Физиология цветоощущения. Что такое свет и цвет

Глаз человека, при всем своем совершенстве, улавливает лишь небольшую часть всего спектрального диапазона электромагнитного излучения. Простыми словами, восприятие светового потока человеком не велико. Например, чувствительность человеческого глаза значительно снижается при коротких световых волнах синего цвета. Всего существует 7 цветов диапазона, пример тому - радуга после дождя. Это явление показывает полный спектр электромагнитного излучения, воспринимаемого человеком. Где самые длинные волны находятся в диапазоне красного цвета, а короткие - фиолетово-синего.

Растения - значительно чувствительней. Для правильного роста и развития требуется значительно более широкий спектр, чем может воспринимать человеческое зрение. Для примера, наиболее оптимальное восприятие светового потока у людей происходит в диапазоне 380-780 нм. Чувствительность представителей флоры определяется более широким спектром.

Проблема сезонности

Важный момент: если для человека в большинстве случаев смена сезонов в отношении количества световой энергии проходит почти незамеченной, то для растений это губительно. Постоянный световой поток возможен лишь в экваториальных частях земного шара, где нет резкой смены сезонов. Для нашей климатической зоны характерны резкие перепады температур, но главное - это количество солнечного света.

Растения, которые выводятся в искусственных условиях, тем более нуждаются в широком спектре световой энергии. Современная наука уже давно нашла выход в данной ситуации. Теперь фермерам, селекционерам, аграриям предлагаются светодиодные светильники типа PlantaLux-45 . Это специальное оборудование, способствующее росту и развитию представителей флоры. Световой поток фитосветильников такого типа как раз находится в требуемом для растений широком спектре. Их хорошо использовать в качестве досветки для некоторых видов овощей, фруктов, зелени, цветов. Главными преимуществами

В § 65 мы указывали уже, что разнообразные действия света обусловлены в первую очередь наличием определенной энергии излучения (световой энергии).

Непосредственное восприятие света обусловлено действием световой энергии, поглощенной чувствительными элементами глаза. То же имеет место и в любом приемнике, способном реагировать на свет, например в фотоэлементе, термоэлементе и фотопластинке. Вследствие этого измерения света cводятся к измерению световой энергии или к измерению величин, так или иначе с нею связанных. Отдел оптики, изучающий методы и приемы измерения световой энергии, называется фотометрией.

Рис. 154. Поток световой энергии, излучаемой источником , проходит через площадку

Выделим мысленно на пути света, распространяющегося от какого-либо источника (рис. 154), небольшую площадку . Через эту площадку за время пройдет некоторая энергия излучения . Для того чтобы измерить эту энергию, надо представить себе эту площадку в виде пленки, покрытой веществом, полностью поглощающим всю падающую на него энергию излучения, например сажей, и измерить поглощенную энергию по нагреванию этой пленки. Отношение

показывает, какая энергия протекает через площадку за единицу времени, и называется потоком излучения (мощностью излучения) через площадку . Напомним, что мощность, переносимую световой волной через единичную площадку, называют интенсивностью волны (см. §39).

Поток излучения оценивается в обычных единицах мощности, т. е. в ваттах, а интенсивность излучения - в ваттах на квадратный метр. Однако для восприятия и использования световой энергии исключительно важную роль играет глаз. Поэтому наряду с энергетической оценкой света пользуются оценкой, основанной на непосредственном световом восприятии глаза. Поток излучения, оцениваемый по зрительному ощущению, называется световым потоком.

Таким образом, в световых измерениях используются две системы обозначений и две системы единиц; одна из них основана на энергетической оценке света, другая - на оценке света по зрительному ощущению.

Так как чувствительность глаза к свету разной длины волны (разного цвета) весьма различна, то энергетическая оценка света и оценка светового потока по зрительному ощущению могут существенно отличаться. Так, при одной и тон же мощности излучения зрительное ощущение от лучей зеленого цвета будет примерно в 100 раз больше, чем от лучей красного или сине-фиолетового цвета. Поэтому для зрительной оценки световых потоков необходимо знать чувствительность глаза к ветру различной длины волны или так называемую кривую относительной спектральной чувствительности глаза, изображенную на рис. 155. На этой кривой показана относительная чувствительность человеческого глаза в зависимости от длины волны . Если чувствительность глаза для длины волны (зеленый свет) принять за единицу, то для более длинных и более коротких волн чувствительность быстро уменьшается, как и показано на кривой.

