Формирует субъединицы рибосом. Рибосомы прокариот и эукариот

Хотя могут быть локализованы и в неприкреплённой форме в цитоплазме . Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке .

Рибосомы представляют собой нуклеопротеид , в составе которого соотношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S , 5,8S и 28S рРНК синтезируются в ядрышке РНК-полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируются РНК-полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.

РНК большой субъединицы

Высокомолекулярная РНК, составляющая структурную основу большой субъединицы рибосомы, обозначается как 23S рРНК (в случае бактериальных рибосом) или 23S-подобная рРНК (в других случаях). Бактериальная 23S рРНК, также как и 16S рРНК, представляет собой одну ковалентно непрерывную полирибонуклеотидную цепь. В то же время 23S-подобная рРНК цитоплазматических рибосом эукариот состоит из двух прочно ассоциированных полирибонуклеотидных цепей - 28S и 5,8S рРНК (5,8S рРНК является структурным эквивалентом 5′-концевого ~160-нуклеотидного сегмента 23S рРНК, который оказался «отщеплён» в виде ковалентно обособленного фрагмента). 23S-подобная рРНК рибосом пластидов растений также состоит из двух прочно ассоциированных полирибонуклеотидных цепей и содержит 4,5S рРНК - структурный эквивалент 3′-концевого сегмента 23S рРНК. Известны случаи и ещё более глубоко зашедшей фрагментированности РНК, примером чего может служить 23S-подобная рРНК цитоплазматических рибосом некоторых протистов. Так, у Crithidia fasciculata она состоит из 7 отдельных фрагментов, а у Euglena gracilis - из 14.

Кроме вышеуказанной 23S(-подобной) рРНК, большая субъединица обычно содержит также относительно низкомолекулярную РНК - так называемую 5S рРНК. В отличие от вышеупомянутых 5,8S и 4,5S рРНК, 5S рРНК менее прочно ассоциирована с 23S(-подобной) рРНК, транскрибируется с отдельного гена и, таким образом, не может быть рассмотрена как отщеплённый фрагмент высокополимерной рРНК. 5S рРНК входит в состав большой субъединицы цитоплазматических рибосом всех прокариот и эукариот, но, по-видимому, не является непременной составляющей любой функциональной рибосомы, так как 5S рРНК отсутствуют в митохондриальных рибосомах млекопитающих (так называемых «минирибосомах»).

Число нуклеотидных звеньев, как и константы седиментации, для образцов 23S и 23S-подобных рРНК из различных источников могут существенно различаться. Например, 23S рРНК Escherichia coli состоит из 2904 нуклеотидных остатков, цитоплазматическая 26S рРНК Saccharomyces cerevisiae - из 3392, митохондриальная 26S рРНК Saccharomyces cerevisiae - из 3273, цитоплазматическая 28S рРНК Homo sapiens - из 5025. Большие субъединицы митохондриальных рибосом млекопитающих содержат относительно короткие 23S-подобные рРНК - всего 1560-1590 нуклеотидных остатков. Молекула 5,8S рРНК комплекса 28S 5,8S рРНК, характерного для цитоплазматических эукариотических рибосом, имеет длину около 160 нуклеотидных остатков. Длина 5S рРНК довольно консервативна и составляет 115-125 нуклеотидных остатков.

Рибосомные белки

Помимо рРНК, рибосома содержит также около 50 (прокариотические рибосомы) или 80 (цитоплазматические рибосомы эукариот) различных белков . Почти каждый из этих белков представлен лишь одной копией на каждую рибосому. Преобладают умеренно-осно́вные белки. Большинство рибосомных белков эволюционно консервативны, многие белки рибосом из различных источников могут быть соотнесены как гомологи , что учитывается в современной универсальной номенклатуре рибосомных белков. Рибосома на 30-50 % состоит из белка.

Низкомолекулярные компоненты

Кроме биополимеров (РНК и белков) в состав рибосом входят также некоторые низкомолекулярные компоненты. Это молекулы воды, ионы металлов (главным образом Mg 2+ - до 2 % сухой массы рибосомы), ди- и полиамины (такие как путресцин , кадаверин , спермидин, спермин - могут составлять до 2,5 % сухой массы рибосомы).

