Функции и структура белка. Структура белковой молекулы

Белок каталаза выполняет в клетке функцию;

Класс

1. Наиболее распространенными в клетках живых организмов элементами являются:

2. Азот как элемент входит в состав:

3. Водород как элемент входит в состав:

4. На каком уровне организации не наблюдается различие между органическим и неорганическим миром?

5.Воды содержится больше в клетках:

6. Вода - основа жизни:

7. Вещества, хорошо растворимые в воде, называются:

8. К гидрофобным соединениям клетки относятся:

9. К углеводам моносахаридам относятся:

10. К углеводам полисахаридам относятся:

11. Основные функции жиров в клетке:

12.Белки - это биополимеры мономерами, которого являются:

13. Аминокислоты различаются:

14. В состав молекул белков входят:

15. Структура молекулы белка, которую определяет последовательность аминокислотных остатков:

16. Вторичная структура белка связана с:

17. Между первым и вторым понятием в задании существует определенная связь.. Найдите это слово Клетка: хлоропласт = растение: _______________

18. Наименее прочными структурными белка является:

20. При неполной денатурации белка первой разрушается структура:

21. Мономерами молекул ДНК являются:

22. Нуклеотиды ДНК состоят из:

23. Состав нуклеотидов ДНК отличается друг от друга содержанием:

24. Нуклеотиды ДНК содержат азотистые основания:

25. Нуклеотиды РНК состоят из:

26.Молекулы, при окислении которых освобождается много энергии:

27. Наиболее распространенными в клетках живых организмах элементами являются:

28. Углерод как элемент входит в состав:

29. Функции воды в клетке:

30. К углеводам моносахаридам относятся:

31. К углеводам полисахаридам относятся:

32. В состав молекулы ДНК входят остатки:

33. Продуктами реакции взаимодействия глицерина и высших жирных кислот являются:

34. Жиры и масла по отношению к воде обладают свойствами:

35. Белки - это:

36. В водных растворах аминокислоты проявляют свойства:

37. Первичная структура белка определяется:

38. Первичная структура белка поддерживается связями:

39. Ферменты выполняют следующие функции:

40. Биологическую активность белка определяет структура:

41. Молекулы, которые наиболее легко расщепляются в клетке с освобождением энергии:

42.Мономерами молекул нуклеиновых кислот являются:

43.Нуклеотиды молекулы ДНК содержат азотистые основания:

44. Углеводов содержится больше:

45.Нуклеотиды молекулы РНК содержат азотистые основания:

46. Жиры растворимы:

47. Молекула вещества, состоящая из нуклеотидов и имеющая вид одноцепочной нити:

48. Наиболее крупные размеры среди нуклеиновых кислот имеют молекулы:



49. Соли К важны для организма, так как:

50. Наука, изучающая функционирование организмов, называется:

51. Способность к хемоавтотрофному способу питания характерна для:

52. Вещества, служащие универсальными биологическими аккумуляторами энергии в клетке:

53. В молекуле ДНК количество нуклеотидов с цитозином составляет 15% от общего числа. Какой процент нуклеотидов с аденином в этой молекуле?

54. Аминокислотный остаток белка кодируется:

55. Последовательность нуклеотидов в одной из комплементарных цепей ДНК – АГА. Какова соответствующая ей последовательность нуклеотидов в другой цепи?:

56. В клетках грибов, как и в клетках животных, отсутствуют:

57. Органоиды клетки, отвечающие за ее передвижение:

58. Собственную ДНК имеют:

59. Из предложенных ответов выберите одно из положений клеточной теории :

61. АТФ считают основным источником энергии в клетки, так как:

62. Обмен веществ происходит в каждой живой клетке и представляет собой:

63. Что служит главным источником энергии, обеспечивающим круговорот веществ в экосистемах?

Белки (протеины) составляют 50% от сухой массы живых организмов.


Белки состоят из аминокислот. У каждой аминокислоты есть аминогруппа и кислотная (карбоксильная) группа, при взаимодействии которых получается пептидная связь , поэтому белки еще называют полипептидами.

Структуры белка

Первичная - цепочка из аминокислот, связанных пептидной связью (сильной, ковалентной). Чередуя 20 аминокислот в разном порядке, можно получать миллионы разных белков. Если поменять в цепочке хотя бы одну аминокислоту, строение и функции белка изменятся, поэтому первичная структура считается самой главной в белке.


Вторичная - спираль. Удерживается водородными связями (слабыми).


Третичная - глобула (шарик). Четыре типа связей: дисульфидная (серный мостик) сильная, остальные три (ионные, гидрофобные, водородные) - слабые. Форма глобулы у каждого белка своя, от нее зависят функции. При денатурации форма глобулы меняется, и это сказывается на работе белка.


Четвертичная - имеется не у всех белков. Состоит из нескольких глобул, соединенных между собой теми же связями, что и в третичной структуре. (Например, гемоглобин.)

Денатурация

Это изменение формы глобулы белка, вызванное внешними воздействиями (температура, кислотность, соленость, присоединение других веществ и т.п.)

