Физика классическая механика. Законы движения Ньютона

Взаимодействие этих двух эффектов и является главной темой механики Ньютона .

Другими важными понятиями этого раздела физики является энергия , импульс , момент импульса , которые могут передаваться между объектами в процессе взаимодействия. Энергия механической системы состоит из ее кинетической (энергии движения) и потенциальной (зависимой от положения тела относительно других тел) энергий. По этим физических величин действуют фундаментальные законы сохранения .


1. История

Основы классической механики были заложены Галилеем , а также Коперником и Кеплером при изучении закономерностей движения небесных тел , и долгое время механика и физика рассматривались в контексте описания астрономических событий.

Идеи гелиоцентрической системы далее были формализованы Кеплером в его трех законах движения небесных тел. В частности, второй закон Кеплера утверждает, что все планеты солнечной системы движутся эллиптическими орбитами , имеющие одним из своих фокусов Солнце.

Следующий важный вклад в основание классической механики был осуществлен Галилеем , который, исследуя фундаментальные закономерности механического движения тел , в частности под воздействием сил земного притяжения , сформулировал пять универсальных законов движения.

Но все же лавры основного основателя классической механики относятся Исааку Ньютону , который в своей работе "Математические начала натуральной философии" осуществил синтез тех понятий по физике механического движения, которые были сформулированы его предшественниками. Ньютон сформулировал три фундаментальных законы движения , которые были названы его именем, а также закон всемирного тяготения , который подводил черту под исследованиями Галилеем явления свободного падения тел. Таким образом, была создана новая, на замену устаревшей аристотелевского, картина мира и базовых его законов.


2. Ограничения классической механики

Классическая механика дает точные результаты для систем, которые мы встречаем в повседневной жизни. Но они становятся некорректными для систем, скорость которых приближается к скорости света , где она заменяется релятивистской механикой , или для очень малых систем, где действуют законы квантовой механики . Для систем, которые объединяют оба эти свойства, вместо классической механики применяется релятивистская квантовая теория поля . Для систем с очень большим количеством составляющих, или степеней свободы, классическая механика также может быть адекватной, зато используются методы статистической механики

Классическая механика является широко применяемой, потому что она, во-первых, гораздо проще и легче в применении, чем перечисленные выше теории, и, во-вторых, имеет большие возможности для аппроксимации и применения для очень широкого класса физических объектов, начиная с привычных, таких как волчок или мяч , в великих астрономических объектов (планеты , галактики) и совсем микроскопических (органические молекулы).


3. Математический аппарат

Базовый математический аппарат классической механики - дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем . В классическом формулировке механика строится на трех законах Ньютона .

4. Изложение основ теории

Далее дается изложение базовых концепций классической механики. Для простоты будем использовать понятие материальной точки как объекта, размерами которого можно пренебречь. Движение материальной точки определяется небольшим количеством параметров: положением, массой и приложенными к нему силами .

В реальности, размеры каждого объекта, с которым имеет дело классическая механика, является ненулевыми. Материальная точка зато такая как электрон , подчиняется законам квантовой механики. Объекты с ненулевыми размерами имеют гораздо более сложную поведение, ведь их внутреннее состояние может меняться - например, мяч в движении может еще и вращаться. Тем не менее, в таких тел могут быть применены результаты, полученные для материальных точек, если рассматривать их как совокупности из множества взаимодействующих материальных точек. Такие сложные объекты могут вести себя как материальные точки, если их размеры несущественные в масштабах конкретной физической задачи.


4.1. Положение, радиус-вектор и его производные

Положение объекта (материальной точки) определяется относительно фиксированной точки в пространстве, которая называется началом координат . Оно может быть задано координатами этой точки (например, в Декартовой системе координат) или радиус-вектором r, проведенным из начала координат в эту точку. В реальности, материальная точка может двигаться с течением времени, поэтому радиус- вектор в общем случае является функцией времени . В классической механике, в отличие от релятивистской, считается, что течение времени одинаков во всех системах отсчета.


4.1.1. Траектория

Траекторией называется совокупность всех положений материальной точки, движущейся - в общем случае она является кривой линией, вид которой зависит от характера движения точки и выбранной системы отсчета.

4.1.2. Перемещение

.