Световая чувствительность является основой всех форм зрительного ощущения и восприятия. Эта функция является чрезвычайно изменчивой (лабильной) и ее изменения определяются многими причинами. Основным фактором, от которого зависит уровень абсолютной световой чувствительности, являются световые условия, в которых находится человек, или, точнее, величина яркости фона.

На световую чувствительность глаза также влияют такие факторы как:

  • распределение палочек и колбочек. Из за их неравномерного распределения периферия светоощущение периферических отделов сетчатки значительно выше, чем центральных.
  • концентрация светочувствительных зрительных веществ (зрительного пурпура) в палочках.
  • состояние нервных элементов зрительного аппарата, т.е. периферических и центральных нервных клеток и нервных волокон.
  • площадь зрачка,- при одинаковых яркости и угловых размерах испытательных полей световой поток, попадающий на сетчатку, будет меньшим при меньшей площади и большим при большей площади зрачка.

Для определения уровня световой чувствительности и ее изменений в процессе адаптации могут быть использованы многие приемы, начиная от простого наблюдения за поведением больного, до исследования с помощью специальных приборов - адаптометров и адаптопериметров.

При исследовании светоощущения определяют способность сетчатки воспринимать минимальное световое раздражение - порог светоощущения и способность улавливать наименьшую разницу в интенсивности освещения, что называется порогом различения.

Порог раздражения сильно зависит от предварительного освещения глаза. Так, если пробыть некоторое время в темном помещении и затем выйти на яркий свет, то наступит как бы ослепление. Спустя некоторое время пребывания на свету глаз уже спокойно его переносит. И наоборот, если пробыть некоторое время на свету, а затем войти в сильно затемненное помещение, то первое время предметы совершенно неразличимы и лишь постепенно глаз привыкает к пониженному освещению.

При воздействии на глаз сильного света быстрее разрушаются зрительные вещества и, несмотря на их перманентное восстановление, чувствительность глаза к свету понижается. В темноте распад зрительных веществ не происходит так быстро, как на свету, и, следовательно, в темноте повышается чувствительность глаза к свету. Кроме того, при действии на сетчатку яркого света из пигментного эпителия пигмент перемещается к нейроэпителию и как бы прикрывает его, что в свою очередь снижает его чувствительность к свету. Процесс приспособления глаза к различным условиям освещения называется адаптацией.

При адаптации к свету чувствительность глаза к световому раздражителю понижается.

Понижение темновой адаптации является симптомом некоторых глазных (глаукома, сидероз, пигментная дистрофия сетчатки) и общих (болезни печени, авитаминоз А) заболеваний. Для изучения световой чувствительности и всего хода адаптации служат адаптометры.

Диагностика

При исследовании световой чувствительности производится определение световых порогов. Световые пороги могут определяться либо в относительных световых единицах (например, делениях фотоклина, площади диафрагмы, через которую проходит свет), либо в абсолютных световых единицах, которые находятся в пропорциональных отношениях к энергетическим единицам.

При определении световых порогов в абсолютных световых единицах, что всего чаще осуществляется в современных адаптометрах, пользуются единицами, кратными стильбу: нитами (нт), апостильбами (асб), пикостильбами и др. Световая чувствительность тем выше, чем ниже световые пороги (минимальные величины светового раздражителя, которые воспринимаются). Поэтому световая чувствительность представляет собой величину, обратную абсолютному световому порогу.

Исследование изменений световой чувствительности в ходе световой адаптации в клинической практике не применяется из-за большой скорости этого процесса. Обычно исследуют ход темновой адаптации.

Для того чтобы исследовать чувствительность определенного места сетчатки, необходимо по возможности исключить непроизвольные и произвольные движения глаз, особенно легко возникающие при погружении в темноту. Для этого в большинстве исследований применяют так называемую фиксационную точку. В качестве фиксационной точки чаще всего употребляют светящийся объект малых размеров (1-2′), снабженный красным фильтром. Точечный источник красного света малой яркости при фиксации его не вызывает разложения зрительного пурпура.

В условиях темновой адаптации самая высокая световая чувствительность отмечается при раздражении областей сетчатки, расположенных между 12 и 18° от центральной ямки. Поэтому исследование световой чувствительности производят чаще всего при проецировании испытательного поля именно в эту область сетчатки. Исследование чувствительности только в одной области не дает полного представления о световой чувствительности, особенно при некоторых глазных заболеваниях (пигментная дегенерация сетчатки, глаукома). Поэтому сейчас в клинике довольно часто применяют периметрическую адаптометрию, при которой световая чувствительность исследуется в разных отделах поля зрения ("квантитативная периметрия", по Гармсу, 1957).