  • Если воздействия на белок слабые (изменение температуры на 1°), то происходит обратимая денатурация.
  • Если воздействие сильное (100°), то денатурация необратимая . При этом разрушаются все структуры, кроме первичной.

Функции белков

Их очень много, например:

  • Ферментативная (каталитическая) - белки-ферменты ускоряют химические реакции за счет того, что активный центр фермента подходит к веществу по форме, как ключ к замку ( , специфичность).
  • Строительная (структурная) - клетка, если не считать воду, состоит в основном из белков.
  • Защитная - антитела борются с возбудителями болезней (иммунитет).

Выберите один, наиболее правильный вариант. Вторичная структура молекулы белка имеет форму
1) спирали
2) двойной спирали
3) клубка
4) нити

Ответ


Выберите один, наиболее правильный вариант. Водородные связи между СО- и NН-группами в молекуле белка придают ей форму спирали, характерную для структуры
1) первичной
2) вторичной
3) третичной
4) четвертичной

Ответ


Выберите один, наиболее правильный вариант. Процесс денатурации белковой молекулы обратим, если не разрушены связи
1) водородные
2) пептидные
3) гидрофобные
4) дисульфидные

Ответ


Выберите один, наиболее правильный вариант. Четвертичная структура молекулы белка образуется в результате взаимодействия
1) участков одной белковой молекулы по типу связей S-S
2) нескольких полипептидных нитей, образующих клубок
3) участков одной белковой молекулы за счет водородных связей
4) белковой глобулы с мембраной клетки

Ответ


Установите соответствие между характеристикой и функцией белка, которую он выполняет: 1) регуляторная, 2) структурная
А) входит в состав центриолей
Б) образует рибосомы
В) представляет собой гормон
Г) формирует мембраны клеток
Д) изменяет активность генов

Ответ


Выберите один, наиболее правильный вариант. Последовательность и число аминокислот в полипептидной цепи – это
1) первичная структура ДНК
2) первичная структура белка
3) вторичная структура ДНК
4) вторичная структура белка

Ответ


Выберите три варианта. Белки в организме человека и животных
1) служат основным строительным материалом
2) расщепляются в кишечнике до глицерина и жирных кислот
3) образуются из аминокислот
4) в печени превращаются в гликоген
5) откладываются в запас
6) в качестве ферментов ускоряют химические реакции

Ответ


Выберите один, наиболее правильный вариант. Вторичная структура белка, имеющая форму спирали, удерживается связями
1) пептидными
2) ионными
3) водородными
4) ковалентными

Ответ


Выберите один, наиболее правильный вариант. Какие связи определяют первичную структуру молекул белка
1) гидрофобные между радикалами аминокислот
2) водородные между полипептидными нитями
3) пептидные между аминокислотами
4) водородные между -NH- и -СО- группами

Ответ


Выберите один, наиболее правильный вариант. Первичная структура белка образована связью
1) водородной
2) макроэргической
3) пептидной
4) ионной

Ответ


Выберите один, наиболее правильный вариант. В основе образования пептидных связей между аминокислотами в молекуле белка лежит
1) принцип комплементарности
2) нерастворимость аминокислот в воде
3) растворимость аминокислот в воде
4) наличие в них карбоксильной и аминной групп

Ответ


Перечисленные ниже признаки, кроме двух, используются для описания строения, функций изображенного органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) имеет структурные уровни организации молекулы
2) входит в состав клеточных стенок
3) является биополимером
4) служит матрицей при трансляции
5) состоит из аминокислот

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания ферментов. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) входят в состав клеточных мембран и органоидов клетки
2) играют роль биологических катализаторов
3) имеют активный центр
4) оказывают влияние на обмен веществ, регулируя различные процессы
5) специфические белки

Ответ



Рассмотрите рисунок с изображением полипептида и укажите (А) уровень его организации, (Б) форму молекулы и (В) вид взаимодействия, поддерживающий эту структуру. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) первичная структура
2) вторичная структура
3) третичная структура
4) взаимодействия между нуклеотидами
5) металлическая связь
6) гидрофобные взаимодействия
7) фибриллярная
8) глобулярная

Ответ



Рассмотрите рисунок с изображением полипептида. Укажите (А) уровень его организации, (Б) мономеры, которые его образуют, и (В) вид химических связей между ними. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) первичная структура
2) водородные связи
3) двойная спираль
4) вторичная структура
5) аминокислота
6) альфа-спираль
7) нуклеотид
8) пептидные связи

Ответ


Известно, что белки – нерегулярные полимеры, имеющие высокую молекулярную массу, строго специфичны для каждого вида организма. Выберите из приведенного ниже текста три утверждения, по смыслу относящиеся к описанию этих признаков, и запишите цифры, под которыми они указаны. (1) В состав белков входит 20 различных аминокислот, соединенных пептидными связами. (2) Белки имеют различное количество аминокислот и порядок их чередования в молекуле. (3) Низкомолекулярные органические вещества имеют молекулярную массу от 100 до 1000. (4) Они являются промежуточными соединениями или структурными звеньями - мономерами. (5) Многие белки характеризуются молекулярной массой от нескольких тысяч до миллиона и выше, в зависимости от количества отдельных полипептидных цепей в составе единой молекулярной структуры белка. (6) Каждый вид живых организмов имеет особый, только ему присущий набор белков, отличающий его от других организмов.