Если все силы, действующие на частицу, консервативные , а V - полная потенциальная энергия, полученная добавлением потенциальных энергий всех сил, то

.

Т.е. полная энергия E = T + V сохраняется во времени. Это проявление одного из фундаментальных физических законов сохранения . В классической механике он может быть полезным практически, ведь много разновидностей сил в природе являются консервативными.

Основы классической механики

Механика – раздел физики, изучающий законы механического движения тел.

Тело – вещественный материальный объект.

Механическое движение – изменение положения тела или его частей в пространстве с течением времени.

Аристотель представлял такой вид движения как непосредственную перемену телом своего места относительно других тел, поскольку в его физике материальный мир был неразрывно связан с пространством, существовал вместе с ним. Время он считал мерой движения тела. Изменение в дальнейшем взглядов на природу движения привело к постепенному отделению пространства и времени от физических тел. Наконец, абсолютизация пространства и времени Ньютоном вообще вывела их за пределы возможного опыта.

Однако, этот подход позволил к концу XVIII века построить законченную систему механики, называемую теперь классической . Классичность заключается в том, что она:

1) описывает большинство механических явлений в макромире, используя небольшое число исходных определений и аксиом;

2) строго обоснована математически;

3) часто используется в более специфических разделах науки.

Опыт показывает, что классическая механика применима к описанию движения тел со скоростями υ << с ≈ 3·10 8 м/с. Ее основные разделы:

1) статика изучает условия равновесия тел;

2) кинематика – движение тел без учета его причин;

3) динамика – влияние взаимодействия тел на их движение.

Основные понятия механики:

1) Механическая система – мысленно выделенная совокупность тел, существенных в данной задаче.

2) Материальная точка – тело, формой и размерами которого можно пренебречь в рамках данной задачи. Тело может быть представлено в виде системы материальных точек.

3) Абсолютно твердое тело – тело, расстояние между любыми двумя точками которого не меняется в условиях данной задачи.

4) Относительность движения заключается в том, что изменение положения тела в пространстве может быть установлено только по отношению к каким-то другим телам.

5) Тело отсчета (ТО) – абсолютно твердое тело, относительно которого рассматривается движение в данной задаче.

6) Система отсчета (СО) = {ТО + СК + часы}. Начало системы координат (СК) совмещают с какой-нибудь точкой ТО. Часы измеряют промежутки времени.

Декартова СК:

Рисунок 5

Положение материальной точки М описывается радиусом-вектором точки , – ее проекции на оси координат.

Если задать начальный момент времени t 0 = 0, то движение точки М опишется вектор-функцией или тремя скалярными функциями x (t ), y (t ), z (t ).

Линейные характеристики движения материальной точки:

1) траектория – линия движения материальной точки (геометрическая кривая),

2) путь (S ) – расстояние, пройденное вдоль нее за промежуток времени ,

3) перемещение ,

4) скорость ,

5) ускорение .

Любое движение твердого тела можно свести к двум основным видам – поступательному и вращательному вокруг неподвижной оси.

Поступательное движение – такое, при котором прямая, соединяющая любые две точки тела, остается параллельной своему первоначальному положению. Тогда все точки движутся одинаково, и движение всего тела можно описать движением одной точки .

Вращение вокруг неподвижной оси – такое движение, при котором существует прямая, жестко связанная с телом, все точки которой остаются неподвижными в данной СО. Траектории остальных точек – окружности с центрами на этой прямой. В этом случае удобны угловые характеристики движения, которые одинаковы для всех точек тела.

Угловые характеристики движения материальной точки:

1) угол поворота (угловой путь) , измеряемый в радианах [рад], где r – радиус траектории точки,

2) угловое перемещение , модуль которого представляет собой угол поворота за малый промежуток времени dt ,

3) угловая скорость ,

4) угловое ускорение .

Рисунок 6

Связь между угловыми и линейными характеристиками:

Динамика использует понятие силы , измеряемой в ньютонах (H), как меры воздействия одного тела на другое. Это воздействие является причиной движения.

Принцип суперпозиции сил – результирующий эффект воздействия на тело нескольких тел равен сумме эффектов воздействий каждого из этих тел в отдельности. Величина называется равнодействующей силой и характеризует эквивалентное воздействие на тело n тел.

Законы Ньютона обобщают опытные факты механики.

