Фоновое излучение вселенной. Микроволновое фоновое излучение

МИКРОВОЛНОВОЕ ФОНОВОЕ ИЗЛУЧЕНИЕ

(реликтовое излучение) - космич. излучение, имеющее спектр, характерный для абсолютно чёрного тела при темп-ре ок. 3 К; определяет интенсивность фонового излучения Вселенной в диапазоне сантиметровых, миллиметровых и субмиллиметровых радиоволн. Характеризуется высочайшей степенью изотропии (интенсивность практически одинакова во всех направлениях). Открытие M. ф. и. [А. Пензиас (A. Penzias), P. Вильсон (R. Wilson), 1965] подтвердило т. н. горячей Вселенной теорию, дало важнейшее эксперим. свидетельство в пользу представлений об изотропии расширения Вселенной и её однородности в больших масштабах (см. Космология).

Согласно теории горячей Вселенной, вещество расширяющейся Вселенной имело в прошлом намного более высокую плотность, чем ныне и чрезвычайно высокую темп-ру. При T > 10 8 К первичная плазма, состоявшая из протонов, ионов гелия и электронов, непрерывно излучающих, рассеивающих и поглощающих фотоны, находилась в полном термодинамич. равновесии с излучением. В ходе последующего расширения Вселенной темп-pa плазмы и излучения падала. Взаимодействие частиц с фотонами уже не успевало за характерное время расширения заметно влиять на спектр излучения (оптическая толщина Вселенной по тормозному излучению к этому времени стала много меньше единицы). Однако даже при полном отсутствии взаимодействия излучения с веществом в ходе расширения Вселенной чернотельный спектр излучения остаётся чернотельным, уменьшается лишь его темп-pa. Пока темп-pa превышала 4000 К, первичное вещество было полностью ионизовано, пробег фотонов от одного акта рассеяния до другого был много меньше горизонта событий во Вселенной. При T < 4000 К произошла рекомбинация протонов и электронов, плазма превратилась в смесь нейтральных атомов водорода и гелия. Вселенная стала полностью прозрачной для излучения. В ходе её дальнейшего расширения темп-pa излучения продолжала падать, но чернотельный характер излучения сохранился как реликт или "память" о раннем периоде эволюции мира. Это излучение было обнаружено сначала на волне 7,35 см, а затем и на др. волнах (от 0,6 мм до 50 см).

Темп-pa M. ф. и. с точностью до 10% оказалась равной 2,7 К. Cp. энергия фотонов этого излучения крайне мала - в 3000 раз меньше энергии фотонов видимого света, но число фотонов M. ф. и. очень велико. На каждый атом во Вселенной чриходится ~ 10 9 фотонов M. ф. и. (в ср. 400-500 фотонов/см 3).

Наряду с прямым методом определения темп-ры M. ф. и.- по кривой распределения энергии в спектре излучения ( см. Планка закон излучения )- существует также косвенный метод - по населённости ниж. уровней энергии молекул в межзвёздной среде. При поглощении фотона M. ф. и. молекула переходит из осн. состояния в возбуждённое. Чем выше темп-pa излучения, тем выше плотность фотонов с энергией, достаточной для возбуждения молекул, и тем большая их доля находится на возбуждённом уровне. По кол-ву возбуждённых молекул (населённости уровней) можно судить о темп-ре возбуждающего излучения. Так, наблюдения оптич. линий поглощения межзвёздного циана (CN) показывают, что его ниж. уровни энергии населены так, как будто молекулы CN находятся в поле трехградусного чернотельного излучения. Этот факт был установлен (но не понят в полной мере) ещё в 1941, задолго до обнаружения M. ф. и. прямыми наблюдениями.

Ни звёзды и радиогалактики, ни горячий межгалак-тич. газ, ни переизлучение видимого света межзвёздной пылью не могут дать излучения, приближающегося по свойствам к M. ф. и.; суммарная энергия этого излучения слишком велика, и спектр его не похож ни на спектр звёзд, ни на спектр радиоисточников (рис. 1). Этим, а также практически полным отсутствием флуктуации интенсивности по небесной сфере (мелкомасштабных угл. флуктуации) доказывается космологич. реликтовое происхождение M. ф. и.

Рис. 1. Спектр микроволнового фонового излучения Вселенной [интенсивность в эрг/(см 2 *с*ср*Гц)]. Эксперим. точки нанесены с указанием погрешностей измерений. Точки CN, CH соответствуют результатам определения верхней границы (показана стрелкой) температуры излучения по населённости уровней соответствующих межзвёздных молекул.

Флуктуации M. ф. и. Обнаружение небольших различий в интенсивности M. ф. и., принимаемого от разных участков небесной сферы, позволило бы сделать ряд выводов о характере первичных возмущений в веществе, приведших в дальнейшем к образованию галактик и скоплений галактик. Совр. галактики и их скопления образовались в результате роста незначительных по амплитуде неоднородностей плотности вещества, существовавших до рекомбинации водорода во Вселенной (см. Первичные флуктуации во Вселенной). Для любой космологич. модели можно найти закон роста амплитуды неоднородностей в ходе расширения Вселенной. Если знать, каковы были амплитуды неоднородности вещества в момент рекомбинации, можно установить, за какое время они могли вырасти и стать порядка единицы. После этого области с плотностью, значительно превышающей среднюю, должны были выделиться из общего расширяющегося фона и дать начало галактикам и их скоплениям (см. Крупномасштабная структура Вселенной). "Рассказать" об амплитуде начальных неоднородностей плотности в момент рекомбинации может лишь реликтовое излучение. Поскольку до рекомбинации излучение было жёстко связано с веществом (электроны рассеивали фотоны), то неоднородности в пространственном распределении вещества приводили к пеоднородностям плотности энергии излучения, т. е. к различию темп-ры излучения в разных по плотности областях Вселенной. Когда после рекомбинации вещество перестало взаимодействовать с излучением и стало для него прозрачным, M. ф. и. должно было сохранить всю информацию о неоднородностях плотности во Вселенной в период рекомбинации. Если неоднородности существовали, то темп-pa M. ф. и. должна флуктуировать, зависеть от направления наблюдения. Однако эксперименты по обнаружению ожидаемых флуктуации пока не дали измеримых значений. Они позволяют показать лишь верх, пределы значений флуктуации. В малых угл. масштабах (от одной угл. минуты до шести градусов дуги) флуктуации не превышают 10 -4 К. Поиски флуктуации M. ф. и. осложняются также тем, что вклад во флуктуации фона дают дискретные космич. радиоисточники, флуктуирует излучение атмосферы Земли и т. д. Эксперименты в больших у гл. масштабах также показали, что темп-ра M. ф. и. практически не зависит от направления наблюдения: отклонения не превышают 4*10 -3 К. Полученные данные позволили снизить оценку степени анизотропии расширения Вселенной в 100 раз по сравнению с оценкой по данным прямых наблюдений "разбегающихся" галактик.

