие крахмал и жиры.

От качества пищеварительного процесса зависит возможность получения организмом всех необходимых питательных элементов. Расщепление сложных молекул на множество простых обеспечивает их дальнейшее всасывание в крово- и лимфоток на последующих этапах пищеварения в других отделах ЖКТ. Недостаточная выработка желудочных ферментов может стать причиной развития различных заболеваний.

Огромным значением для протекания различных биохимических процессов в организме обладают ферменты печени. Функции белковых молекул, вырабатываемых данным органом, настолько многочисленны и многообразны, что все ферменты печени принято делить на три основные группы:

  • Секреторные энзимы, предназначенные для регуляции процесса свертывания крови. К ним относятся холинэстераза и протромбиназа.
  • Индикаторные ферменты печени, включающие аспартатаминотрансферазу, обозначаемую аббревиатурой АСТ, аланинаминотрасферазу с соответственным обозначением АЛТ и лактатдегидрогеназу – ЛДГ. Перечисленные энзимы сигнализируют о поражениях тканей органа, при которых разрушаются гепатоциты, «выходят» из клеток печени и поступают в кровоток;
  • Экскреторные энзимы вырабатываются печенью и покидают пределы органа с потом желчи. К таким энзимам относится щелочная фосфатаза. При нарушениях оттока желчи из органа уровень щелочной фосфатазы растет.

Нарушение работы тех или иных ферментов печени в будущем может привести к развитию различных заболеваний или сигнализировать об их наличии в настоящее время.

Одним из самых информативных анализов при болезнях печени является биохимия крови, позволяющая определить уровень индикаторных ферментов АСТ, АТЛ. Так, нормальными показателями аспартатаминотрансферазы для женщины является 20-40 Ед/л, а для представителей сильного пола – 15-31 Ед/л. Повышение активности данного фермента может указывать на повреждение гепатоцитов механической или некротической природы. Содержание аланинаминотрасферазы в норме не должно превышать у женщин отметки в 12-32 Ед/л, а для мужчин нормальным считается показатель активности АЛТ в пределах 10-40 Ед/л. Увеличение активности АЛТ, достигаемое десятикратных показателей, может свидетельствовать о развитии инфекционных заболеваний органа, причем еще задолго до появления их первых симптомов.

Дополнительные исследования активности ферментов печени используются, как правило, для дифференциальной диагностики. Для этого может проводиться анализ на ЛДГ, ГГТ и ГлДГ:

  • Нормой активности лактатдегидрогеназы является показатель, колеблющийся в пределах 140-350 Ед/л.
  • Повышенные показатели ГлДГ могут являться признаком дистрофических поражений органа, тяжелых интоксикаций, заболеваний инфекционной природы или онкологии. Максимально допустимым показателем такого фермента для представительниц женского пола является 3,0 Ед/л, а для мужчин – 4, 0 Ед/л.
  • Нормой активности фермента ГГТ для мужчин является показатель до 55 Ед/л, для женщин – до 38 Ед/л. Отклонения от указанной нормы могут свидетельствовать о развитии диабета, а также болезней желчевыводящих путей. В таком случае показатель активности фермента может увеличиваться в десятки раз. Кроме того, ГГТ в современной медицине применяется для определения алкогольных гепатозов.

Ферменты, синтезируемые печенью, обладают различными функциями. Так, часть из них вместе с желчью выводится из органа через желчные протоки и принимает активное участие в процессе переваривания пищи. Ярким примером того выступает щелочная фосфатаза. Нормальный показатель активности данного фермента в крови должен находиться в пределах 30-90 Ед/л. Стоит отметить, что у представителей мужского пола такой показатель может достигать 120 Ед/л (при интенсивных обменных процессах цифра может возрастать).

Ферменты крови

Определение активности ферментов и их содержания в организме является одним из основных диагностических методов при определении различных заболеваний. Так, ферменты крови, содержащиеся в ее плазме, могут указывать на развитие патологий печени, воспалительных и некротических процессов в клетках тканей, болезней сердечно-сосудистой системы и др. Ферменты крови принято делить две группы. В первую группу входят энзимы, выделяемые в плазму крови некоторыми органами. К примеру, печенью вырабатываются так называемые предшественники энзимов, необходимых для работы свертывающей системы крови.