1-й закон Ньютона . Существуют системы отсчета, относительно которых материальная точка сохраняет состояние покоя или равномерного прямолинейного движения при отсутствии силового воздействия на нее, т.е. если , то .

Такое движение называется движением по инерции или инерциальным движением, и поэтому системы отсчета, в которых выполняется 1-й закон Ньютона, называются инерциальными (ИСО).

2-й закон Ньютона . , где – импульс материальной точки, m – ее масса, т.е. если , то и, следовательно, движение уже не будет инерциальным.

3-й закон Ньютона . При взаимодействии двух материальных точек возникают силы и , приложенные к обеим точкам, причем .

Определение 1

Механика - обширный раздел физики, исследующий законы изменения положений физических тел в пространстве и времени, а также постулаты, основанные на законах Ньютона.

Рисунок 1. Основной закон динамики. Автор24 - интернет-биржа студенческих работ

Зачастую данное научное направление физики называют «Ньютоновской механикой». Классическая механика на сегодняшний день подразделяется на такие разделы:

  • статику - рассматривает и описывает равновесие тел;
  • кинематику - изучает геометрические особенности движения без рассмотрения его причин;
  • динамику – занимается исследованием движения материальных веществ.

Механическое движение представляет собой одну из простейших и вместе с тем наиболее распространенную форму существования живой материи. Поэтому классическая механика занимает исключительно значимое место в естествознании и считается главным подразделом физики.

Основные законы классической механики

Классическая механика в своих постулатах изучает движение рабочих тел, со скоростями, которые намного меньше скорости света. Согласно специальной гипотезе относительности, для движущихся на огромной скорости элементов не существует абсолютного пространства и времени. В результате характер взаимодействия веществ становится сложнее, в частности, их масса начинает зависеть от скорости движения. Все это стало объектом рассмотрения формул релятивистской механики, для которых константа световой скорости играет фундаментальную роль.

Классическая механика базируется на следующих основных законах.

  1. Принцип относительности Галилея. Согласно данному принципу существует множество систем отсчёта, в которых любое свободное тело находится в состоянии покоя или движется с постоянной по направлению скоростью. Эти концепции в науке называются инерциальными, и осуществляю движение относительно друга прямолинейно и равномерно.
  2. Три закона Ньютона. Первый устанавливает обязательное наличие свойства инертности у физических тел и постулирует наличие таких концепций отсчёта, в которых движение свободного вещества происходит с постоянной скоростью. Второй постулат вводит понятие силы как главной меры взаимодействия активных элементов и на основе теоретических фактов постулирует взаимосвязь между ускорением тела, его величиной и инертностью. Третий ньютоновский закон - для каждой действующей на первое тело силы существует противодействующий фактор, равный по величине и противоположный по направлению.
  3. Закон сохранения внутренней энергии является следствием законов Ньютона для стабильных, замкнутых систем, в которых действуют исключительно консервативные силы. Полная механическая сила замкнутой системы материальных тел, между которыми действуют только тепловая энергия, остается постоянной.

Правила параллелограмма в механике

Из трех фундаментальных теорий движения тела Ньютона вытекают определенные следствия, одно из которых - сложение общего количества элементов по правилу параллелограмма. Согласно данной идее, ускорение любого физического вещества зависит от величин, в основном характеризующих действие иных тел, определяющих особенности самого процесса. Механическое действие на исследуемый объект со стороны внешней среды, которая кардинально изменяет скорость движения сразу нескольких элементов, называют силой. Она может иметь многогранную природу.

В классической механике, которая имеет дело со скоростями, значительно меньшими скорости света, масса считается одной из основных характеристик самого тела, не зависящей от того, движется оно или находится в состоянии покоя. Масса физического тела находится вне зависимости от взаимодействия вещества с другими частями системы.

Замечание 1

Таким образом, масса стала постепенно пониматься как количество живой материи.

Установление понятий массы и силы, а также метода их измерения позволило Ньютону описать и сформулировать второй закон классической механики . Итак, масса есть одна из ключевых характеристик материи, определяющая ее гравитационные и инертные свойства.

Первое и второе начало механики относятся соответственно к систематическому движению одного тела или материальной точки. При этом учитывается только действие других элементов в определенной концепции. Однако любое физическое действие есть взаимодействие.