M. ф. и. как "новый эфир". M. ф. и. изотропно лишь в системе координат, связанной с "разбегающимися" галактиками, в т. н. сопутствующей системе отсчёта (эта система расширяется вместе с Вселенной). В любой др. системе координат интенсивность излучения зависит от направления. Этот факт открывает возможность измерения скорости движения Солнца относительно системы координат, связанной с M. ф. и. Действительно, в силу Доплера аффекта фотоны, распространяющиеся навстречу движущемуся наблюдателю, имеют более высокую энергию, нежели догоняющие его, несмотря на то, что в системе, связанной с M. ф. и., их энергии равны. Поэтому и темп-pa излучения для такого наблюдателя оказывается зависящей от направления: где - средняя по небу темп-pa излучения, - скорость наблюдателя,- угол между вектором скорости и направлением наблюдения.


Рис. 2. Распределение яркости микроволнового фонового излучения на небесной сфере. Цифры характеризуют отклонения от средней по всей сфере температуры микроволнового фона в мК.

Анизотропия реликтового излучения, связанная с движением Солнечной системы относительно поля этого излучения, к настоящему времени твёрдо установлена (рис. 2), она имеет дипольный характер; в направлении на созвездие Льва темп-pa M. ф. и. на 3,5*10 -3 К превышает среднюю, а в противоположном направлении (созвездие Водолея) на столько же ниже средней. Следовательно, Солнце (вместе с Землёй) движется относительно M. ф. и. со скоростью ок. 400 км/с по направлению к созвездию Льва. Точность наблюдений столь высока, что экспериментаторы фиксируют скорость движения Земли вокруг Солнца, составляющую 30 км/с. Учёт скорости движения Солнца вокруг центра Галактики позволяет определить скорость движения Галактики относительно M. ф. и. Она составляет км/с. В принципе, существует метод, позволяющий определить скорости богатых скоплений галактик относительно реликтового излучения (см. Скопления галактик).

Спектр M. ф. и. На рис. 1 приведены существующие эксперим. данные о M. ф. и. и планковская кривая распределения энергии в спектре равновесного излучения абсолютно чёрного тела с темп-рой Эксперим. точки хорошо согласуются с теоретич. кривой, что служит веским подтверждением модели горячей Вселенной.

Отметим, что в диапазоне сантиметровых и дециметровых волн измерения темп-ры M. ф. и. возможны с поверхности Земли. В миллиметровом и особенно в субмиллиметровом диапазонах излучение атмосферы препятствует наблюдениям M. ф. и., поэтому измерения проводятся широкополосными болометрами, установленными на воздушных шарах (баллонах) и ракетах. Ценные данные о спектре M. ф. и. в миллиметровой области получены из наблюдений линий поглощения молекул межзвёздной среды в спектрах горячих звёзд. Выяснилось, что осн. вклад в плотность энергии M. ф. и. даёт излучение с длиной волны от 6 до 0,6 мм, темп-pa к-рого близка к 3 К. В этом диапазоне длин волн плотность энергии M. ф. и.эВ/см 3 .

Один из экспериментов по определению флуктуации M. ф. и., его дипольной компоненты и верх, границы квадрупольного излучения был осуществлён на ИСЗ "Прогноз-9" (СССР, 1983). Угл. разрешение аппаратуры составляло ок. Зарегистрированный тепловой контраст не превышал К.

Многие из космологич. теорий и теорий образования галактик, к-рые рассматривают процессы аннигиляции. вещества и антивещества, диссипацию развитой турбулентности, крупномасштабных потенциальных движений, испарение первичных чёрных дыр малой массы, распад нестабильных элементарных частиц, предсказывают значит, энерговыделение на ранних стадиях расширения Вселенной. В то же время любое выделение энергии на этапе, когда темп-ра M. ф. и. менялась от 3·10 8 К до 3 К, должно было заметно исказить его чернотельный спектр. T. о., спектр M. ф. и. несёт информацию о тепловой истории Вселенной. Более того, эта информация оказывается дифференцированной: выделение энергии на каждом из трёх этапов расширения

Вызывает специфич. искажение спектра. На первом этапе сильнее всего искажается спектр в ДВ-области, на втором и третьем - в коротковолновой. Свой вклад в искажение спектра в КВ-области вносит уже сам процесс рекомбинации. Фотоны, испускаемые при рекомбинации, обладают энергией ок. 10 эВ, что в десятки раз превышает ср. энергию фотонов равновесного излучения той эпохи (при К). Таких энергичных фотонов крайне мало (от общего их числа). Поэтому рекомбинацион ное излучение, возникающее при образовании нейтральных атомов, должно было сильно исказить спектр M. ф. и. на волнах

Ещё один нагрев вещество Вселенной могло испытать при образовании галактик. Спектр M. ф. Комптона эффект). Особенно сильные изменения происходят в этом случае в КВ-области спектра. Одна из кривых, демонстрирующих возможное искажение спектра M. ф. и., приведена на рис. 1 (шриховая кривая). Имеющиеся изменения в спектре M. ф. и. показали, что вторичный разогрев вещества во Вселенной произошёл много позже рекомбинации.