Механизм трансляции

Трансляция - синтез белка рибосомой на основе информации, записанной в матричной РНК (мРНК). У прокариот мРНК связывается с малой субъединицей рибосомы в результате взаимодействия 3′-конца 16S рРНК с комплементарной ему последовательностью Шайн - Дальгарно 5′-конца мРНК (для связывания малой субъединицы эукариотической рибосомы помимо специфического мотива в нуклеотидной последовательности мРНК, необходимо также наличие кэп-структуры на её 5′-конце). Далее происходит позиционирование стартового кодона (как правило, AUG) мРНК на малой субъединице. Дальнейшая ассоциация малой и большой субъединиц происходит при связывании инициаторной тРНК (у прокариот - это формилметионил-тРНК , обозначаемая как fMet-тРНК f Met) и при участии факторов инициации (IF1, IF2 и IF3 у прокариот; в случае эукариотических рибосом в инициации трансляции участвуют аналоги прокариотических факторов, а также дополнительные факторы). Таким образом, распознавание антикодона (в тРНК) происходит на малой субъединице.

После ассоциации, fMet-тРНК f Met находится в P- (peptidyl-) сайте каталитического (пептидилтрансферазного) центра рибосомы. Следующая тРНК, несущая на 3′-конце аминокислоту и комплементарная второму кодону на мРНК, находясь в комплексе с заряженным (GTP) фактором элонгации EF-Tu, поступает в А- (aminoacyl-) сайт рибосомы. Затем, образуется пептидная связь между формилметионином (связанным с тРНК f Met , находящейся в Р-сайте) и аминокислотой, принесённой тРНК, находящейся в А-сайте. Механизм катализа реакции транспептидации (образования пептидной связи в пептидилтрансферазном центре) до сих пор полностью не выяснен. Существует несколько гипотез, объясняющих детали этого процесса:

Вероятно, высокая эффективность катализа достигается сочетанием этих факторов.

После образования пептидной связи, полипептид оказывается связанным с тРНК, находящейся в А-сайте. На следующем этапе деацилированная тРНК f Met сдвигается из Р-сайта в Е-сайт (exit-), пептидил-тРНК - из А-сайта в Р-сайт, а мРНК продвигается на один триплет нуклеотидов (кодон). Этот процесс называется транслокацией и происходит с затратой энергии (GTP) при участии фактора EF-G.

Далее, тРНК, комплементарная следующему кодону мРНК, связывается с освободившимся А-сайтом рибосомы, что ведёт к повторению описанных шагов, а образуемый полипептид удлинняется на один аминокислотный остаток с каждым циклом. Стоп-кодоны (UGA, UAG и UAA) сигнализируют об окончании трансляции. Процесс окончания трансляции и освобождения готового полипетида, рибосомы и мРНК называется терминацией. У прокариот он происходит при участии факторов терминации RF1, RF2, RF3 и RRF.

История исследований рибосомы

Рибосомы впервые были описаны как уплотнённые частицы, или гранулы, американским клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов . В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки».

Термин «рибосома» был предложен Ричардом Робертсом в 1958 вместо «рибонуклеопротеидная частица микросомальной фракции» на первом симпозиуме, посвящённом этим частицам и их роли в биосинтезе белка . Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы.

В начале 2000-х были построены модели с атомным разрешением (до 2,4 Å) структур отдельных субъединиц, а также полной прокариотической рибосомы, связанной с различными субстратами, которые позволили понять механизм декодинга (распознавания антикодона тРНК, комплементарного кодону мРНК) и детали взаимодействий между рибосомой, тРНК , мРНК , факторами трансляции, а также различными антибиотиками . Это крупнейшее достижение в молекулярной биологии было отмечено Нобелевской премией по химии 2009 года («За исследования структуры и функций рибосомы»). Награды были удостоены американец Томас Стейц , британец индийского происхождения

Рибосома(от «РНК» и soma – тело) – клеточный немембранный органоид, осуществляющий трансляцию (считывание кода мРНК и синтез полипептидов).