Третий закон механики уже фиксирует данное утверждение и гласит: действию всегда соответствует противоположно направленное и равное противодействие. В формулировке Ньютона этот постулат механики справедлив лишь для случая непосредственной взаимосвязи сил или при внезапной передаче действия одного материального тела на другое. В случае перемещения за длительный промежуток времени третий закон применяется тогда, когда временем передачи действия возможно пренебречь.

Вообще все законы классической механики справедливы для функционирования инерциальных систем отсчета. В случае неинерциальных концепций ситуация совершенно иная. При ускоренном движении координат относительно самой инерциальной системы первый закон Ньютона невозможно использовать - свободные тела в ней будут менять свою скорость движения с течением времени и зависеть от скорости движения и энергии других веществ.

Границы применимости законов классической механики

Рисунок 3. Границы применимости законов классической механики. Автор24 - интернет-биржа студенческих работ

В результате достаточно стремительного развития физики в начале XX столетия сформировалась определенная сфера применения классической механики: ее законы и постулаты выполняются для движений физических тел, скорость которых значительно меньше скорости света. Было определено, что с ростом скорости масса любого вещества будет автоматически возрастать.

Несоответствие принципов в классической механике в основном исходило из того, что будущее в известном смысле полностью находится в настоящем – этим и определяется вероятность точного предвидения поведения системы в любой отрезок времени.

Замечание 2

Ньютоновский способ сразу стал главным инструментом познания сущности природы и всего живого на планете. Законы механики и методы математического анализа вскоре показали свою эффективность и значимость. Физический эксперимент, который базировался на измерительной технике, обеспечивал ученым небывалую ранее точность.

Физическое знание все в более значительной степени становилось центральной промышленной технологией, что стимулировало общее развитие других важных естественных наук.

В физике все изолированные ранее электричество, свет, магнетизм и теплота стали целыми и объединенными в электромагнитную гипотезу. И хотя сама природа тяготения оставалась так и неопределенной, ее действия возможно было рассчитать. Утвердилась и реализовалась концепция механистического детерминизма Лапласа, которая исходит из возможности точно определить поведение тел в любой момент времени, если изначально определены исходные условия.

Структура механики как науки казалась достаточно надежной и прочной, а также практически завершенной. В итоге сложилось впечатление, что знание физики и ее законов близко к своему финалу – столь мощную силу показал фундамент классической физики.

Классическая механика (механика Ньютона)

Рождение физики как науки связано с открытиями Г Галилея и И. Ньютона. Особенно значителен вклад И. Ньютона, который записал законы механики на языке математики. Свою теорию, которую часто называют классической механикой, И. Ньютон изложил в труде «Математические начала натуральной философии» (1687).

Основу классической механики составляют три закона и два положения относительно пространства и времени.

Прежде чем рассматривать законы И. Ньютона, напомним, что такое система отсчета и инерциальная система отсчета, поскольку законы И. Ньютона выполняются не во всех системах отсчета, а только в инерциальных системах отсчета.

Системой отсчета называется система координат, например прямоугольных декартовых координат, дополненная часами, находящимися в каждой точке геометрически твердой среды. Геометрически твердой средой называется бесконечное множество точек, расстояния между которыми фиксированы. В механике И. Ньютона предполагается, что время течет независимо от положения часов, т.е. часы синхронизированы и поэтому время течет одинаково во всех системах отсчета.

В классической механике пространство считается евклидовым, а время представляется евклидовой прямой. Иными словами, И. Ньютон считал пространство абсолютным, т.е. оно везде является одним и тем же. Это значит, что для измерения длин можно использовать не- деформируемые стержни с нанесенными на них делениями. Среди систем отсчета можно выделить такие системы, которые благодаря учету ряда специальных динамических свойств отличаются от остальных.

Система отсчета, по отношению к которой тело движется равномерно и прямолинейно, называется инерциальной или галилеевой.

Факт существования инерциальных систем отсчета нельзя проверить экспериментально, так как в реальных условиях нельзя выделить часть материи, изолировать ее от остального мира так, чтобы движение этой части материи не подвергалось воздействию других материальных объектов. Чтобы определить в каждом конкретном случае, может ли система отсчета быть принята за инерциальную, проверяют, сохраняется ли скорость тела. Степень этого приближения определяет степень идеализации задачи.