Вторая группа насчитывает гораздо большее количество ферментов крови. В организме здорового человека такие белковые молекулы физиологическим значением в плазме крови не обладают, поскольку действуют исключительно на внутриклеточном уровне в органах и тканях, которыми вырабатываются. В норме активность таких ферментов должна быть низкой и постоянной. При повреждении клеток, которым сопровождаются различные заболевания, ферменты, содержащиеся в них, высвобождаются и поступают в кровоток. Причиной тому могут являться воспалительные и некротические процессы. В первом случае высвобождение ферментов происходит из-за нарушения проницаемости клеточной мембраны, во втором – ввиду нарушения целостности клеток. При этом, чем выше уровень содержания ферментов в крови, тем больше степень поражения клеток.

Биохимический анализ позволяет определить активность тех или иных энзимов в плазме крови. Он активно применяется при диагностике различных заболеваний печени, сердца, скелетной мускулатуры и иных видов тканей в человеческом организме. Кроме того, так называемая энзимодиагностика при определении некоторых заболеваний учитывает субклеточную локализацию ферментов. Результаты таких исследований позволяют определить, какие именно процессы происходят в организме. Так, при воспалительных процессах в тканях ферменты крови имеют цитозольную локализацию, а при некротических поражениях определяется наличие ядерных или митохондриальных энзимов.

Стоит отметить, что далеко не всегда увеличение содержания ферментов в крови обусловлено тканевыми повреждениями. Активное патологическое разрастание тканей в организме, в частности при онкозаболеваниях, повышенная выработка определенных ферментов или же нарушение выводящей способности почек также могут определяться повышенным содержанием некоторых энзимов в крови.

В современной медицине особое место отводится использованию различных ферментов в диагностических и терапевтических целях. Также энзимы нашли свое применение в качестве специфических реактивов, позволяющих с точностью определять разные вещества. Например, выполняя анализ на определение уровня глюкозы в моче и сыворотке крови, в современных лабораториях используется глюкозооксидаза. Уреаза применяется для оценки количественного содержания мочевины в анализах мочи и крови. Разные виды дегидрогеназ позволяют с точностью определять наличие различных субстратов (лактат, пируват, этиловый спирт и т.д.).

Высокая иммуногенность ферментов значительно ограничивает их использование в терапевтических целях. Но, несмотря на это, так называемая энзимотерапия активно развивается, используя ферменты (препараты с их содержанием), как средство заместительной терапии или элемент комплексного лечения. Заместительная терапия применяется при заболеваниях ЖКТ, развитие которых вызвано недостаточной выработкой пищеварительного сока. При дефиците панкреатических энзимов их недостаток может компенсироваться посредством перорального приема лекарственных препаратов, в составе которых они присутствуют.

В роли дополнительного элемента в комплексном лечении ферменты могут использоваться при различных заболеваниях. Например, такие протеолитические энзимы, как трипсин и химотрипсин применяются при обработке гнойных ран. Препараты с ферментами дезоксирибонуклеазой и рибонуклеазой используются при лечении аденовирусных конъюнктивитов или герпетических кератитов. Ферментные препараты также применяются при лечении тромбозов и тромбоэмболий, онкологических заболеваний и др. Их использование актуально для рассасывания контрактур ожоговых и послеоперационных рубцов.

Применение ферментов в современной медицине весьма многообразно и данное направление постоянно развивается, что позволяет постоянно находить новые и более эффективные методы лечения тех или иных заболеваний.

Ферменты (Энзимы) - специфические белки, биологически активные органические вещества, которые ускоряют химические реакции в клетке. Огромная роль ферментов в организме. Они могут увеличить скорость реакции более чем в десять раз. Это просто необходимо для нормальной жизнедеятельности клетки. А ферменты участвуют в каждой реакции.