Ответ

© Д.В.Поздняков, 2009-2019

Белки - это биополимеры, мономерами которых являются аминокислоты.

Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-COOH) и аминную (-NH 2) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь - какой-либо радикал, придающий каждой аминокислоте определенные свойства.

У большей части аминокислот имеется одна карбоксильная группа и одна аминогруппа; эти аминокислоты называются нейтральными . Существуют, однако, и основные аминокислоты - с более чем одной аминогруппой, а также кислые аминокислоты - с более чем одной карбоксильной группой.

Известно около 200 аминокислот, встречающихся в живых организмах, однако только 20 из них входят в состав белков. Это так называемые основные или протеиногенные аминокислоты.

В зависимости от радикала основные аминокислоты делят на 3 группы:

  1. Неполярные (аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин);
  2. Полярные незаряженные (аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин);
  3. Заряженные (аргинин, гистидин, лизин - положительно; аспарагиновая и глутаминовая кислота - отрицательно).

Боковые цепи аминокислот (радикал) могут быть гидрофобными и гидрофильными и придают белкам соответствующие свойства.

У растений все необходимые аминокислоты синтезируются из первичных продуктов фотосинтеза. Человек и животные не способны синтезировать ряд протеиногенных аминокислот и должны получать их в готовом виде вместе с пищей. Такие аминокислоты называются незаменимыми . К ним относятся лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин; аргинин и гистидин - незаменимые для детей.

В растворе аминокислоты могут выступать в роли как кислот, так и оснований, т. е. они являются амфотерными соединениями. Карбоксильная группа (-COOH) способна отдавать протон, функционируя как кислота, а аминная (-NH 2) принимать протон, проявляя таким образом свойства основания.

Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты. Образующаяся при этом молекула представляет собой дипептид , а связь между атомами углерода и азота называется пептидной связью.

На одном конце молекулы дипептида находится свободная аминогруппа, а на другом - свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себя другие аминокислоты, образуя олигопептиды. Если таким образом соединяется много аминокислот (более 10), то образуется полипептид .

Пептиды играют важную роль в организме. Многие алигопептиды являются гормонами. Таковы окситоцин, вазопрессин, тиролиберин, тиреотропин и др. К олигопептидам относится также брадикидин (пептид боли) и некоторые опиаты («естественные наркотики» человека), выполняющие функцию обезболивания. Принятие наркотиков разрушает опиатную систему организма, поэтому наркоман без дозы наркотиков испытывает 1 сильную боль - «ломку», которая в норме снимается опиатами.

К олигопептидам относятся некоторые антибиотики (например, грамицидин S).

Многие гормоны (инсулин, адренокортикотропный гормон и др.), антибиотики (например, грамицидин А), токсины (например, дифтерийный токсин) являются полипептидами.

Белки представляют собой полипептиды с молекулярной массой свыше 10 000, в молекулу которых входит от 50 до нескольких тысяч аминокислот.

Каждому белку свойственна в определенной среде своя особая пространственная структура. При характеристике пространственной (трехмерной) структуры выделяют четыре уровня организации молекул белков.

Первичная структура - последовательность аминокислот в полипептид ной цепи. Первичная структура специфична для каждого белка и определяется генетической информацией, т.е. зависит от последовательности нуклеотидов в участке молекулы ДНК, кодирующем данный белок. От первичной структуры зависят все свойства и функции белков. Замена одной единственной аминокислоты в составе молекул белка или изменение их расположения обычно влечет за собой изменение функции белка. Так как в состав белков входит 20 видов аминокислот, число вариантов их комбинаций в пол и пептидной цепи поистине безгранично, что обеспечивает огромное количество видов белков в живых клетках.

В живых клетках молекулы белков или отдельные их участки представляют собой не вытянутую цепь, а скручены в спираль, напоминающую растянутую пружину (это так называемая α-спираль) или сложены в складчатый слой (β-слой). Вторичная структура возникает в результате образования водородных связей между -СО- и -NН 2 -группами двух пептидных связей внутри одной полипептидной цепи (спиральная конфигурация) или между двумя полипептидными цепями (складчатые слои).

Полностью α-спиральную конфигурацию имеет белок кератин. Это структурный белок волос, шерсти, ногтей, когтей, клюва, перьев и рогов. Спиральная вторичная структура характерна, помимо кератина, для таких фибриллярных (нитевидных) белков, как миозин, фибриноген, коллаген.