Например, в астрономии при изучении движения небесных тел за инерциальную систему отсчета часто принимают декартову систему ординат, начало которой находится в центре масс какой-то «неподвижной» звезды, а оси координат направлены на другие «неподвижные» звезды. На самом деле звезды движутся с большими скоростями относительно других небесных объектов, поэтому понятие «неподвижная» звезда условно. Но в силу больших расстояний между звездами приведенное нами положение достаточно для практических целей.

Например, наилучшей инерциальной системой отсчета для Солнечной системы будет такая, начало которой совпадает с центром масс Солнечной системы, практически находящимся в центре Солнца, так как в Солнце сосредоточено более 99% массы нашей планетной системы. Оси координат системы отсчета направлены на далекие звезды, которые считаются неподвижными. Такая система называется гелиоцентрической.

Утверждение о существовании инерциальных систем отсчета И. Ньютон сформулировал в виде закона инерции, который называют первым законом Ньютона. Этот закон гласит: всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние.

Первый закон Ньютона отнюдь не очевиден. До Г. Галилея считалось, что это воздействие обусловливает не изменение скорости (ускорение), а саму скорость. Данное мнение основывалось на таких известных из повседневной жизни фактах, как необходимость непрерывно толкать тележку, которая движется по горизонтальной ровной дороге, для того чтобы ее движение не замедлялось. Теперь известно, что, толкая тележку, мы уравновешиваем воздействие, оказываемое на нее трением. Но, не зная об этом, легко прийти к заключению, что воздействие необходимо для поддержания движения неизменным.

Второй закон Ньютона гласит: скорость изменения импульса частицы равна действующей на частицу силе :

где т - масса; t- время; а -ускорение; v - вектор скорости; p = mv - импульс; F - сила.

Силой называется векторная величина, характеризующая воздействие на данное тело со стороны других тел. Модуль этой величины определяет интенсивность воздействия, а направление совпадает с направлением ускорения, сообщаемого телу этим воздействием.

Масса является мерой инертности тела. Под инертностью понимают неподатливость тела действию силы, т.е. свойство тела сопротивляться изменению скорости под действием силы. Для того, чтобы выразить массу некоторого тела числом, надо сравнить ее с массой эталонного тела, принятого за единицу.

Формула (3.1) называется уравнением движения частицы. Выражение (3.2) - это вторая формулировка второго закона Ньютона: произведение массы частицы на ее ускорение равно силе, которая действует на частицу.

Формула (3.2) справедлива и для протяженных тел в том случае, если они движутся поступательно. Если на тело действует несколько сил, то под силой F в формулах (3.1) и (3.2) подразумевается их результирующая, т.е. сумма сил.

Из (3.2) следует, что при F = 0 (т.е. на тело не действуют другие тела) ускорение а равно нулю, поэтому тело движется прямолинейно и равномерно. Таким образом, первый закон Ньютона как бы входит во второй закон как его частный случай. Но первый закон Ньютона формируется независимо от второго, так как в нем содержится утверждение о существовании в природе инерциальных систем отсчета.

Уравнение (3.2) имеет такой простой вид только при согласованном выборе единиц измерения силы, массы и ускорения. При независимом выборе единиц измерения второй закон Ньютона записывается следующим образом:

где к - коэффициент пропорциональности.

Воздействие тел друг на друга всегда носит характер взаимодействия. В том случае, если тело А действует на тело В с силой F BA то и тело В действует на тело А с силой F AB .

Третий закон Ньютона гласит, что силы, с которыми взаимодействуют два тела, равны по модулю и противоположны по направлению, т.е.

Поэтому силы всегда возникают попарно. Заметим, что силы в формуле (3.4) приложены к разным телам, и поэтому они не могут уравновешивать друг друга.

Третий закон Ньютона, также как и первые два, выполняется только в инерциальных системах отсчета. В неинерциальных системах отсчета он не является справедливым. Кроме этого отступления от третьего закона Ньютона будут наблюдаться у тел, которые движутся со скоростями, близкими к скорости света.

Следует заметить, что все три закона Ньютона появились в результате обобщения данных большого числа экспериментов и наблюдений и поэтому являются эмпирическими законами.

В механике Ньютона не все системы отсчета равноправны, так как инерциальные и неинерциальные системы отсчета отличаются друг от друга. Указанное неравноправие свидетельствует о недостаточной зрелости классической механики. С другой стороны, все инерциальные системы отсчета равноправны и в каждой из них законы Ньютона одни и те же.