В организме всех живых существ, включая даже самые примитивные микроорганизмы, обнаружены ферменты. Ферменты за счёт своей каталитической активности очень важны для нормальной работы систем нашего организма.

Ключевые ферменты в организме

В основе жизнедеятельности человеческого организма - тысячи протекающих в клетках химических реакций. Каждая из них осуществляется при участии специальных ускорителей - биокатализаторов, или ферментов.

Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. К 2013 году было описано более 5000 разных ферментов

Современной науке известно около двух тысяч биокатализаторов. Сосредоточим внимание на так называемых ключевых ферментах . К ним относятся наиболее существенные для жизнедеятельности организма биокатализаторы, «поломка» которых, как правило, приводит к возникновению заболеваний. Мы стремимся ответить на вопрос: как данный фермент действует в здоровом организме и что с ним происходит в процессе заболевания человека?

Известно, что важнейшие биополимеры, составляющие основу всего живого (из них построены все составные части клеток нашего тела и все ферменты), имеют белковую природу. В свою очередь, белки состоят из простых азотистых соединений - аминокислот, связанных между собой химическими связями - пептидными. В организме существуют специальные ферменты, расщепляющие эти связи путем присоединения молекул воды (реакция гидролиза). Такие ферменты называются пептидгидролазами. Под их влиянием в молекулах белка разрываются химические связи между аминокислотами и образуются обломки белковых молекул - пептиды, состоящие из различного числа аминокислот. Пептиды, обладая высокой биологической активностью, могут вызвать даже отравление организма. В конце концов, подвергаясь воздействию пептидгидролаз, пептиды либо теряют, либо существенно снижают свою биологическую активность.

Профессору В. Н. Ореховичу в 1979 и его ученикам удалось открыть, выделить в чистом виде и подробно изучить физические, химические и каталитические свойства одной из пептидгидролаз, ранее не известной биохимикам. Ныне она вошла в международный перечень под названием фермент карбоксикатепсин. Исследования позволили приблизиться к ответу на вопрос: зачем нужен карбоксикатепсин здоровому организму и что может произойти в результате тех или иных изменений его структуры.

Оказалось, что карбоксикатепсин участвует как в образовании пептида ангиотензина Б, повышающего артериальное давление, так и в разрушении другого пептида - брадикинина, который, наоборот, обладает свойством снижать артериальное давление.

Таким образом, карбоксикатепсин оказался ключевым катализатором, участвующим в работе одной из важнейших биохимических систем организма - системы регуляции давления крови. Чем большую активность проявляет карбоксикатепсин, тем выше концентрация ангиотензина П и ниже концентрация брадикинина, а это, в свою очередь, приводит к повышению артериального давления. Неудивительно, что у людей, страдающих гипертонической болезнью, активность карбокси-катепсина в крови повышена. Определение этого показателя помогает врачам оценивать эффективность лечебных мер, прогнозировать течение болезни.

Можно ли затормозить действие карбоксикатепсина непосредственно в организме человека и тем самым добиться снижения артериального давления? Исследования, проведенные в нашем институте, показали, что в природе существуют пептиды, которые способны связываться с карбоксикатепсином, не подвергаясь гидролизу, и лишать его тем самым возможности выполнять свойственную ему функцию.

В настоящее время ведутся работы по синтезу искусственных блокаторов (ингибиторов) карбоксикатепсина, которые предполагается использовать в качестве новых лечебных средств для борьбы с гипертонической болезнью.

К числу других важных ключевых ферментов, участвующих в биохимических превращениях азотистых веществ в организме человека, относятся аминоксидазы. Без них не обходятся реакции окисления так называемых биогенных аминов, к которым принадлежат многие химические передатчики нервных импульсов - нейромедиаторы. Поломки аминоксидаз ведут к расстройствам функций центральной и периферической нервной системы; химические блокаторы аминоксидаз уже применяются в клинической практике в качестве лечебных средств, например, при депрессивных состояниях.