У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы - глобулу (характерна для глобулярных белков). Глобула определенной конфигурации является третичной структурой белка. Третичная структура стабилизируется ионными, водородными связями, ковалентными дисульфидными связями (которые образуются между атомами серы, входящими в состав цистеина), а также гидрофобными взаимодействиями. Наиболее важными в возникновении третичной структуры являются гидрофобные взаимодействия; белок при этом свертывается таким образом, что его гидрофобные боковые цепи скрыты внутри молекулы, т. е. защищены от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу.

Многие белки с особо сложным строением состоят из нескольких полипептидных цепей, удерживаемых в молекуле вместе за счет гидрофобных взаимодействий, а также при помощи водородных и ионных связей - возникает четвертичная структура . Такая структура имеется, например, у глобулярного белка гемоглобина. Его молекула состоит из четырех отдельных полипептидных субъединиц (протомеров), находящихся в третичной структуре, и небелковой части - гема. Только в такой структуру гемоглобин способен выполнять свою транспортную функцию.

Под влиянием различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, щелочами, высокой температурой, облучением, высоким давлением и т. д.) происходит изменение третичной и четвертичной структуры белка вследствие разрыва водородных и ионных связей. Процесс нарушения нативной (естественной) структуры белка называется денатурацией . При этом наблюдается уменьшение растворимости белка, изменение формы и размеров молекул, потеря ферментативной активности и т. д. Процесс денатурации иногда обратим, т. е. возвращение нормальных условий среды может сопровождаться самопроизвольным восстановлением естественной структуры белка. Такой процесс называется ренатурацией . Отсюда следует, что все особенности строения и функционирования макромолекулы белка определяются его первичной структурой.

По химическому составу выделяют белки простые и сложные. К простым относятся белки, состоящие только из аминокислот, а к сложным - содержащие белковую часть и небелковую (простатическую) - ионы металлов, углеводы, липиды и др. Простыми белками являются сывороточный альбумин крови, иммуноглобулин (антитела), фибрин, некоторые ферменты (трипсин) и др. Сложными белками являются все протеолипиды и гликопротеиды, гемоглобин, большинство ферментов и т.д.

Функции белков

Структурная . Белки входят в состав клеточных мембран и органелл клетки. Стенки кровеносных сосудов, хрящи, сухожилия, волосы, ногти, когти у высших животных состоят преимущественно из белков.

Каталитическая (ферментативная) . Белки-ферменты катализируют протекание всех химических реакций в организме. Они обеспечивают расщепление питательных веществ в пищеварительном тракте, фиксацию углерода при фотосинтезе, реакции матричного синтеза и т. п.

Транспортная . Белки способны присоединять и переносить различные вещества. Альбумины крови транспортируют жирные кислоты, глобулины - ионы металлов и гормоны. Гемоглобин переносит кислород и углекислый газ.

Молекулы белков, входящие в состав плазматической мембраны, принимают участие в транспорте веществ в клетку и из нее.

Защитная . Ее выполняют иммуноглобулины (антитела) крови, обеспечивающие иммунную защиту организма. Фибриноген и тромбин участвуют в свертывании крови и предотвращают кровотечение.

Сократительная . Обеспечивается движением относительно друг друга нитей белков актина и миозина в мышцах и внутри клеток. Скольжение микротрубочек, построенных из белка тубулина, объясняется движение ресничек и жгутиков.

Регуляторная . Многие гормоны являются олигопептидами или белками, например: инсулин, глюкагон, аденокортикотропный гормон и др.

Рецепторная . Некоторые белки, встроенные в клеточную мембрану, способны изменить свою структуру на действие внешней среды. Так происходят прием сигналов из внешней среды и передача информации в клетку. Примером может служить фитохром - светочувствительный белок, регулирующий фотопериодическую реакцию растений, и опсин - составная часть родопсина , пигмента, находящегося в клетках сетчатки глаза.

В молекуле белка аминокислотные остатки соединены так называемой пептидной связью. Полная последовательность аминокислотных остатков в такой цепи называется первичной структурой белка. Число остатков в разных белках может колебаться от нескольких штук до нескольких тысяч. Небольшие молекулы с мол. массой менее 10 тыс. дальтон называют пептидами, а крупные - белками. В составе белка обычно имеются как кислые, так и щелочные аминокислоты, так что белковая молекула имеет и положительные, и отрицательные заряды. Значение рН, при котором количество отрицательных зарядов равно количеству положительных, называется изоэлектрической точкой белка.

Обычно белковая цепочка складывается в более сложные структуры. Кислород группы C=O может образовывать водородную связь с водородом группы N-H, расположенной в другой аминокислоте. За счет таких водородных связей формируется вторичная структура белка. Одна из разновидностей вторичной структуры - б-спираль. В ней каждый кислород С=О-группы связан с водородом 4-й по ходу спирали NH-группы. На один виток спирали приходится 3,6 аминокислотных остатка, шаг спирали составляет 0,54 нм.

Во многих белках имеется т. н. в-структура, или в-слой, в ней полипептидные цепочки почти полностью развернуты, их отдельные участки своими группами -СО- и -NH- образуют водородные связи с другими участками той же цепочки или соседней полипептидной цепи.