Для врачебной экспертизы широко применяют адаптометр, созданный проф. C.B. Кравковым и проф. H.A. Вишневским. Он позволяет ориентировочно определить состояние сумеречного (ночного) зрения при массовых обследованиях за 3-5 мин. Действие прибора основано на перемещении относительной яркости цветов в условиях дневного и пониженного освещения (феномен Пуркинье).

При сумеречном зрении происходит перемещение максимума яркости в спектре от красной части спектра к сине-фиолетовой. В основе феномена Пуркинье лежит то обстоятельство, что колбочки сетчатой оболочки, функционирующие при дневном зрении, перестают функционировать при ослаблении освещения, уступая ведущее место аппарату палочек сетчатой оболочки, более чувствительному к зелено-синим лучам, которые и кажутся в этом случае относительно более яркими, чем желто-оранжевые.

Адаптометр Кравкова-Вишневского представляет собой темную камеру, внутри которой расположена таблица из зеленого, голубого, желтого и красного квадратов, освещаемая светом различной, постепенно усиливающейся яркости. Основной объект наблюдения - голубой квадрат; желтый квадрат служит для контроля.

О светоощущении можно судить по времени, которое нужно обследуемому для того, чтобы он начал различать цветные квадраты таблицы. В начале исследования при адаптации к свету обследуемый не различает цветов и квадраты кажутся ему серыми различной светлости. По мере наступления темновой адаптации первым различается желтый квадрат, затем - голубой. Красный и зеленый квадраты в этих условиях совсем неразличимы.

Время, прошедшее от момента включения ламп до момента, когда обследуемый увидел более светлый квадрат на месте зеленого, отмечается по секундомеру. При нормальном цветовом зрении и нормальной темновой адаптации - это время колеблется между 15-й и 60-й секундами.

Темновую адаптацию можно проверить и без адаптометра, используя таблицу Кравкова-Пуркинье . Кусок картона размером 20x20 см оклеивают черной бумагой. По углам, отступя на 3-4 см от края, наклеивают 4 квадратика размером 3x3 см из голубой, желтой, красной и зеленой бумаги.

Цветные квадраты показывают пациенту в затемненной комнате на расстоянии 40-50 см от глаза. В норме сначала квадраты неразличимы. Через 30-40 с становится различимым контур желтого квадрата, а затем - голубого. Понижение темновой адаптации называется гемералопией . При гемералопии видят лишь один желтый квадрат.

Световые пороги
А - световые пороги - арифметический ряд,
В - световые пороги - геометрический ряд (логарифмы),
Б - световая чув-ть - арифметический ряд,
Г - световая чув-ть - геометрический ряд (логарифмы),
Везде по оси ординат отложены величины порогов или чувствительности, а по оси абсцисс - время в минутах.

Если установлено понижение сумеречного зрения, темновую адаптацию необходимо проверить на более точных адаптометрах, например на адаптометре Белостоцкого .

Прибор определяет кривую нарастания световой чувствительности глаза во время длительного (60 мин) пребывания в темноте и исследует раздельно световую чувствительность центра и периферии сетчатой оболочки в короткое (3-4 мин) время, а также определяет чувствительность адаптированного к темноте глаза к ярком свет.

Перед началом исследования темновой адаптации необходимо получить максимальную световую адаптацию Для этого обследуемый в течение 20 мин смотрит на равномерно и ярко освещенный экран. Затем пациента помещают в полную темноту (под ширму адаптометра) и определяют световую чувствительность глаз.

Через интервалы 5 мин больному предлагают смотреть на слабо освещенный экран. По мере того как световая чувствительность нарастает, восприятие яркости постепенно снижается. С помощью диафрагмы можно достигнуть постепенного и равномерного уменьшения освещения примерно в 80 млн раз по сравнению с освещением при открытой диафрагме. Исследование проводят в течение 1 ч.

Световая чувствительность глаза быстро возрастает в темноте и через 40-45 мин достигает максимума, возрастая в 50 000-100 000 раз, а иногда и более по сравнению с чувствительностью глаза на свету. Особенно быстро темновая адаптация нарастает в первые 20 мин.