фотона возрастает во много раз, и радиофотон превращается в фотон рентг. излучения, энергия же электрона меняется незначительно. Поскольку этот процесс повторяется многократно, электрон постепенно теряет всю энергию. Наблюдаемое со спутников и ракет рентг. фоновое излучение, по-видимому, частично обязано своим происхождением этому процессу.

Протоны и ядра сверхвысоких энергий также подвержены воздействию фотонов M. ф. и.: при столкновениях с ними ядра расщепляются, а соударения с протонами приводят к рождению новых частиц (электроп-позитронных пар, пионов и т. д.). В результате энергия протонов быстро уменьшается до пороговой, ниже к-рой рождение частиц становится невозможным но законам сохранения энергии и импульса. Именно с этими процессами связывают практич. отсутствие в космич. лучах частиц с энергией а также малое кол-во тяжёлых ядер.

Лит.: Зельдович Я. Б., "Горячая модель" Вселенной, "УФН", 1966, т. 89, с. 647; Вайнберг С., Первые три минуты, пер. с англ., M., 1981. P. А. Сюняев.

  • - 1) процесс возбуждения электромагнитных волн в окружающей среде колеблющимися заряженными частицами; 2) излучением называют также сами электромагнитные волны в процессе их распространения в той или иной среде...

    Начала современного Естествознания


Микроволновое фоновое излучение (реликтовое излучение)

- космич. излучение, имеющее спектр, характерный для при темп-ре ок. ЗК; определяет интенсивность фонового излучения Вселенной в коротковолновом радиодиапазоне (на сантиметровых, миллиметровых и субмиллиметровых волнах). Характеризуется высочайшей степенью изотропии (интенсивность практически одинакова во всех направлениях). Открытие М. ф. и. (А. Пензиас, Р. Вильсон, 1965 г., США) подтвердило т.н. , дало важнейшее экспериментальное свидетельство в пользу представлений об изотропии расширения Вселенной и её однородности в больших масштабах (см. ).

Согласно модели горячей Вселенной, вещество расширяющейся Вселенной имело в прошлом намного более высокую плотность, чем сейчас, и чрезвычайно высокую темп-ру. При Т > 10 8 К первичная , состоявшая из протонов, ионов гелия и электронов, непрерывно излучающих, рассеивающих и поглощающих фотоны, находилась в полном с излучением. В ходе последующего расширения Вселенной темп-ра плазмы и излучения падала. Взаимодействие частиц с фотонами уже не успевало за характерное время расширения заметно влиять на спектр излучения ( Вселенной по тормозному излучению к этому времени стала много меньше единицы). Однако даже при полном отсутствии взаимодействия излучения с веществом в ходе расширения Вселенной чернотельный спектр излучения остаётся чернотельным, уменьшается лишь темп-ра излучения. Пока темп-ра превышала 4000 К, первичное вещество было полностью ионизовано, пробег фотонов от одного акта рассеяния до др. был много меньше . При 4000 К произошла протонов и электронов, плазма превратилась в смесь нейтральных атомов водорода и гелия, Вселенная стала полностью прозрачной для излучения. В ходе её дальнейшего расширения темп-ра излучения продолжала падать, но чернотельный характер излучения сохранился как реликт, как "память" о раннем периоде эволюции мира. Это излучение обнаружили сначала на волне 7,35 см, а затем и на др. волнах (от 0,6 мм до 50 см).

Темп-ра М. ф. и. с точностью до 10% оказалась равной 2,7 К. Ср. энергия фотонов этого излучения крайне мала - в 3000 раз меньше энергии фотонов видимого света, но число фотонов М. ф. и. очень велико. На каждый атом во Вселенной приходится ~ 10 9 фотонов М. ф. и. (в среднем 400-500 фотонов в 1 см 3).

Наряду с прямым методом определения темп-ры М. ф. и. - по кривой распределения энергии в спектре излучения (см. ), существует также косвенный метод - по населённости нижних уровней энергии молекул в межзвёздной среде. При поглощении фотона М. ф. и. молекула переходит из осн. состояния в возбуждённое. Чем выше темп-ра излучения, тем выше плотность фотонов с энергией, достаточной для возбуждения молекул, и тем большая их доля находится на возбуждённом уровне. По количеству возбуждённых молекул (населённости уровней) можно судить о темп-ре возбуждающего излучения. Так, наблюдения оптич. линий поглощения межзвёздного циана (CN) показывают, что его нижние уровни энергии населены так, как будто молекулы CN находятся в поле трёхградусного чернотельного излучения. Этот факт был установлен (но не понят в полной мере) ещё в 1941 г., задолго до обнаружения М. ф. и. прямыми наблюдениями.

Ни звёзды и радиогалактики, ни горячий межгалактич. газ, ни переизлучение видимого света межзвёздной пылью не могут дать излучения, приближающегося по св-вам к М. ф. и.: суммарная энергия этого излучения слишком велика, и спектр его не похож ни на спектр звёзд, ни на спектр радиоисточников (рис. 1). Этим, а также практически полным отсутствием флуктуации интенсивности по небесной сфере (мелкомасштабных угловых флуктуации) доказывается космологич., реликтовое происхождение М. ф. и.