Рибосомы эукариот расположены на мембранах эндоплазматической сети (гранулярная ЭС) и в цитоплазме. Прикрепленные к мембранам рибосомы синтезируют белок «на экспорт», а свободные рибосомы – для нужд самой клетки. Различают 2 основных типа рибосом – прокариотные и эукариотные. В митохондриях и хлоропластах также имеются рибосомы, которые близки к рибосомам прокариот.

Рибосома состоит из двух субъединиц – большой и малой. У прокариотических клеток они обозначены 50S и 30S субъединицы, у эукариотических – 60S и 40S. (S – коэффициент, который характеризует скорость осаждения субъединицы при ультрацентрифугировании). Субъединицы эукариотических рибосом образуются путем самосборки в ядрышке и через поры ядра поступают в цитоплазму.

Рибосомы в клетках эукариот состоят из четырех нитей РНК (три молекулы рРНК в большой субъединице и одна молекула рРНК – в малой) и примерно 80 разных белков, т.е представляют собой сложнейший комплекс из молекул, скрепленных слабыми, нековалентными связями. (Рибосомы в клетках прокариот состоят из трех нитей РНК; две нити рРНК находятся в большой субъединице и одна рРНК – в малой). Процесс трансляции (биосинтеза белка) начинается со сборки активной рибосомы. Этот процесс называется инициацией трансляции. Сборка происходит строго упорядоченным образом, что обеспечивается функциональными центрами рибосом. Все центры находятся на контактирующих поверхностях обеих субъединиц рибосомы. Каждая рибосома работает как большая биохимическая машина, а точнее, как суперфермент, который, во-первых, правильно ориентирует участников (мРНК и тРНК) процесса друг относительно друга, а во-вторых, катализирует реакции между аминокислотами.

Активные центры рибосом:

1)центр связывания мРНК (М-центр);

2) пептидильный центр (П-центр). С этим центром в начале процесса трансляции связывается инициирующая тРНК; на последующих стадиях трансляции из А-центра в П-центр перемещается тРНК, удерживающая синтезированную часть пептидной цепи;

3)аминокислотный центр (А-центр) – место связывания кодона мРНК с антикодоном тРНК, несущей очередную аминокислоту.

4)пептидилтрансферазный центр (ПТФ-центр): он катализирует реакцию связывания аминокислот. При этом образуется еще одна пептидная связь, и растущий пептид удлиняется на одну аминокислоту.

Схема синтеза белка на рибосомах гранулярной эндоплазматической сети.

(рис. из книги биология клетки, том II )

Схематическое изображение полирибосомы. Синтез белка начинается со связывания малой субчастицы, в месте расположения AUG -кодона в молекуле информационной (матричной РНК) (рис. из книги биология клетки, том II ).

Эндоплазматическая сеть

Эндоплазматическая сеть (син. эндоплазматический ретикулум)органоид эукариотической клетки. В клетках разного типа и при различных функциональных состояниях этот компонент клетки может выглядеть по-разному, но во всех случаях – это лабиринтная протяженная замкнутая мембранная структура, построенная из сообщающихся трубкообразных полостей и мешочков, называемых цистернами. Снаружи от мембран эндоплазматической сети находится цитозоль (гиалоплазма, основное вещество цитоплазмы), а просвет эндоплазматической сети представляет собой замкнутое пространство (компартмент), сообщающееся посредством везикул (транспортных пузырьков) с комплексом Гольджи и внешней для клетки средой. Эндоплазматическая сеть делится на две функционально различные структуры: гранулярную (шероховатую) эндоплазматическую сеть и гладкую(агранулярную) эндоплазматическую сеть.

Гранулярная эндоплазматическая сеть, в клетках секретирующих белок, представлена системой многочисленных плоских мембранных цистерн с рибосомами на наружной поверхности. Комплекс мембран гранулярной эндоплазматической сети связан с наружной мембраной оболочки ядра и перинуклеарной (околоядерной) цистерной.