В процессе изучения биологических функций аминоксидаз удалось открыть их неизвестное ранее свойство. Оказалось, что определенные химические изменения молекул этих ферментов сопровождаются качественными изменениями их каталитических свойств. Так, моноаминоксидазы, окисляющие биогенные моноамины (например, широко известные нейромедиаторы - норадреналин, серотонин и дофамин), после обработки окислителями частично утрачивают присущие им свойства. Но зато обнаруживают качественно новую способность разрушать диамины, некоторые аминокислоты и аминосахара, нуклеотиды и другие азотистые соединения, необходимые для жизнедеятельности клетки. Причем трансформировать моноаминоксидазы удается не только в пробирке (то есть в тех случаях, когда исследователи экспериментируют с очищенными препаратами ферментов), но и в организме животного, в котором предварительно моделируются различные патологические процессы.

В клетках тела человека моноаминоксидазы включены в состав биологических мембран - полупроницаемых перегородок, которые служат и оболочками клетки и делят каждую из них на обособленные отсеки, где протекают определенные реакции. Биомембраны особенно богаты легко окисляемыми жирами, которые находятся в полужидком состоянии. Многие заболевания сопровождаются накоплением в биомембранах избыточных количеств продуктов окисления жиров. Чрезмерно окисленные (переокисленные), они нарушают и нормальную проницаемость мембран и нормальную работу ферментов, входящих в их состав. К числу таких ферментов относятся и моноаминоксидазы.

В частности, при лучевом поражении происходит переокисление жиров в биомембранах клеток костного мозга, кишечника, печени и других органов, а моноаминоксидазы при этом не просто частично теряют свою полезную активность, но еще и приобретают качественно новое, вредное для организма свойство. Они начинают разрушать жизненно важные для клетки азотистые вещества. Свойство моно-аминоксидаз трансформировать свою биологическую активность проявляется как в опытах с очищенными ферментными препаратами, так и в живом организме. Причем выяснилось, что лечебные средства, используемые в борьбе с лучевыми поражениями, предотвращают и развитие качественных изменений ферментов.

Это очень важное свойство - обратимость трансформации моноаминоксидаз - было установлено в экспериментах, в ходе которых исследователи научились не только предупреждать трансформацию ферментов, но и устранять нарушения, возвращая к норме функции катализаторов и добиваясь определенного лечебного эффекта.

Пока речь идет об опытах на животных. Однако сегодня есть все основания считать, что активность аминоксидаз меняется и в организме человека, в частности при атеросклерозе. Поэтому изучение свойств аминоксидаз, а также химических веществ, при помощи которых можно воздействовать на их активность в организме человека с лечебными целями, в настоящее время продолжается с особой настойчивостью.

И последний пример. Хорошо известно, какую важную роль в жизнедеятельности нашего организма играют углеводы, а следовательно, и ключевые ферменты, ускоряющие их биохимические превращения. К числу таких катализаторов относится открытый в нашем институте фермент гамма-амилаза; он принимает участие в расщеплении химических связей между молекулами глюкозы (из них построены сложные молекулы гликогена). Врожденное отсутствие или недостаточность гамма-амилазы приводит к нарушению нормальных биохимических превращений гликогена. Его содержание в клетках жизненно важных органов ребенка возрастает, они теряют возможность выполнять свойственные им функции. Все эти изменения характеризуют тяжелейшее заболевание - гликогеноз.

В биохимических превращениях гликогена участвуют и другие ферменты.

Их врожденная недостаточность также ведет к гликогенозам. Чтобы своевременно и точно распознать, каким именно типом гликогеноза страдает ребенок (а это важно для выбора метода лечения и прогнозирования течения заболевания), необходимы исследования активности ряда ферментов, в том числе гамма-амилазы. Разработанные еще в Институте биологической и медицинской химии АМН СССР в 1970-х годах методы дифференциальной лабораторно-химической диагностики гликогенозов ныне до сих пор применяются в клинической практике.

По данным профессора В.З. ГОРКИНА

История изучения

Термин фермент предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения .

В кон. ХVIII - нач. XIX вв. уже было известно, что мясо переваривается желудочным соком , а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен .

Классификация ферментов

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ , - Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

  • КФ 1: Оксидоредуктазы , катализирующие окисление или восстановление. Пример: каталаза , алкогольдегидрогеназа .
  • КФ 2: Трансферазы , катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы , переносящие фосфатную группу, как правило, с молекулы АТФ .
  • КФ 3: Гидролазы , катализирующие гидролиз химических связей. Пример: эстеразы , пепсин , трипсин , амилаза , липопротеинлипаза .
  • КФ 4: Лиазы , катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
  • КФ 5: Изомеразы , катализирующие структурные или геометрические изменения в молекуле субстрата.
  • КФ 6: Лигазы , катализирующие образование химических связей между субстратами за счёт гидролиза АТФ . Пример: ДНК-полимераза .

Кинетические исследования

Простейшим описанием кинетики односубстратных ферментативных реакций является уравнение Михаэлиса - Ментен (см. рис.). На сегодняшний момент описано несколько механизмов действия ферментов. Например, действие многих ферментов описывается схемой механизма «пинг-понг».

В 1972-1973 г.г. была создана первая квантово-механическая модель ферментативного катализа (авторы М. В. Волькенштейн , Р. Р. Догонадзе, З. Д. Урушадзе и др.) .

Структура и механизм действия ферментов

Активность ферментов определяется их трёхмерной структурой .

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот , которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Активный центр ферментов

В активном центре условно выделяют :

  • каталитический центр - непосредственно химически взаимодействующий с субстратом;
  • связывающий центр (контактная или «якорная» площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

Фермент, соединяясь с субстратом:

  • очищает субстрат от водяной «шубы»
  • располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом
  • подготавливает к реакции (например, поляризует) молекулы субстратов.

Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко - за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), например:

В отсутствие фермента:

  • А+В = АВ

В присутствии фермента:

  • А+Ф = АФ
  • АФ+В = АВФ
  • АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. Например, реакции синтеза биополимеров часто сопрягаются с реакцией гидролиза АТФ.

Для активных центров некоторых ферментов характерно явление кооперативности .

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина , если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

Модель «ключ-замок»

Гипотеза Кошланда об индуцированном соответствии

Более реалистичная ситуация в случае индуцированного соответствия. Неправильные субстраты - слишком большие или слишком маленькие - не подходят к активному центру

В 1890 г. Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата . Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия

В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок» . Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации - присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой . Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Ещё один распространенный тип посттранляционных модификаций - расщепление полипептидной цепи. Например, химотрипсин (протеаза , участвующая в пищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется в поджелудочной железе . Неактивная форма транспортируется в желудок , где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например, флавин или гем). Органические кофакторы, прочно связанные с ферментом, называют также простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.

Фермент, который требует наличия кофактора для проявления каталитической активности, но не связан с ним, называется апо-фермент. Апо-фермент в комплексе с кофактором носит название холо-фермента. Большинство кофакторов связано с ферментом нековалентными, но довольно прочными взаимодействиями. Есть и такие простетические группы, которые связаны с ферментом ковалентно, например, тиаминпирофосфат в пируватдегидрогеназе.

Регуляция работы ферментов

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Ингибирование конечным продуктом

Метаболический путь - цепочка последовательных ферментативных реакций. Часто конечный продукт метаболического пути является ингибитором фермента, ускоряющего первую из реакций данного метаболического пути. Если конечного продукта слишком много, то он действует как ингибитор для самого первого фермента, а если после этого конечного продукта стало слишком мало, то первый фермент опять активируется. Таким образом, ингибирование конечным продуктом по принципу отрицательной обратной связи - важный способ поддержания гомеостаза (относительного постоянства условий внутренней среды организма).

Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме - давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.

Множественные формы ферментов

Множественные формы ферментов можно разделить на две категории:

  • Изоферменты
  • Собственно множественные формы (истинные)

Изоферменты - это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

  • Органные - ферменты гликолиза в печени и мышцах.
  • Клеточные - малатдегидрогеназа цитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).
  • Гибридные - ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа - 4 субъединицы 2 типов).
  • Мутантные - образуются в результате единичной мутации гена.
  • Аллоферменты - кодируются разными аллелями одного и того же гена.