Флуктуации М. ф. и.
Обнаружение небольших различии в интенсивности М. ф. и., принимаемого от разных участков небесной сферы, позволило бы сделать ряд выводов о характере первичных возмущении в веществе, приведших в дальнейшем к образованию галактик и скоплений галактик. Современные галактики и их скопления образовались в результате роста незначительных по амплитуде неоднородностей плотности вещества, существовавших до рекомбинации водорода во Вселенной. Для любой космологич. модели можно найти закон роста амплитуды неоднородностей в ходе расширения Вселенной. Если знать, каковы были амплитуды неоднородности вещества в момент рекомбинации, можно установить, за какое время они могли вырасти и стать порядка единицы. После этого области с плотностью, значительно превышающей среднюю, должны были выделиться из общего расширяющегося фона и дать начало галактикам и их скоплениям. "Рассказать" об амплитуде начальных неоднородностей плотности в момент рекомбинации может лишь реликтовое излучение. Поскольку до рекомбинации излучение было жёстко связано с веществом (электроны рассеивали фотоны), то неоднородности в пространственном распределении вещества приводили к неоднородностям плотности энергии излучения, т. е. к различию темп-ры излучения в разных по плотности областях Вселенной. Когда после рекомбинации вещество перестало взаимодействовать с излучением и стало для него прозрачным, М. ф. и. должно было сохранить всю информацию о неоднородпостях плотности во Вселенной в период рекомбинации. Если неоднородности существовали, то темп-ра М. ф. и. должна флуктуировать, зависеть от направления наблюдения. Однако эксперименты по обнаружению ожидаемых флуктуации пока не обладают достаточно высокой точностью. Они дают лишь верхние пределы значений флуктуации. В малых угловых масштабах (от одной угловой минуты до шести градусов дуги) флуктуации не превышают 10 -4 К. Поиски флуктуации М. ф. и. осложняются также тем, что вклад во флуктуации фона дают дискретные космич. радиоисточники, флуктуирует излучение атмосферы Земли и т. д. Эксперименты в больших угловых масштабах также показали, что темп-ра М. ф. и. практически не зависит от направления наблюдения: отклонения не превышают К. Полученные данные позволили снизить оценку степени анизотропии расширения Вселенной в 100 раз по сравнению с оценкой по данным прямых наблюдений "разбегающихся" галактик.

М. ф. и. как "новый эфир".
М. ф. и. изотропно лишь в системе координат, связанной с "разбегающимися" галактиками, в т.н. сопутствующей системе отсчёта (эта система расширяется вместе с Вселенной). В любой др. системе координат интенсивность излучения зависит от направления. Этот факт открывает возможность измерения скорости движения Солнца относительно системы координат, связанной с М. ф. и. Действительно, в силу Доплера, эффекта фотоны, распространяющиеся навстречу движущемуся наблюдателю, имеют более высокую энергию, нежели догоняющие его, несмотря на то, что в системе, связанной с М. ф. и., их энергии равны. Поэтому и темп-ра излучения для такого наблюдателя оказывается зависящей от направления: , где T 0 - ср. по небу темп-ра излучения, v - скорость наблюдателя, - угол между вектором скорости и направлением наблюдения.

Дипольная анизотропия реликтового излучения, связанная с движением Солнечной системы относительно поля этого излучения, к настоящему времени твердо установлена (рис. 2): в направлении на созвездие Льва темп-ра М. ф. и. на 3,5 мК превышает среднюю, а в противоположном направлении (созвездие Водолея) на столько же ниже средней. Следовательно, Солнце (вместе с Землёй) движется относительно М. ф. и. со скоростью ок. 400 км/с по направлению к созвездию Льва. Точность наблюдений столь высока, что экспериментаторы фиксируют скорость движения Земли вокруг Солнца, составляющую 30 км/с. Учёт скорости движения Солнца вокруг центра Галактики позволяет определить скорость движения Галактики относительно М. ф. и. Она составляет 600 км/с. В принципе, существует метод, позволяющий определить скорости богатых скоплений галактик относительно реликтового излучения (см. ).

Спектр М. ф. и.
На рис. 1 приведены существующие экспериментальные данные о М. ф. и. и планковская кривая распределения энергии в спектре равновесного излучения абсолютно чёрного тела, имеющего темп-ру 2,7 К. Положения экспериментальных точек хорошо согласуются с теоретич. кривой. Это служит веским подтверждением модели горячей Вселенной.

Отметим, что в диапазоне сантиметровых и дециметровых волн измерения темп-ры М. ф. и. возможны с поверхности Земли при помощи радиотелескопов. В миллиметровом и особенно в субмиллиметровом диапазонах излучение атмосферы препятствует наблюдениям М. ф. и., поэтому измерения проводятся широкополосными , установленными на воздушных шарах (баллонах) и ракетах. Ценные данные о спектре М. ф. и. в миллиметровой области получены из наблюдений линий поглощения молекул межзвездной среды в спектрах горячих звезд. Выяснилось, что осн. вклад в плотность энергии М. ф. и. даёт излучение с от 6 до 0,6 мм, темп-ра к-рого близка к 3 К. В этом диапазоне длин волн плотность энергии М. ф. и. =0,25 эВ/см 3 .

Многие из космологич. теорий и теорий образования галактик, к-рые рассматривают процессы вещества и антивещества, диссипацию развитой , крупномасштабных потенциальных движений, испарение первичных малой массы, распад нестабильных , предсказывают значит. энерговыделение на ранних стадиях расширения Вселенной. В то же время любое выделение энергии align="absmiddle" width="127" height="18"> на этапе, когда темп-ра М. ф. и. менялась от до 3 К, должно было заметно исказить его чернотельный спектр. Т.о., спектр М. ф. и. несёт информацию о тепловой истории Вселенной. Более того, эта информация оказывается дифференцированной: выделение энергии на каждом из трёх этапов расширения ( K; 3Т 4000 К). Таких энергичных фотонов крайне мало (~10 -9 от общего их числа). Поэтому рекомбинационное излучение, возникающее при образовании нейтральных атомов, должно было сильно исказить спектр М. ф. и. на волнах 250 мкм.