б-Спиральную структуру имеет белок кератин, из которого состоят волосы и шерсть. При нагревании влажные волосы и шерсть легко поддаются растяжению, а потом самопроизвольно возвращаются к исходному состоянию: при растяжении водородные связи б-спирали разрываются, а затем постепенно восстанавливаются.

в-Структура характерна для фиброина - основного белка шелка, выделяемого гусеницами шелкопряда. В отличие от шерсти, шелк почти нерастяжим - в-структура образована вытянутыми полипептидными цепями, и дальше растягивать ее практически невозможно без разрыва ковалентных связей.

Укладка белков обычно не ограничивается вторичной структурой. Гидрофобные аминокислотные остатки «стремятся» укрыться от водного окружения внутри белковой молекулы. Между боковыми группами кислых и щелочных аминокислот, заряженных, соответственно, отрицательно и положительно, возможно электростатическое взаимодействие. Многие аминокислотные остатки могут образовывать друг с другом водородные связи. Наконец, остатки аминокислоты цистеина, содержащие SH-группы, способны образовывать между собой ковалентные связи -S-S-.

Благодаря всем этим взаимодействиям - гидрофобным, ионным, водородным и дисульфидным - белковая цепочка образует сложную пространственную конфигурацию, называемую третичной структурой.

В составе глобулы у многих белков можно различить отдельные компактные участки размером около 10-20 тысяч дальтон. Они называются доменами. Участки полипептидной цепи между доменами весьма гибки, так что всю структуру можно представить как относительно жесткие бусины доменов, соединенные гибкими промежуточными участками первичной структуры.

Многие белки (их называют олигомерными) состоят не из одной, а из нескольких полипептидных цепочек. Совокупность их образует четвертичную структуру белка, при этом отдельные цепочки называются субъединицами. Четвертичная структура удерживается теми же связями, что и третичная. Пространственная конфигурация белка (т.е. его третичная и четвертичная структура) называется конформацией.

Рис. 4.

Главным методом, позволяющим устанавливать пространственную структуру белков и других биологических полимеров, является рентгеноструктурный анализ. В последнее время большие успехи достигнуты в компьютерном моделировании белковых конформаций.

Водородные, электростатические и гидрофобные связи, с помощью которых создаются вторичная, третичная и четвертичная структуры белка, менее прочны, чем пептидная связь, образующая первичную структуру. При нагревании они легко разрушаются, и хотя у белка сохраняется в целости первичная структура, он не может выполнять своих биологических функций, становится неактивным. Процесс разрушения природной конформации белка, сопровождающийся потерей активности, называется денатурацией. Денатурацию вызывает не только нагревание, но и химические вещества, нарушающие связи вторичной и третичной структур - например, мочевина, которая в высоких концентрациях разрушает водородные связи в белковой глобуле.

Дисульфидные -S-S-связи образуют прочные «скрепы», сшивающие различные участки одной полипептидной цепи или разные цепи. Эти связи имеются, например, в кератинах, причем разные кератины содержат разное количество таких сшивок: волосы и шерсть - немного, рога, копыта млекопитающих и панцири черепах - значительно больше.

Вторичная, третичная и четвертичная структура белка определяется его первичной структурой. В зависимости от последовательности аминокислот в полипептидной цепочке будут образовываться б-спиральные или в-структурные участки, которые затем самопроизвольно «уложатся» в определенную третичную структуру, а у некоторых белков отдельные цепочки еще и объединятся с образованием четвертичной структуры.

Если изменить первичную структуру белка, то может сильно измениться и вся его конформация. Существует тяжелая наследственная болезнь - серповидно-клеточная анемия, при которой гемоглобин становится малорастворим в воде, а эритроциты приобретают серповидную форму. Причина болезни - замена всего лишь одной аминокислоты из 574, входящих в состав человеческого гемоглобина (глютаминовая кислота, расположенная на 6-м месте с N-конца одной из цепей гемоглобина нормальных людей, у больных заменена на валин).

Процесс самопроизвольной ассоциации белковых субъединиц в сложные комплексы, обладающие четвертичной структурой, называется самосборкой. Большинство белковых комплексов с четвертичной структурой образуются именно путем самосборки.

В 1980-е годы было обнаружено, что не все белки и белковые комплексы образуются путем самосборки. Оказалось, что для образования таких структур как нуклеосомы (комплексы белков-гистонов с ДНК), бактериальные ворсинки - пили, а также некоторых сложных ферментных комплексов используются специальные белки-помощники, названные шаперонами. Шапероны не входят в состав образующейся структуры, а только помогают ее укладке.

Шапероны служат не только для организации сложных комплексов, но в некоторых случаях помогают правильно свернуть одну полипептидную цепочку. Так, при воздействии высокой температуры в клетках резко возрастает количество т. н. белков теплового шока. Они связываются с частично денатурированными клеточными белками и восстанавливают их природную конформацию.