В гранулярной эндоплазматической сети происходит синтез белков и липидов для всех мембран клетки, синтезируются ферменты лизосом, а также осуществляется синтез секретируемых белков, т.е. предназначенных для экзоцитоза. (Остальные белки синтезируются в цитоплазме на рибосомах, не связанных с мембранами ЭС.) В просвете гранулярной ЭС белок окружается мембраной, и образующиеся пузырьки отделяются (отпочковываются) от несодержащих рибосомы областей ЭС, которые и доставляют содержимое в другую органеллу – комплекс Гольджи – путем слияния с ее мембраной.

Та часть ЭС, на мембранах которой рибосомы отсутствуют, называется гладким эндоплазматическим ретикулумом. Гладкая эндоплазматическая сеть не содержит уплощенных цистерн, а представляет собой систему анастомозирующих мембранных канал

ов, пузырьков и трубочек. Гладкая сеть является продолжением гранулярной, однако не содержит рибофоринов – гликопротеиновых рецепторов, с которыми соединяется большая субъединица рибосом и поэтому не связана с рибосомами.

Функции гладкой эндоплазматической сети многообразны и зависят от типа клеток. Гладкая эндоплазматическая сеть участвует в метаболизме стероидных, например, половых гормонов. В ее мембранах локализованы управляемые кальциевые каналы и энергозависимые кальциевые насосы. Цистерны гладкой эндоплазматической сети специализированы для накопления в них Са 2+ путем постоянного откачивания Са 2+ из цитозоля. Подобные депо Са 2+ существуют в скелетной и сердечной мышцах, нейронах, яйцеклетке, эндокринных клетках и др. Различные сигналы (например, гормоны, нейромедиаторы, факторы роста) влияют на активность клеток путем изменения концентрации внутриклеточного посредника – Са 2+ . В гладкой эндоплазматической сети клеток печени происходит обезвреживание вредных веществ, (например ацетальдегида, образующегося из алкоголя), метаболическая трансформация лекарств, образование большей части липидов клетки и их накопление, например при жировой дистрофии. В полости ЭС содержится много различных молекул-компонентов. Среди них имеют большое значение белки шапероны.

Шапероны (англ. букв. – пожилая дама, сопровождающая молодую девушку на балах) – семейство специализированных внутриклеточных белков, обеспечивающих быстрое и правильное сворачивание (фолдинг) вновь синтезированных молекул белка. Связывание с шаперонами препятствует агрегации с другими белками и тем самым создает условия для формирования вторичной и третичной структуры растущего пептида. Шапероны принадлежат к трем белковым семействам, так называемым белкам теплового шока (hsp 60, hsp 70, hsp 90). Синтез этих белков активируется при многих стрессах, в частности, при тепловом шоке (отсюда и название h eart shook protein – белок теплового шока, а цифра обозначает его молекулярную массу в килодальтонах). Эти шапероны предотвращают денатурацию белков при высокой температуре и др. экстремальных факторах. Связываясь с аномальными белками, восстанавливают их нормальную конформацию и тем самым повышают выживаемость организма при резком ухудшении физико-химических параметров среды.

Рибосомы - субмикроскопические немембранные органеллы, необходимые для синтеза белка. Они объединяют аминокислоты в пептидную цепь, образуя новые белковые молекулы. Биосинтез осуществляется по матричной РНК путем трансляции.

Особенности строения

Рибосомы находятся на гранулярном эндоплазматическом ретикулуме или свободно плавают в цитоплазме. Крепятся они к эндоплазматической сети своей большой субъединицей и синтезируют белок, который выводится за пределы клетки, используется всем организмом. Цитоплазменные рибосомы в основном обеспечивают внутренние потребности клетки.

Форма шаровидная или овальная, в диаметре около 20нм.

На этапе трансляции к мРНК может прикрепляться несколько рибосом, образуя новую структуру – полисому. Сами же они образуются в ядрышке, внутри ядра.