Г. Галилей в 1636 г. установил, что в инерциальной системе отсчета никакими механическими опытами нельзя определить, находится ли она в состоянии покоя или движется равномерно и прямолинейно.

Рассмотрим две инерциальные системы отсчета N и N", причем система jV"движется относительно системы N по оси х с постоянной скоростью v (рис. 3.1).

Рис. 3.1.

Отсчет времени начнем с того момента, когда начала координат о и о"совпадали. В этом случае координаты х и х" произвольно взятой точки М будут связаны выражением х = х" + vt. При сделанном нами выборе осей координат у - у z~ Z- В механике Ньютона предполагается, что во всех системах отсчета время течет одинаково, т.е. t = t". Следовательно, мы получили совокупность четырех уравнений:

Уравнения (3.5) называются преобразованиями Галилея. Они дают возможность переходить от координат и времени одной инерциальной системы отсчета к координатам и времени другой инерциальной системы отсчета. Продифференцируем по времени / первое уравнение (3.5), имея в виду, что t = t поэтому производная по t совпадет с производной по Г. Получим:

Производная - это проекция скорости частицы и в системе N

на ось х этой системы, а производная - это проекция скорости частицы о "в системе N "на осьх "этой системы. Поэтому получаем

где v = v x =v X " - проекция вектора на ось х совпадает с проекцией того же вектора на ось*".

Теперь дифференцируем второе и третье уравнение (3.5) и получаем:

Уравнения (3.6) и (3.7) можно заменить одним векторным уравнением

Уравнение (3.8) можно рассматривать или как формулу преобразования скорости частицы из системы N" в систему N, или как закон сложения скоростей: скорость частицы относительно системы У равна сумме скорости частицы относительно системы N" и скорости системы N" относительно системы N. Продифференцируем по времени уравнение (3.8) и получим:

поэтому ускорения частицы относительно систем N и УУ’одни и те же. Сила F, N, равна силе F", которая действует на частицу в системе N", т.е.

Соотношение (3.10) будет выполняться, так как сила зависит от расстояний между данной частицей и взаимодействующими с ней частицами (а также от относительных скоростей частиц), а эти расстояния (и скорости) в классической механике полагаются одинаковыми во всех инерциальных системах отсчета. Масса тоже имеет одинаковое числовое значение во всех инерциальных системах отсчета.

Из приведенных выше рассуждений следует, что если выполняется соотношение та = F, то будет выполняться равенство та = F". Системы отсчета N и N" были взяты произвольно, поэтому полученный результат означает, что законы классической механики одинаковы для всех инерциальных систем отсчета. Это утверждение называется принципом относительности Галилея. Можно сказать иначе: законы механики Ньютона инвариантны относительно преобразований Галилея.

Величины, которые имеют одно и то же числовое значение во всех системах отсчета, называют инвариантными (от лат. invariantis - не- изменяющийся). Примерами таких величин служат электрический заряд, масса и др.

Инвариантными по отношению к преобразованию координат и времени при переходе от одной инерциальной системы отсчета к другой называются и уравнения, вид которых не меняется при таком переходе. Величины, которые входят в эти уравнения, могут меняться при переходе от одной системы отсчета к другой, но формулы, которые выражают связь между этими величинами, остаются неизменными. Примерами таких уравнений являются законы классической механики.

  • Под частицей подразумевается материальная точка, т.е. тело, размерами которогоможно пренебречь по сравнению с расстоянием до других тел.