Ещё один нагрев вещество могло испытать при образовании галактик. Спектр М. ф. и. при этом также мог измениться, поскольку рассеяние реликтовых фотонов на горячих электронах увеличивает энергию фотонов (см. ). Особенно сильные изменения происходят в этом случае в коротковолновой области спектра. Одна из кривых, демонстрирующих возможное искажение спектра М. ф. и., приведена на рис. 1 (штриховая кривая). Имеющиеся изменения в спектре М. ф. и. показали, что вторичный разогрев вещества во Вселенной произошел много позже рекомбинации.

М. ф. и. и космические лучи.

Космич. лучи (протоны и ядра высоких энергий; ультрарелятивнстские электроны, определяющие радиоизлучение нашей и др. галактик в метровом диапазоне) несут информацию о гигантских взрывных процессах в звездах и ядрах галактик, при к-рых они рождаются. Как оказалось, время жизни частиц высоких энергий во Вселенной во многом зависит от фотонов М. ф. и., обладающих малой энергией, но чрезвычайно многочисленных - их в миллиард раз больше, чем атомов во Вселенной (это соотношение сохраняется в процессе расширения Вселенной). При столкновении ультрарелятивистских электронов космич. лучей с фотонами М. ф. и. происходит перераспределение энергии и импульса. Энергия фотона возрастает во много раз, и радиофотон превращается в фотон рентг. излучения, энергия же электрона меняется незначительно. Поскольку этот процесс повторяется многократно, электрон постепенно теряет всю энергию. Наблюдаемое со спутников и ракет рентг. фоновое излучение, по-видимому, частично обязано своим происхождением этому процессу.

Протоны и ядра сверхвысоких энергий также подвержены воздействию фотонов М. ф. и.: при столкновениях с ними ядра расщепляются, а соударения с протонами приводят к рождению новых частиц (электрон-позитронных пар, -мезонов и т.д.). В результате энергия протонов быстро уменьшается до пороговой, ниже к-рой рождение частиц становится невозможным по законам сохранения энергии и импульса. Именно с этими процессами связывают практич. отсутствие в космич. лучах частиц с энергией 10 20 эВ, а также малое количество тяжёлых ядер.

Лит.:
Зельдович Я.Б., "Горячая" модель Вселенной, УФН, 1966, т. 89, в. 4, с. 647; Вайнберг С., Первые три минуты, пер. с англ., М., 1981.