Выделяют 2 вида рибосом:

  • Малые – находятся в прокариотических клетках, а также в хлоропластах и митохондриальном матриксе. Они не связаны с мембраной и имеют меньшие размеры (в диаметре до 15нм).
  • Большие – находятся в эукариотических клетках, могут достигать в диаметре до 23нм, связываются с эндоплазматической сетью или крепятся к мембране ядра.

Схема строения

Строение обоих видов идентичное. В состав рибосомы входят две субъединицы — большая и малая, которые в сочетании напоминают гриб. Объединяются они при помощи ионов магния, сохраняя между соприкасающимися поверхностями небольшую щель. При дефиците магния субъединицы отдаляются, происходит дезагрегация и рибосомы уже не могут выполнять свои функции.

Химический состав

Рибосомы состоят из высокополимерной рибосомальной РНК и белка в соотношении 1:1. В них сосредоточено примерно 90% всей клеточной РНК. Малая и большая субъединицы содержат около четырех молекул рРНК, которая имеет вид нитей собранных в клубок. Окружены молекулы белками и формируют вместе рибонуклеопротеид.

Полирибосомы – это объединение информационной РНК и рибосом, которые нанизываются на нить иРНК. В период отсутствия синтезирующих процессов, рибосомы разъединяются и обмениваются субъединицами. При поступлении иРНК они снова собираются в полирибосомы.

Количество рибосом может изменяться в зависимости от функциональной нагрузки на клетку. Десятки тысяч находятся в клетках с высокой митотической активностью (меристема растений, стволовые клетки).

Образование в клетке

Субъединицы рибосом формируются в ядрышке. Матрицей для синтеза рибосомальной РНК является ДНК. Для полного созревания они проходят несколько этапов:

  • Эосома – первая фаза, при этом в ядрышке на ДНК синтезируется лишь рРНК;
  • неосома – структура включающая не только рРНК, но и белки, после ряда модификаций выходит в цитоплазму;
  • рибисома – зрелая органелла, состоящая из двух субъединиц.

Биосинтез белков на рибосомах

Трансляция или синтез белков на рибосомах с матрицы иРНК – конечный этап преобразования генетической информации в клетках. Во время трансляции информация, закодированная в нуклеиновых кислотах, переходит в белковые молекулы со строгой последовательностью аминокислот.

Трансляция – весьма непростой этап (в сравнении с репликацией и транскрипцией). Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.

После транскрипции, новообразованная молекула иРНК, выходит из ядра в цитоплазму. Здесь после нескольких преобразований она соединяется с рибосомой. При этом аминокислоты приводятся в действие после взаимодействия с энергетическим субстратом – молекулой АТФ.

Аминокислоты и иРНК имеют разный химический состав и без постороннего участия не могут взаимодействовать между собой. Для преодоления этой несовместимости существует транспортная РНК. Под действием ферментов аминокислоты соединяются с тРНК. В таком виде они переносятся на рибосому и тРНК, с определенной аминокислотой, прикрепляется на иРНК в предназначенном месте. Далее рибосомальные ферменты формируют пептидную связь между присоединенной аминокислотой и строящимся полипептидом. После рибосома перемещается по цепи информационной РНК, оставляя участок для прикрепления следующей аминокислоты.

Рост полипептида идет до того момента, пока рибосома не встретит «стоп-кодон», который сигнализирует об окончании синтеза. Для освобождения новосинтезированного пептида от рибосомы включаются факторы терминации, окончательно завершающие биосинтез. К последней аминокислоте прикрепляется молекула воды, а рибосома распадается на две субъединицы.

Когда рибосома продвигается дальше по иРНК, она освобождает начальный отрезок цепи. К нему снова может присоединиться рибосома, которая начнет новый синтез. Таким образом, используя одну матрицу для биосинтеза, рибосомы создают одномоментно множество копий белка.