Это раздел физики, изучающий движение на основе законов Ньютона. Классическая механика подразделяется на:
Базовыми понятиями классической механики является понятие силы, массы и движения. Масса в классической механике определяется как мера инерции, или способности тела к сохранению состояния покоя или равномерного прямолинейного движения при отсутствии воздействия на него сил. С другой стороны, силы, действующие на тело, изменяют состояние его движения, вызывая ускорение. Взаимодействие этих двух эффектов и является главной темой механики Ньютона.
Другими важными понятиями этого раздела физики есть энергия, импульс, момент импульса, которые могут передаваться между объектами в процессе взаимодействия. Энергия механической системы складывается из ее кинетической (энергии движения) и потенциальной (зависимой от положения тела относительно других тел) энергий. Относительно этих физических величин действуют фундаментальные законы сохранения.
Основы классической механики были заложены Галилеем, а также Коперником и Кеплером при изучении закономерностей движения небесных тел, и долгое время механика и физика рассматривались в контексте астрономических событий.
В своих работах Коперник отмечал, что вычисление закономерностей движения небесных тел может быть значительно упрощен, если отойти от принципов, заложенных Аристотелем, и считать Солнце, а не Землю, отправной точкой для таких вычислений, т.е. осуществить переход от геоцентрической к гелиоцентрической систем.
Идеи гелиоцентрической системы дальше были формализованы Кеплером в его трех законах движения небесных тел. В частности, из второго закона следовало, что все планеты солнечной системы движутся эллиптическими орбитами, имеющие одним из своих фокусов Солнце.
Следующий важный вклад в основание классической механики был осуществлен Галилеем, который, исследуя фундаментальные закономерности механического движения тел, в частности под воздействием сил земного притяжения, сформулировал пять универсальных законов движения.
Но все же лавры основного основателя классической механике относятся Исааку Ньютону, который в своей работе «Математические начала натуральной философии» осуществил синтез тех понятий по физике механического движения, которые были сформулированы его предшественниками. Ньютон сформулировал три фундаментальные законы движения, которые были названы его именем, а также закон всемирного тяготения, который подводил черту под исследованиями Галилеем феномена свободного падения тел. Таким образом, была создана новая, на замену устаревшей Аристотелевой, картина мира базовых его законов.
Классическая механика дает точные результаты для систем, которые мы встречаем в повседневной жизни. Но они становятся некорректными для систем, скорость которых приближается к скорости света, где она заменяется релятивистской механикой, либо для очень малых систем, где действуют законы квантовой механики. Для систем, которые объединяют оба эти свойства, вместо классической механики обеими характеристиками квантовая теория поля. Для систем с очень большим количеством составляющих, или степеней свободы, классическая механика также быть адекватной, зато используются методы статистической механики
Классическая механика сохраняет, потому что она, во-первых, гораздо проще в применении, чем остальные теории, и, во-вторых, имеет большие возможности для аппроксимации и применение для очень широкого класса физических объектов, начиная со привычных, таких как волчок или мяч, многих астрономических объектов (планеты, галактики) и совсем микроскопических).
Хотя классическая механика в общих чертах совместима с другими «классическими теориями, такими как классическая электродинамика и термодинамика, имеются некоторые несоответствия между этими теориями, которые были найдены в конце 19 века. Они могут быть решены методами более современной физики. В частности, классическая электродинамика предсказывает, что скорость света постоянна, что несовместимо с классической механикой и привело к созданию специальной теории относительности. Принципы классической механики рассмотрении совместно с утверждениями классической термодинамики, что приводит к парадоксу Гиббса, согласно которому невозможно точно определить величину энтропии и к ультрафиолетовой катастрофе, в которой абсолютно черное тело должно излучать бесконечное количество энергии. Для преодоления этих несоответствий была создана квантовая механика.
Объекты, которые изучаются механикой, называются механическими системами. Задачей механики является изучение свойств механических систем, в частности их эволюции во времени.
Базовый математический аппарат классической механики дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем. В классическом формулировке механика строится на трех законах Ньютона.
Далее дается изложение базовых концепций классической механики. Для простоты будем рассматривать только материальную точку объекта, размерами которого можно пренебречь. Движение материальной точки характеризуется несколькими параметрами: ее положением, массой, и приложенными к ней силами.
В реальности, размеры каждого объекта, с которым имеет дело классическая механика, является ненулевыми. Материальные точки, такие, как электрон, подчиняются законам квантовой механики. Объекты ненулевого размера могут испытывать более сложные движения, поскольку их внутреннее состояние может меняться например, мяч может еще и вращаться. Тем не менее, к таким телам результаты, полученные для материальных точек, рассматривая их как совокупности большого количества взаимодействующих материальных точек. Такие сложные тела ведут себя как материальные точки, если их малы в масштабах рассматриваемой задачи.
Радиус-вектор и его производные
Положение объекта материальной точки определяется относительно фиксированной точки в пространстве, которая называется началом координат. Оно может быть задано координатами этой точки (например, в прямоугольной системе координат) или радиус-вектором r, проведенным из начала координат в эту точку. В реальности, материальная точка может двигаться с течением времени, поэтому радиус-вектор в общем случае является функцией времени. В классической механике, в отличие от релятивистской, считается, что течение времени является одинаковым во всех системах отсчета.
Траектория
Траекторией называется совокупность всех положений материальной точки, движущейся в общем случае она является кривой линией, вид которой зависит от характера движения точки и выбранной системы отсчета.
Перемещение
Перемещение это вектор, соединяющий начальное и конечное положение материальной точки.
Скорость
Скорость, или отношение перемещения ко времени, в течение которого оно происходит, определяется как первая производная от перемещения к времени:

В классической механике, скорости можно добавлять и отнимать. Например, если одна машина едет на запад со скоростью 60 км / ч, и догоняет другую, которая движется в том же направлении со скоростью 50 км / ч, то относительно второй машина первая движется на запад со скоростью 60-50 = 10 км / ч. Зато на перспективу быстрые машины, медленнее движется со скоростью 10 км / ч на восток.
Для определения относительной скорости в любом случае применяются правила векторной алгебры для составления векторов скорости.
Ускорение
Ускорение, или скорость изменения скорости это производная от скорости до времени или вторая производная от перемещения к времени:

Вектор ускорения может меняться по величине, так и по направлению. В частности, если скорость уменьшается, иногда ускорение "замедлением, но вообще любую изменению скорости.
Силы. Второй закон Ньютона
Второй закон Ньютона утверждает, что ускорение материальной точки является прямо пропорциональным силе, на нее действует, а вектор ускорения направлен по линии действия этой силы. Иными словами, этот закон связывает силу, которая действует на тело с его массой и ускорением. Тогда второй закон Ньютона выглядит так:

Величина m v называется импульсом. Обычно, масса m не изменяется со временем, и закон Ньютона можно записать в упрощенной форме

Где а ускорение, которое было определено выше. Масса тела m Не всегда с течением времени. Например, масса ракеты уменьшается по мере использования горючего. При таких обстоятельствах, последнее выражение неприменимо, и следует пользоваться полной формой второго закона Ньютона.
Второго закона Ньютона недостаточно для описания движения частицы. Он требует определения той силы, которая на нее действует. Например, типичный выражение для силы трения при движении тела в газе или в жидкости определяется следующим образом:

Где? некоторая константа, которая называется коэффициентом трения.
После того как определены все силы, на базе второго закона Ньютона получим дифференциальное уравнение, называемое уравнением движения. В нашем примере с лишь одной силой, которая действует на частицу, получим:

Проинтегрировав, получим:

Где Начальная скорость. Это означает, что скорость движения нашего объекта уменьшается экспоненциально до нуля. Это выражение в свою очередь может быть вновь проинтегровано для получения выражения для радиус-вектора r тела в зависимости от времени.
Если на частицу действуют несколько сил, то они добавляются по правилам сложения векторов.
Энергия
Если сила F действует на частицу, которая в результате этого перемещается на? r, то при этом выполняется работа, равный:

Если масса частицы стала, то тоскуя работы, выполненные всеми силами, из второго закона Ньютона

Где Т кинетическая энергия. Для материальной точки определяется как

Для сложных объектов из множества частиц, кинетическая энергия тела равна сумме кинетических энергий всех частиц.
Особый класс консервативных сил может быть выражен градиентом скалярной функции, известной как потенциальная энергия V:

Если все силы, действующие на частицу консервативны, а V полная потенциальная энергия, полученная добавлением потенциальных энергий всех сил, то
Т.е. полная энергия E = T + V сохраняется во времени. Это проявление одного из фундаментальных физических законов сохранения. В классической механике он может быть полезным практически, ведь много разновидностей сил в природе являются консервативными.
Законы Ньютона имеют несколько важных последствий для твердых тел (см. момент импульса)
Существуют также два важных альтернативные формулировки классической механики: механика Лагранжа и гамильтонова механика. Они эквивалентны механике Ньютона, но иногда оказываются полезными для анализа некоторых проблем. Они, как и другие современные формулировки, не используют понятие силы, вместо обращаясь к другим физических величин, таких как энергия.



Понравилась статья? Поделитесь с друзьями!