Долгое время считалось, что белок может иметь только одну устойчивую конформацию при данных условиях, но в последнее время этот постулат пришлось пересмотреть. Поводом к такому переосмыслению послужило открытие возбудителей т. н. медленных нейрологических инфекций. Эти инфекции встречаются у разных видов млекопитающих. К ним относится болезнь овец «скрепи», заболевание человека «куру» («смеющаяся смерть») и нашумевшее в последнее время «бешенство коров». Они имеют много общего.

Для них характерны тяжелые поражения центральной нервной системы. Так, люди, больные куру, на ранних стадиях болезни испытывают эмоциональную неустойчивость (большинство - часто и беспричинно смеются, но некоторые находятся в состоянии депрессии или немотивированной агрессивности) и легкие нарушения координации движений. На поздних стадиях больные уже не способны не только двигаться, но даже сидеть без поддержки, а также есть.

Заражение обычно происходит пищевым путем (изредка через кровь). Болезнь у животных развивалась после скармливания им костной муки, которая изготавливалась из костей больных особей. Куру - болезнь папуасских людоедов, передающаяся при поедании мозга умерших родичей (поедание друг друга в этом случае - скорее отрасль богослужения, чем кулинарии, оно имеет важное ритуальное значение).

Все эти заболевания имеют очень длительный инкубационный период и развиваются медленно. В головном мозге заболевших отмечается отложение нерастворимого белкового конгломерата. Нерастворимые белковые нити обнаруживаются в пузырьках, расположенных внутри нейронов, а также во внеклеточном веществе. Наблюдается разрушение нейронов в некоторых отделах мозга, особенно в мозжечке.

Долгое время оставалась загадочной природа возбудителей этих заболеваний, и только в начале 80-х годов было установлено, что эти возбудители - особые белки с молекулярной массой около 30 тысяч дальтон. Такие доселе неизвестные науке объекты получили название прионы.

Было установлено, что прионный белок закодирован в ДНК организма-«хозяина». Белок здорового организма содержит ту же последовательность аминокислот, что и белок инфекционной частицы приона, но никаких патологических симптомов не вызывает. Функция прионного белка пока неизвестна. Мыши, у которых генные инженеры искусственно выключили ген этого белка, развивались вполне нормально, хотя и имели некоторые отклонения в работе центральной нервной системы (худшее обучение, нарушения сна). В здоровом организме этот белок обнаружен на поверхности клеток во многих органах, больше всего в головном мозге.

Оказалось, что в инфекционной частице прионный белок имеет иную конформацию, чем в нормальных клетках. Он содержит бета-структурные участки, обладает высокой устойчивостью к расщеплению пищеварительными ферментами и способностью образовывать нерастворимые агрегаты (видимо, отложение таких агрегатов в мозге и является причиной развития нейропатологии).

Самое интересное, что «нормальная» конформация этого белка превращается в «болезнетворную», если клетка контактирует с «болезнетворным» белком. Получается, что «болезнетворный» белок «лепит» пространственную структуру «нормального» по себе. Он направляет его укладку как матрица, вызывая появление все большего числа молекул в «болезнетворной» конформации и, в конце концов, гибель организма.

Как именно это происходит, до сих пор неизвестно. Если смешать в пробирке нормальную и инфекционную форму прионного белка, то никакого образования новых инфекционных молекул не произойдет. По-видимому, в живой клетке имеются какие-то молекулы-помощники (вероятно, шапероны), позволяющие прионному белку делать свое черное дело.

Отложение нерастворимых белковых конгломератов может служить причиной и других неизлечимых нервных заболеваний. Болезнь Альцгеймера не относится к числу инфекционных - она возникает в пожилом и старческом возрасте у людей с наследственной предрасположенностью. У больных наблюдается ухудшение памяти, ослабление интеллекта, слабоумие, и, в конце концов - полная утрата психических функций. Причина развития болезни - отложение в мозгу т. н. амилоидных бляшек. Они состоят из нерастворимого белка - в-амилоида. Он представляет собой фрагмент белка-предшественника амилоида - нормального белка, присутствующего у всех здоровых людей. У больных он расщепляется с образованием нерастворимого амилоидного пептида.

Мутации в разных генах вызывают развитие болезни Альцгеймера. Естественно, ее вызывают мутации в гене белка-предшественника амилоида - измененный предшественник после расщепления образует нерастворимый в-амилоид, формирующий бляшки и разрушающий клетки головного мозга. Но болезнь возникает и при мутации в генах белков, регулирующих активность протеаз, разрезающих белок - предшественник амилоида. Не совсем понятно, как в этом случае развивается заболевание: возможно, нормальный белок предшественник режется в каком-то неправильном месте, что приводит к выпадению в осадок образующегося пептида.

Очень рано болезнь Альцгеймера развивается у больных с синдромом Дауна - у них содержится не две копии 21-й хромосомы, как у всех людей, а три. Больные синдромом Дауна имеют характерную внешность и слабоумие. Дело в том, что ген белка-предшественника амилоида как раз и находится в 21-й хромосоме, увеличение количества гена приводит к увеличению количества белка, а избыток белка-предшественника приводит к накоплению нерастворимого в-амилоида.