Роль рибосом в организме

  1. Рибосомы синтезируют белок для собственных нужд клетки и за ее пределы. Так в печени образуются плазменные факторы свертывания крови, плазмоциты продуцируют гамма-глобулины.
  2. Считывание закодированной информации с РНК, соединение аминокислот в запрограммированном порядке с образованием новых белковых молекул.
  3. Каталитическая функция – формирование пептидных связей, гидролиз ГТФ.
  4. Свои функции в клетке рибосомы выполняют более активно в виде полирибосом. Эти комплексы способны одновременно синтезировать несколько молекул белка.

Рибосомы — внутриклеточные органеллы диаметром 20—22 нм, осуществляющие биосинтез белка. Они обнаружены в клетках всех живых организмов. Форма рибосом близка к сферической. Для клеток прокариот (бактерий, синезеленых водорослей), а также для хлоропластов и митохондрий эукариот характерны 70 S рибосомы; в цитоплазме всех эукариот обнаружены 80 S рибосомы. S — показатель скорости осаждения (седиментации), чем больше число S, тем выше скорость осаждения. Расположение рибосом в цитоплазме может быть свободным, но чаще всего они связаны с ЭПС, образуя полисомы (объединения ри-
босом в цитоплазме может быть свободным, но чаще всего они связаны с ЭПС, образуя полисомы (объединения рибосом с помощью информационной РНК).
Состав и строение рибосом . Рибосомы состоят из двух субчастиц: большой и малой. Большая субъединица каждой рибосомы прикреплена к мембране самой шероховатой ЭПС, а малая выступает в цитоплазматический матрикс. Малая объединяет 1 молекулу рРНК и 33 молекулы различных белков, большая — три молекулы рРНК и около 40 белков. рРНК (рибосомная) выполняет функцию каркаса для белков (выполняют структурную и ферментативную роль), а также обеспечивает связывание рибосом с определенной нуклеотидной последовательностью иРНК (информационная РН К). Образование

рибосом в клетках идет путем самосборки из предварительно синтезированных РНК и белков. Предшественники рибосомальной РНК синтезируются в ядрышке на ДНК ядрышка.
Функции рибосом:
. специфическое связывание и удержание компонентов белоксинтезирующей системы (информационной РНК; транспортных РНК, (ГТФ) и белковых факторов трансляции);
. каталитические функции (образование пептидной связи, гидролиз гуанозинтрифосфата);
. функции механического перемещения субстратов (информационной и транспортных РНК), или транслокации.
Трансляция — процесс образования полипептидной цепи на матрице и РНК. Синтез белковых молекул происходит на рибосомах, расположенных либо свободно в цитоплазме, либо на шероховатом ЭПР.
Этапы трансляции (рис. 13):


Рис. 13. Схема трансляции
Последовательные стадии синтеза полипептида:
. малая субъединица рибосомы соединяется с мет тРНК, затем с иРНК;
. рибосома перемешается вдоль и РНК, что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи;
. рибосома достигает одного из стоп-кодонов иРНК, полипептидная цепь высвобождается и отделяется от рибосомы.
Активация аминокислот. Каждая из 20 аминокислот белка соединяется ковалентными связями к определенной тРНК, используя энергию АТФ. Реакция катализуется специализированным ферментом, требующими присутствия ионов магния — аминоацил-тРНК-синтетазой.
Инициация белковой цепи. В малой субъединице рибосомы различают функциональный центр с двумя участками — пептидильным (Р-участок) и аминоацильный (А-участок). В первой позиции находится тРНК, несущая определенную аминокислоту, во второй располагается тРНК, которая нагружена цепочкой аминокислот. 5"-конец иРНК, который содержит информацию о данном белке, связывается с Р-участком малой частицей рибосомы и с инициирующей аминокислотой (у прокариот формилметионин; у эукариот — метионин), прикрепленной к соответствующей тРНК. тРНК комплементарна с находящимся в составе иРНК триплетом, сигнализирующим о начале белковой цепи.
Элонгация представляет собой циклически повторяющиеся события, при которых происходит удлинение пептида. Полипептидная цепь удлиняется за счет последовательного присоединения аминокислот, каждая из которых доставляется к рибосоме и встраивается в определенное положение при помощи соответствующей тРНК. Между аминокислотой из пептидной цепочки и аминокислотой, соединенной с тРНК, образуется пептидная связь. Рибосома продвигается вдоль мРНК и тРНК с цепочкой аминокислот попадает в А-участок. Такая последовательность событий повторяется до тех пор, пока рибосомы не поступят в кодон-терминатор, для которого не существует соответствующей тРНК.
Терминация. После завершения синтеза цепи, о чем сигнализирует т.н. стоп-кодон иРНК (УАА, УАГ, УГА). При этом к последней аминокислоте в пептидной цепи присоединяется вода и ее карбоксильный конец отделяется от тРНК, а рибосома распадается на две субчастицы.
Синтез пептида происходит не одной рибосомой, а несколькими тысячами, которые образуют комплекс — полисому.
Сворачивание и процессинг. Чтобы принять обычную форму, белок должен свернуться, образуя при этом определенную пространственную конфигурацию. До или после сворачивания полипептид может претерпевать процессинг, осуществляющийся ферментами и заключающийся в удалении лишних аминокислот, присоединении фосфатных, метальных и других групп и т. п.