Изменения световой чувствительности в виде кривых стали применять после работ Нагеля (Nagel, 1907) и Пипера (Piper, 1903), т. е. уже почти 60 лет. Сначала для этого применяли арифметический ряд. Но такой способ изображения оказался неудобным потому, что колебания чувствительности при темновой и световой адаптации могут достигать нескольких десятков и даже сотен тысяч раз, что технически неудобно показать на графике.

Поскольку нарастание порогов световой чувствительности обладает огромным размахом, также удобнее представлять нарастание световой чувствительности в логарифмах чисел, обозначающих световую чувствительность. По оси абсцисс откладывают время пребывания в темноте в минутах, а по оси ординат - пороги световой чувствительности, выраженные в логарифмах.

Световая чувствительность и ход адаптации - исключительно тонкие функции, они зависят от возраста, питания, настроения, различных побочных раздражителей.

Расстройства темновой адаптации

Для того чтобы судить о патологических изменениях световой чувствительности, нужно представлять, каковы ее величины для здорового, нормального глаза. В глазной клинике наибольшее распространение получило исследование световой чувствительности в ходе темновой адаптации. Поэтому необходимо знать, каков уровень световой чувствительности в начале темновой адаптации и на разных ее этапах, а также ее максимальный уровень по окончании темновой адаптации.

Этот вопрос, на первый взгляд довольно простой, при ближайшем знакомстве с ним оказывается не таким очевидным. Абсолютная световая чувствительность зависит от чрезвычайно большого количества разнообразных условий и поэтому является очень лабильной функцией. Например, Н. П. Рипак (1953) исследовал 110 здоровых лиц прибором АДМ и нашел, что максимальный уровень абсолютной световой чувствительности через 60 минут темновой адаптации варьирует в пределах от 130,000 относительных единиц до 1,400,000 единиц световой чувствительности. На этом основании, статистически обработав материал, Н. П. Рипак установил понятие зоны нормы абсолютной световой чувствительности. Эти показатели нужно считать действительными только для аппарата данной системы и для данных условий исследования. При работе с аппаратами других конструкций нужно всегда предварительно установить свои собственные нормативы световой чувствительности, хотя это и не является легкой задачей.

В том случае, если заболевание глаза одностороннее, то второй клинически здоровый глаз является хорошим контролем для больного глаза. Поэтому всегда рекомендуется производить исследование каждого глаза в отдельности. Нужно также помнить, что пороги при определении абсолютной световой чувствительности несколько ниже, если исследование будет производиться бинокулярно, а не монокулярно. Это происходит вследствие бинокулярной суммации раздражителей.

Расстройства темновой адаптации могут проявляться в виде повышения порога раздражения , т.е. светочувствительность даже при длительном пребывании в темноте остается пониженной и не достигает нормальной величины, или в виде замедления адаптации , когда светочувствительность нарастает позднее, чем в норме, но постепенно доходит до нормальной или почти нормальной величины.

Чаще встречается комбинация указанных видов расстройств. И тот и другой вид нарушения указывает на понижение световой чувствительности.

Расстройство темновой адаптации резко снижает способность ориентироваться в пространстве при пониженном освещении.

Гемералопия возможна при некоторых заболеваниях сетчатки (пигментная дистрофия, ретиниты, хориоретиниты, отслойка сетчатки) и зрительного нерва (атрофия, застойный диск), при высоких степенях близорукости.

В этих случаях гемералопия вызвана необратимыми анатомическими дефектами в зрительно-нервном аппарате - разрушением окончаний палочек и колбочек. Понижение темновой адаптации - один из ранних признаков глаукомы. Это наблюдается и при заболеваниях печени, чаще при циррозе. В печени содержится много витамина А, ее заболевание вызывает авитаминоз А, в результате снижается тем новая адаптация.

Кроме того, при циррозе печени в пигментном эпителии откладывается холестерин, что препятствует нормальной выработке зрительных пигментов.

Гемералопия как функциональное нарушение сетчатки может возникнуть при нарушениях питания, общем гиповитаминозе с преимущественным дефицитом витамина А. Витамин А, как известно, необходим для выработки зрительного пурпура. Довольно часто гемералопия сочетается с появлением на конъюнктиве глазного яблока ксеротических бляшек рядом с роговицей на уровне ее горизонтального меридиана в виде суховатых участков эпителия.

Такая гемералопия обратима и проходит довольно быстро, если в пищу вводить содержащие витамин А продукты, свежие овощи, фрукты, печень и т.д.



Понравилась статья? Поделитесь с друзьями!