Белки часто соединяются с другими молекулами. Так, гемоглобин, переносящий кислород в кровеносной системе, состоит из белковой части - глобина, и небелковой - гема. Ион Fe2+ входит в состав гема. Глобин состоит из четырех полипептидных цепочек. Благодаря наличию гема с железом гемоглобин катализирует окисление перекисью водорода различных органических веществ - например, бензидина. Раньше эта реакция под названием «бензидиновая проба» использовалась в судебно-медицинской экспертизе для обнаружения следов крови.

Некоторые белки химически связаны с углеводами, их называют гликопротеины. Очень многие белки, секретируемые животной клеткой, являются гликопротеинами - например, известные по предыдущим разделам трансферрин и иммуноглобулины. Однако, желатин, хотя и является продуктом гидролиза секретируемого белка коллагена, практически не содержит присоединенных углеводов. Внутри клетки гликопротеины встречаются гораздо реже.

В лабораторной практике используется много методов определения концентрации белка. В самом простом из них применяется биуретовый реактив - щелочной раствор соли двухвалентной меди. В щелочной среде некоторая часть пептидных связей в молекуле белка переходит в енольную форму, которая образует с двухвалентной медью комплексы, окрашенные в красный цвет. Другой распространенной реакцией на белок является окраска по Бредфорду. В ходе реакции молекулы специального красителя связываются с белковой глобулой, что вызывает резкое изменение окраски - из бледно-коричневого раствор становится ярко-синим. Это краситель - «кумасси ярко-синий» - раньше использовался для окраски шерсти (а шерсть, как известно, состоит из белка кератина). Наконец, для определения концентрации белка можно использовать его свойство поглощать ультрафиолетовый свет с длиной волны 280 нм (его поглощают ароматические аминокислоты фенилаланин, тирозин и триптофан). Чем сильнее раствор поглощает такой ультрафиолет, тем больше там содержится белка.

Для описания строения белковой молекулы были введены понятия о первичной, вторичной, третичной и четвертичной структурах белковой молекулы. В последние годы появились еще такие понятия, как сверхвторичная структура, характеризующая энергетически предпочтительные агрегаты вторичной структуры, и домены – части белковой глобулы, представляющие собой достаточно обособленные глобулярные области.

Количество и последовательность расположения аминокислот, и местоположение дисульфидных связей в полипептидной цепи определяют первичную структуру белка. Между первичной структурой белка и его функцией у данного организма существует самая тесная связь. Для того, чтобы белок выполнял свойственную ему функцию, необходима совершенно определенная последовательность аминокислот в полипептидной цепи этого белка. Даже небольшие изменения в первичной структуре могут значительно изменять свойства белка и соответственно его функции. Например, в эритроцитах здоровых людей содержится белок– гемоглобин с определенной последовательностью аминокислот. Небольшая часть людей имеет врожденную аномалию структуры гемоглобина: их эритроциты содержат гемоглобин, у которого в одном положении вместо глутаминовой кислоты (заряженной, полярной) содержится аминокислота валин (гидрофобная, неполярная). Такой гемоглобин существенно отличается по физико-химическим и биологическим свойствам от нормального. Появление гидрофобной аминокислоты, приводит к возникновению «липкого» гидрофобного контакта (эритроциты плохо передвигаются в кровеносных сосудах), к изменению формы эритроцита (из двояковогнутого в серповидный), а также к ухудшению переноса кислорода и т.д. Дети, родившееся с этой аномалией, в раннем детстве погибают от серповидноклеточной анемии.

Исчерпывающие доказательства в пользу утверждения, что биологическая активность определяется аминокислотной последовательностью, были получены, после искусственного синтеза фермента рибонуклеазы (Меррифилд). Синтезированный полипептид с той же аминокислотной последовательностью, что и естественный фермент, обладал такой же ферментативной активностью.

Исследования последних десятилетий показали, что первичная структура закреплена генетически и в свою очередь определяет вторичную, третичную и четвертичную структуры белковой молекулы и ее общую конформацию. Первым белком, у которого была установлена первичная структура, был белковый гормон инсулин (содержит 51 аминокислоту). Это было сделано в 1953 г. Фредериком Сэнгером. К настоящему времени расшифрована первичная структура более десяти тысяч белков, но это очень небольшое количество, если учесть, что в природе белков около 10 12 .

Зная первичную структуру белка, можно точно написать его структурную формулу, если белок представлен одной полипептидной цепью. Если в состав белка входит несколько полипептидных цепей, то их предварительно разъединяют, используя специальные реактивы. Для определения первичной структуры отдельной полипептидной цепи, методами гидролиза с использованием аминокислотных анализаторов, устанавливают ее аминокислотный состав. Затем, применяя специальные методы и реагенты, определяют природу концевых аминокислот. Для установления порядка чередования аминокислот, полипептидную цепь подвергают ферментативному гидролизу, при котором образуются осколки этой полипептидной цепи – короткие пептиды. Эти пептиды разделяют методом хроматографии и устанавливают последовательность аминокислот в каждом. Таким образом, достигается этап, когда последовательность аминокислот в отдельных пептидах (фрагментах белка) известна, но остается невыясненной последовательность самих пептидов. Последнюю устанавливают с помощью так называемых перекрывающихся пептидов. Для этого используются какой-либо другой фермент, расщепляющий исходную полипептидную цепь в других участках, и определяют аминокислотную последовательность вновь полученных пептидов. Пептиды, образованные под действием двух ферментов, содержат одинаковые фрагменты аминокислотных последовательностей., совмещая их устанавливают общую аминокислотную последовательность полипептидной цепи.