Главная > Документ

ФОНОВОЕ ИЗЛУЧЕНИЕ ВСЕЛЕННОЙ. Фоновое излучение (реликтовое излучение) - космическое излучение, имеющее спектр, характерный для абсолютно четного тела, при темп-ре около ЗК; определяет интенсивность фонового излучения Вселенной в коротковолновом радиодиапазоне (на сантиметровых, миллиметровых и субмиллиметровых волнах). Характеризуется высочайшей степенью изотропии (интенсивность практически одинакова во всех направлениях). Существование теплового излучения с температурой в несколько кельвинов было предсказано в 1946 г. Геогием Гамовым при разработке модели горячей Вселенной, а открыли его в 1965 г. радиоастрономы Арно Пензиас и Роберт Вилсон (США). Открытие дало важнейшее экспериментальное свидетельство в пользу представлений об изотропии расширения Вселенной и её однородности в больших масштабах. (Термин "реликтовое излучение" ввел советский астрофизик И.С.Шкловский (1916-1985).) Согласно модели горячей Вселенной, вещество расширяющейся Вселенной имело в прошлом намного более высокую плотность, чем сейчас, и чрезвычайно высокую темп-ру. При
Т > 10 8 К первичная плазма, состоявшая из протонов, ионов гелия и электронов, непрерывно излучающих, рассеивающих и поглощающих фотоны, находилась в полном термодинамическом равновесии с излучением. В ходе последующего расширения Вселенной темп-ра плазмы и излучения падала. Пока темп-ра превышала 4000 К, первичное вещество было полностью ионизовано, пробег фотонов от одного акта рассеяния до другого был много меньше горизонта Вселенной. При T ≈ 4000 К произошла рекомбинация протонов и электронов, плазма превратилась в смесь нейтральных атомов водорода и гелия, Вселенная стала полностью прозрачной для излучения. В ходе её дальнейшего расширения темп-ра излучения продолжала падать, но чернотельный характер излучения сохранился как реликт, как "память" о раннем периоде эволюции мира. Это излучение обнаружили сначала на волне 7,35 см, а затем и на др. волнах (от 0,6 мм до 50 см). Темп-ра микроволнового фонового излучения (МФИ) с точностью до 10% оказалась равной 2,7 К. Средняя энергия фотонов этого излучения крайне мала - в 3000 раз меньше энергии фотонов видимого света, но число фотонов МФИ очень велико. На каждый атом во Вселенной приходится ~ 10 9 фотонов МФИ (в среднем 400-500 фотонов в 1 см 3). Наряду с прямым методом определения темп-ры МФИ - по кривой распределения энергии в спектре излучения (закон Планка), существует также косвенный метод - по населённости нижних уровней энергии молекул в межзвёздной среде. При поглощении фотона МФИ молекула переходит из основного состояния в возбуждённое. Чем выше темп-ра излучения, тем выше плотность фотонов с энергией, достаточной для возбуждения молекул, и тем большая их доля находится на возбуждённом уровне. По количеству возбуждённых молекул (населённости уровней) можно судить о темп-ре возбуждающего излучения. Так, наблюдения оптических линий поглощения межзвёздного циана (CN) показывают, что его нижние уровни энергии населены так, как будто молекулы CN находятся в поле трёхградусного чернотельного излучения. Этот факт был установлен (но не понят в полной мере) ещё в 1941 г., задолго до обнаружения МФИ прямыми наблюдениями. Ни звёзды и радиогалактики, ни горячий межгалактический газ, ни переизлучение видимого света межзвёздной пылью не могут дать излучения, приближающегося по свойствам к МФИ: суммарная энергия этого излучения слишком велика, и спектр его не похож ни на спектр звезд, ни на спектр радиоисточников. Этим, а также практически полным отсутствием флуктуации интенсивности по небесной сфере доказывается реликтовое происхождение МФИ. Флуктуации МФИ. Обнаружение небольших различий в интенсивности МФИ, принимаемого от разных участков небесной сферы, позволило бы сделать ряд выводов о характере первичных возмущении в веществе, приведших в дальнейшем к образованию галактик и скоплений галактик. Современные галактики и их скопления образовались в результате роста незначительных по амплитуде неоднородностей плотности вещества, существовавших до рекомбинации водорода во Вселенной. Для любой космологической модели можно найти закон роста амплитуды неоднородностей в ходе расширения Вселенной. Если знать, каковы были амплитуды неоднородности вещества в момент рекомбинации, можно установить, за какое время они могли вырасти и стать порядка единицы. После этого области с плотностью, значительно превышающей среднюю, должны были выделиться из общего расширяющегося фона и дать начало галактикам и их скоплениям. "Рассказать" об амплитуде начальных неоднородностей плотности в момент рекомбинации может лишь реликтовое излучение. Поскольку до рекомбинации излучение было жёстко связано с веществом (электроны рассеивали фотоны), то неоднородности в пространственном распределении вещества приводили к неоднородностям плотности энергии излучения, т.е. к различию темп-ры излучения в разных по плотности областях Вселенной. Когда после рекомбинации вещество перестало взаимодействовать с излучением и стало для него прозрачным, МФИ должно было сохранить всю информацию о неоднородпостях плотности во Вселенной в период рекомбинации. Если неоднородности существовали, то темп-ра МФИ должна флуктуировать, зависеть от направления наблюдения. Однако эксперименты по обнаружению ожидаемых флуктуаций пока не обладают достаточно высокой точностью. Они дают лишь верхние пределы значений флуктуации. В малых угловых масштабах (от одной угловой минуты до шести градусов дуги) флуктуации не превышают 10 -4 К. Поиски флуктуации МФИ осложняются также тем, что вклад во флуктуации фона дают дискретные космические радиоисточники, флуктуирует излучение атмосферы Земли и т. д. Эксперименты в больших угловых масштабах также показали, что темп-ра МФИ практически не зависит от направления наблюдения: отклонения не превышают 3∙10 -3 К. Полученные данные позволили снизить оценку степени анизотропии расширения Вселенной в 100 раз по сравнению с оценкой по данным прямых наблюдений "разбегающихся" галактик. МФИ изотропно лишь в системе координат, связанной с "разбегающимися" галактиками, в т.н. сопутствующей системе отсчёта (эта система расширяется вместе со Вселенной). В любой др. системе координат интенсивность излучения зависит от направления. Этот факт открывает возможность измерения скорости движения Солнца относительно системы координат, связанной с МФИ Действительно, в силу Доплера эффекта, фотоны распространяющиеся навстречу движущемуся наблюдателю, имеют более высокую энергию, нежели догоняющие его, несмотря на то, что в системе, связанной с МФИ, их энергии равны. Поэтому и темп-ра излучения для такого наблюдателя оказывается зависящей от направления: T =T 0 (1+ v / c cos θ ), где T 0 – средняя по небу темп-ра излучения, v - скорость наблюдателя, θ – угол между вектором скорости и направлением наблюдения. Дипольная анизотропия реликтового излучения, связанная с движением Солнечной системы относительно поля этого излучения, к настоящему времени твердо установлена: в направлении на созвездие Льва темп-ра МФИ на 3,5 мК превышает среднюю, а в противоположном направлении (созвездие Водолея) на столько же ниже средней. Следовательно, Солнце (вместе с Землёй) движется относительно МФИ со скоростью около 400 км/с по направлению к созвездию Льва. Точность наблюдений столь высока, что экспериментаторы фиксируют скорость движения Земли вокруг Солнца, составляющую 30 км/с. Учёт скорости движения Солнца вокруг центра Галактики позволяет определить скорость движения Галактики относительно МФИ. Она составляет 600 км/с. Спектр МФИ. На рис приведены существующие экспериментальные данные о МФИ и планковская кривая распределения энергии в спектре равновесного излучения абсолютно чёрного тела, имеющего темп-ру ≈ 2,7 К. Положения экспериментальных точек хорошо согласуются с теоретической кривой. Это служит веским подтверждением модели горячей Вселенной. МФИ и космические лучи. Космические лучи (протоны и ядра высоких энергий; ультрарелятивнстские электроны, определяющие радиоизлучение нашей и других галактик в метровом диапазоне) несут информацию о гигантских взрывных процессах в звездах и ядрах галактик, при к-рых они рождаются. Как оказалось, время жизни частиц высоких энергий во Вселенной во многом зависит от фотонов МФИ, обладающих малой энергией, но чрезвычайно многочисленных - их в миллиард раз больше, чем атомов во Вселенной (это соотношение сохраняется в процессе расширения Вселенной). При столкновении ультрарелятивистских электронов космических лучей с фотонами МФИ происходит перераспределение энергии и импульса. Энергия фотона возрастает во много раз, и радиофотон превращается в фотон рентг. излучения, энергия же электрона меняется незначительно. Поскольку этот процесс повторяется многократно, электрон постепенно теряет всю энергию. Наблюдаемое со спутников и ракет рентгеновское фоновое излучение, по-видимому, частично обязано своим происхождением этому процессу. Протоны и ядра сверхвысоких энергий также подвержены воздействию фотонов МФИ: при столкновениях с ними ядра расщепляются, а соударения с протонами приводят к рождению новых частиц (электрон-позитронных пар, -мезонов и т.д.). В результате энергия протонов быстро уменьшается до пороговой, ниже к-рой рождение частиц становится невозможным по законам сохранения энергии и импульса. Именно с этими процессами связывают практич. отсутствие в космич. лучах частиц с энергией 10 20 эВ, а также малое количество тяжёлых ядер. НЕМНОГО ЭКЗОТИКИ! В квантовой механике каждая частица или система частиц описывается определенным математическим выражением, которое носит название волновой функции. Зеркальное отражение ведет к замене пространственных координат х , y , z на –х , –y , –z . Если при этом знак функции меняется на противоположный, то четность частицы или системы равна –1 (нечетная). Если же функции не меняются, то четность равна +1 (четная). Закон сохранения четности, впервые сформулированный в 1925 г., утверждал, что общая четность (произведение четностей всех участвующих частиц) одинакова как до, так и после взаимодействия. Закон получил всеобщее признание благодаря тому, что он приводил к полезным теоретическим и экспериментальным результатам, а кроме того, вероятно, еще и потому, что отвечал желанию физиков находить в природе подобные симметрии. Большинство интуитивно чувствовало, что природа не отдает предпочтение правому над левым, или наоборот. НО!!! Было обнаружено, что имеются многочисленные экспериментальные подтверждения сохранения четности при сильном и электромагнитном взаимодействиях, но такое подтверждение полностью отсутствует в случае слабых взаимодействий. Гравитация – это настолько относительно слабая сила, что при взаимодействиях элементарных частиц ею обычно пренебрегают. Ни из одного из отчетов ученых не следовало подтверждения принципа сохранения четности при слабых взаимодействиях, хотя распад тета- и тау-частиц на пи-мезоны включают таковые. Я. и Ли быстро продумали, как провести эксперименты, позволявшие дать точный ответ на вопрос, сохраняется ли четность при слабых взаимодействиях. Поскольку они были теоретиками, то проведение экспериментов предоставили другим. Первыми, кто откликнулся на их призыв, были By Цзяньсюн из Колумбийского университета вместе с физиками из Национального бюро стандартов США. В 1956...1957 гг. после шести месяцев изнурительной подготовки к трудному эксперименту By поместила радиоактивный кобальт внутрь электромагнита и охладила его до температуры, близкой к абсолютному нулю, дабы свести до минимума влияние теплового движения. Кобальт испускает бета-частицы (электроны) и нейтрино (незаряженные частицы с нулевой массой). Поскольку атомы ведут себя как маленькие магниты, их направления параллельны электромагнитному полю, задающему определенную ориентацию. Если бы четность сохранялась при радиоактивном распаде кобальта, являющемся слабым взаимодействием, то в направлении северного и южного полюсов магнита вылетало бы равное число испускаемых электронов. By обнаружила, что больше электронов вылетает с южного конца. Четность не сохранялась. Последовавшие затем эксперименты других ученых почти немедленно подтвердили нарушение закона сохранения четности при распаде и превращении пи-мезонов в мю-мезоны и мю-мезонов в электроны и нейтрино (или антинейтрино). В мю-мезонах и электронах проявляется асимметрия направлений вперед-назад. При невыполнении закона четности Я. и Ли смогли предположить, что тета и тау и в самом деле одна частица, способная к двум различным типам распада. Нарушение закона сохранения четности вызвало целую лавину теоретических и экспериментальных исследований. С этими новыми исследованиями ученые связывали надежды на создание единой теории поля, объединяющей четыре известных вида взаимодействия, идея которой напрямую связана с именем Альберта Эйнштейна.