Собственно множественные формы (истинные) - это ферменты, синтез которых кодируется одним и тем же аллелем одного и того же гена, у них одинаковая первичная структура и свойства, но после синтеза на рибосомах они подвергаются модификации и становятся разными, хотя и катализируют одну и ту же реакцию.

Изоферменты разные на генетическом уровне и отличаются от первичной последовательности, а истинные множественные формы становятся разными на посттрансляционном уровне.

Медицинское значение

Связь между ферментами и наследственными болезнями обмена веществ была впервые установлена А. Гэрродом в 1910-е гг. Гэррод назвал заболевания, связанные с дефектами ферментов, «врожденными ошибками метаболизма».

Если происходит мутация в гене , кодирующем определенный фермент, может измениться аминокислотная последовательность фермента. При этом в результате большинства мутаций его каталитическая активность снижается или полностью пропадает. Если организм получает два таких мутантных гена (по одному от каждого из родителей), в организме перестает идти химическая реакция, которую катализирует данный фермент. Например, появление альбиносов связано с прекращением выработки фермента тирозиназы, отвечающего за одну из стадий синтеза темного пигмента меланина. Фенилкетонурия связана с пониженной или отсутствующей активностью фермента фенилаланин-4-гидроксилазы в печени.

В настоящее время известны сотни наследственных заболеваний, связанные с дефектами ферментов. Разработаны методы лечения и профилактики многих из таких болезней.

Практическое использование

Ферменты широко используются в народном хозяйстве - пищевой, текстильной промышленности, в фармакологии и медицине. Большинство лекарств влияют на течение ферментативных процессов в организме, запуская или приостанавливая те или иные реакции.

Ещё шире область использования ферментов в научных исследованиях и в медицине.

Примечания

Литература

  • Волькенштейн М. В., Догонадзе Р. Р., Мадумаров А. К., Урушадзе З. Д., Харкац Ю. И. К теории ферментативного катализа.- Молекулярная биология, т. 6, вып. 3, 1972, ст. 431-439.
  • Диксон, М. Ферменты / М. Диксон, Э. Уэбб. - В 3-х т. - Пер. с англ. - Т.1-2. - М.: Мир, 1982. - 808 с.
  • Большая медицинская энциклопедия

    - (от лат. fermentum брожение, закваска), энзимы, биокатализаторы, специфич. белки, присутствующие во всех живых клетках и играющие роль биол. катализаторов. Через их посредство реализуется генетич. информация и осуществляются все процессы обмена… … Биологический энциклопедический словарь

    - (лат. Fermentum закваска, от fervere быть горячим). Органические вещества, производящие брожение других органических тел, не подвергаясь сами гниению. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ФЕРМЕНТЫ… … Словарь иностранных слов русского языка

    - (от лат. fermentum закваска) (энзимы) биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе белки. Ферменты… … Большой Энциклопедический словарь

    - (от латинского fermentum закваска), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения (обмен) веществ в организме. По химической природе белки. В многочисленных биохимических реакциях в клетке участвует… … Современная энциклопедия

    Сущ., кол во синонимов: 2 биокатализаторы (1) энзимы (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Ферменты. См. энзимы. (

В природе существуют особые вещества белковой природы, одинаково успешно функционирующие как в живой клетке, так и за её пределами. Это ферменты. С их помощью организм переваривает пищу, выращивает и разрушает клетки, благодаря им эффективно работают все системы нашего организма и, в первую очередь, центральная нервная система. Без ферментов в мире не существовало бы йогурта, кефира, сыра, брынзы, кваса, готовых каш, детского питания. Из чего состоят и как устроены эти биокатализаторы, недавно ставшие верными помощниками биотехнологов, как их отличают друг от друга, как они облегчают нашу жизнь, об этом вы узнаете из этого урока.

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.

4. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. - 5-е изд., стереотип. - Дрофа, 2010. - 388 с.

5. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.



Понравилась статья? Поделитесь с друзьями!