Лекция, реферат. Рибосома, её состав и строение. Трансляция - понятие и виды. Классификация, сущность и особенности. 2018-2019.

Рибосомы - это важнейшие компоненты клеток как прокариот, так и эукариот. Строение и функции рибосом связаны с синтезом белка в клетке , т. е. процессом трансляции .

По химическому составу рибосомы представляют собой рибонуклеопротеиды , т. е. состоят из РНК и белков. В рибосомы входит только один тип РНК – рРНК (рибосомальная РНК). Однако существует 4 разновидности ее молекул.

По строению рибосомы - это мелкие, округлой формы, немембранные органоиды клетки. Их количество в разных клетках варьирует от тысяч до нескольких миллионов. Рибосома - это не монолитная структура, она состоит из двух частиц, которые называют большой и малой субъединицами .

В клетках эукариот большинство рибосом прикреплено к ЭПС, в результате чего последняя становится шероховатой.

Большая часть рРНК, составляющая рибосомы, синтезируется в ядрышке. Ядрышко образуют определенные участки разных хромосом, содержащие множество копий генов, на которых синтезируется предшественник молекул рРНК. После синтеза предшественника он видоизменяется и распадается на три части - разные молекулы рРНК.

Одна из четырех типов молекул рРНК синтезируется не в ядрышке, а в ядре на других участках хромосом.

В ядре происходит сборка отдельных субъединиц рибосом, которые затем выходят в цитоплазму, где при синтезе белка объединяются.

По строению обе субъединицы рибосом представляют собой молекулы рРНК, которые принимают определенные третичные структуры (сворачиваются) и инкрустируются десятками различных белков. При этом в состав большой субъединицы рибосом входит три молекулы рРНК (у прокариот - две), а в состав малой - только одна.

Единственная функция рибосом - это обеспечение возможности протекания химических реакций при биосинтезе белка в клетке. Матричная РНК, транспортные РНК, множество белковых факторов в рибосоме занимают определенные положения, что дает возможность эффективно протекать химическим реакциям.

При объединении субъединиц в рибосоме образуются «места» – сайты. Рибосома движется по мРНК и «считывает» кодон за кодоном. В один сайт поступает тРНК с присоединенной к ней аминокислотой, в другом – находится ранее прибывшая тРНК, к которой прикреплена ранее синтезированная полипептидная цепочка. В рибосоме между аминокислотой и полипептидом образуется пептидная связь. В результате полипептид оказывается на «новой» тРНК, а «старая» покидает рибосому. На ее место смещается оставшаяся тРНК вместе со своим «хвостом» (полипептидом). Рибосома сдвигается по мРНК вперед на один триплет, и к нему присоединяется комплементарная тРНК и т. д.

По одной цепи мРНК могут двигаться друг за другом несколько рибосом, образуя полисому .



Понравилась статья? Поделитесь с друзьями!