Реликтовое излучение – это фоновое микроволновое излучение, одинаковое во всех направления и имеет спектр, характерный для абсолютно черного тела при температуре ~ 2.7 K.

Считается, что по этому излучению можно узнать ответ на вопрос: откуда взялась ? По сути, реликтовое излучение – это то, что осталось от «строительства Вселенной», когда она начала только зарождаться после расширения плотной горячей плазмы. Для того чтобы проще было понять что такое реликтовое излучение сравним его с остатками человеческой деятельности. К примеру, человек изобретает что-то, другие это покупают, употребляют и выбрасывают отходы. Так вот мусор (тот самый результат жизни человека) – это и есть аналог реликтового излучения. По мусору можно узнать все – где человек был в определенный промежуток времени, что он ел, во что был одет, и даже о чем вел беседу. Также и реликтовое излучение. По его свойствам ученые пытаются построить картину момента большого взрыва, что возможно даст ответ на вопрос: как появилась Вселенная? Но все же, законы сохранения энергии создают определенные разногласия о возникновении вселенной, потому что ничто из ниоткуда не берется и никуда не девается. Динамика нашей вселенной – это переходы, смена свойств и состояний. Это можно наблюдать даже на нашей планете. К примеру, шаровая молния появляется в сгустке облака из частиц воды?! Как? Как так может быть? Никто не может объяснить происхождение тех или иных законов. Есть только моменты открытия этих законов, как и история открытия реликтового излучения.

Исторические факты изучения реликтового излучения

Впервые о реликтовом излучении упоминал Георгий Антонович Гамов (Джордж Гамов), когда пытался объяснить теорию большого взрыва. Он предполагал, что некое остаточное излучение заполняет пространство постоянно расширяющейся вселенной. В 1941 году, изучая поглощение одной из звезд скопления змееносца, Эндрю Мак-Келлар заметил спектральные линии поглощения света, которые соответствовали температуре 2,7 к. В 1948 году Георгий Гамов, Ральф Альферт и Роберт Герман установили температуру реликтового излучение в 5 К. Позже Георгий Гамов предположил температуру меньше известной в 3 К. Но это было лишь поверхностное изучение этого, на то время никому не известного факта. В начале 60-х годов Роберт Дикке и Яков Зельдович получили те же результаты, что и Гамов фиксируя волны, интенсивность излучения которых не зависела от времени. Пытливому уму ученых пришлось создать специальный радиотелескоп для более точной регистрации реликтового излучения. В начале 80-х годов с развитием космической промышленности реликтовое излучение стали изучать более тщательно с борта космического аппарата. Удалось установить свойство изотропии реликтового излучения (одинаковые свойства во всех направлениях, к примеру, на север 5 шагов за 10 секунд и на юг 5 шагов будут тоже за 10 секунд). На сегодняшний день продолжаются изучения свойств реликтового изучения и историю его возникновения.

Какими свойствами обладает реликтовое излучение?

Спектр реликтового излучения по данным, полученным с помощью инструмента FIRAS на борту спутника COBE

Спектр реликтового излучения равен 2,75 Кельвина, что аналогично саже охлажденной до такой температуры. Такое вещество всегда поглощает падающее на него излучение (свет), как бы вы на него не воздействовали. Хоть в магнитную катушку засовывайте, хоть ядерную бомбу кидайте, хоть прожектором светите. Такое тело тоже испускает малое излучение. Но это лишь доказывает тот факт, что нет ничего абсолютного. Всегда можно бесконечно долго выводить идеальный закон, добиваться максимума определенного свойства чего-либо, но всегда останется малая доля инерции.

Интересные факты, связанные с исследованием реликтового излучения

Максимальная частота реликтового излучения была зарегистрирована в 160,4 ГГц, что равно 1,9 мм волне. А плотность такого излучения составляет 400-500 фотонов на см 3 . Реликтовое излучение – это самое старое, самое древнее излучение, которое можно наблюдать вообще во вселенной. Каждая частица пролетела 400 000 лет, чтобы достигнуть Земли. Не километров, а лет! По данным наблюдений спутника и математическим расчетам реликтовое излучение как бы стоит на месте, а все галактики и созвездия движутся относительно него с огромной скоростью, порядка сотни километров в секунду. Это как наблюдать в окно движущегося поезда. Температура реликтового излучения в направлении созвездия на 0,1% выше, а в противоположном направлении на 0,1% ниже. Это объясняет движение Солнца в сторону данного созвездия относительно реликтового фона.

Что дает нам изучение реликтового излучения?

Ранняя Вселенная была холодной, очень холодной. Почему Вселенная была такой холодной, и что случилось, когда началось расширение вселенной? Можно предположить, что из-за большого взрыва случился выброс огромного количества сгустков энергии за пределы вселенной, затем Вселенная остыла, почти замерзла, но со временем энергия начала собираться в сгустки снова, и возникла некая реакция, которая и запустила процесс расширения вселенной. Тогда откуда взялась темная материя и взаимодействует ли она с реликтовым излучением? Возможно реликтовое излучение – это результат разложения темной материи, что более логично, чем остаточное излучение большого взрыва. Поскольку темная энергия может являться антиматерией и частицы темной материи, сталкиваясь с частицами материи, образуют в материальном и антиматериальном мире излучение подобно реликтовому. На сегодняшний день это самая свежая, неизученная область науки, в которой можно достичь успехов и запечатлиться в истории науки и общества.

ФОНОВОЕ ИЗЛУЧЕНИЕ

ФОНОВОЕ ИЗЛУЧЕНИЕ , радиация, которая присутствует в окружающей среде в нормальных условиях. Ее следует принимать в расчет при измерении радиации, исходящей от какого-либо конкретного источника. На Земле фоновая радиация вызывается процессом распада имеющихся в природе радиоактивных горных пород. В космосе так называемый «микроволновой фон» приписывают влиянию «Большого ВЗРЫВА».


Научно-технический энциклопедический словарь .

Смотреть что такое "ФОНОВОЕ ИЗЛУЧЕНИЕ" в других словарях:

    В астрофизике диффузное и практически изотропное электромагнитное излучение Вселенной. Спектр фонового излучения простирается от длинных радиоволн до гамма лучей. Вклад в фоновное излучение могут давать неразличимые в отдельности далекие… … Большой Энциклопедический словарь

    фоновое излучение - Излучение, уровень которого существенно ниже полезного сигнала. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва, 2002] Тематики электросвязь, основные понятия EN… … Справочник технического переводчика

    В астрофизике, диффузное и практически изотропное электромагнитное излучение Вселенной. Спектр фонового излучения простирается от длинных радиоволн до гамма лучей. Вклад в фоновое излучение могут давать неразличимые в отдельности далёкие… … Энциклопедический словарь

    фоновое излучение - rus фоновое излучение (с), фон (м) ионизирующего излучения; фоновая радиация (ж); радиоактивный фон (м) eng background radiation fra rayonnement (m) de fond, rayonnement (m) ionisant naturel deu Hintergrundstrahlung (f) spa radiación (f) de fondo … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    фоновое излучение - foninė spinduliuotė statusas T sritis fizika atitikmenys: angl. background radiation vok. Nulleffektstrahlung, f; Untergrundstrahlung, f rus. фоновое излучение, n pranc. rayonnement ambiant, m … Fizikos terminų žodynas

    фоновое излучение - Излучение, регистрируемое детектором в отсутствие радиоактивных источников, излучение которых необходимо измерить … Политехнический терминологический толковый словарь

    В астрофизике, диффузное и практически изотропное эл. магн. излучение Вселенной. Спектр Ф. и. простирается от длинных радиоволн до гамма лучей. Вклад в Ф. и. могут давать неразличимые в отдельности далёкие источники и диффузное в во (газ, пыль),… … Естествознание. Энциклопедический словарь

    Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формировани … Википедия



Понравилась статья? Поделитесь с друзьями!