Большой вклад в изучение строения белковой молекулы сделали Л.Полинг и Р.Кори. Обратив внимание на то, что в молекуле белка больше всего пептидных связей, они первыми провели кропотливые рентгеноструктурные исследования этой связи. Изучили длины связей, углы под которыми располагаются атомы, направление расположения атомов относительно связи. На основании исследований были установлены следующие основные характеристики пептидной связи.

1. Четыре атома пептидной связи и два присоединенных -углеродных атома лежат в одной плоскости. ГруппыRи Н-углеродных атомов лежат вне этой плоскости.

2. Атомы О и Н пептидной связи и два -углеродных атома иR-группы имеют транс-ориентацию относительно пептидной связи.

3. Длина связи С-N, равная 1,32 Å, имеет промежуточное значение между длиной двойной ковалентной связи (1,21 Å) и однородной ковалентной связи (1,47 Å). Отсюда следует, что связь С-Nимеет частично характер двойной связи. Т.е. пептидная связь может существовать в виде резонансных и таутамерных структур, в кето-енольной форме.

Вращение вокруг связи –С=N– затруднено и все атомы, входящие в пептидную группу, имеют планарную транс-конфигурацию. Цис-конфигурация является энергетически менее выгодной и встречается лишь в некоторых циклических пептидах. Каждый планарный пептидный фрагмент содержит две связи с-углеродными атомами, способными к вращению. Это связи С  –N(угол вращения вокруг этой связи обозначается) и связь С  –С (угол вращения вокруг этой связи обозначается).

Пептидная связь по своей химической природе является ковалентной и придает высокую прочность первичной структуре белковой молекулы. Являясь повторяющимся элементом полипептидной цепи и имея специфические особенности структуры, пептидная связь влияет не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи.

Вторичная структура белковой молекулы образуется в результате того или иного вида свободного вращения вокруг связей, соединяющих -углеродные атомы в полипептидной цепи.

В природных полипептидных цепях обнаружены три основных типа структуры: -спираль, складчатый лист и статистический клубок. Спиральная структура образуется если в цепи одинаковые углы поворотов () для всех связей С  –Nи углом поворота () для всех связей С  –С и равны соответственно –48º и –57º. Наиболее часто встречается правозакрученная-спираль. Эта структура очень стабильна, т.к. в ней почти или полностью отсутствуют стерические затруднения, особенно дляR-групп боковых цепей аминокислот.R-группы аминокислот направлены наружу от центральной оси-спирали. В-спирали диполи =С=О иN–Н соседних пептидных связей ориентированы оптимальным образом (почти коаксиальны) для дипольного взаимодействия, образуя вследствие этого обширную систему внутримолекулярных кооперативных водородных связей, стабилизирующих-спираль. Шаг спирали (один полный виток) 5,4Å включает, 3,6 аминокислотных остатка.

Рисунок 1 – Структура и параметры -спирали белка

Спиральную структуру могут нарушить два фактора:

1) в наличие остатка пролина, циклическая структура которого вносит излом в пептидную цепь – нет группы –NН 2 , поэтому невозможно образования внутрицепочечной водородной связи;

2) если в полипептидной цепи подряд расположено много остатков аминокислот, имеющих положительный заряд (лизин, аргинин) или отрицательный заряд (глутаминовой, аспарагиновой кислот), в этом случае сильное взаимное отталкивание одноименнозаряженных групп (–СОО – или –NН 3 +) значительно превосходит стабилизирующее влияние водородных связей в-спирали.

Структура типа складчатого листа также стабилизирована водородными связями между теми же диполями =NН...... О=С. Однако в этом случае возникает совершенно иная структура, при которой остов полипептидной цепи вытянут таким образом, что имеет зигзагообразную структуру. Углы вращения для связей С  -N () и С  -С () близки соответственно к –120+135 0 . Складчатые участки полипептидной цепи проявляют кооперативные свойства, т.е. стремятся расположиться рядом в белковой молекуле, и формируют параллельные

одинаковонаправленные полипептидные цепи или антипараллельные,

которые укрепляются благодаря водородным связям между этими цепями. Такие структуры называются -складчатые листы (рисунок 2).

Рисунок 2 – -структура полипептидных цепей

-Спиральные складчатые листы – это упорядоченные структуры, в них имеется регулярная укладка аминокислотных остатков в пространстве. Участки белковой цепи с нерегулярной укладкой аминокислотных остатков в пространстве, которые также удерживаются благодаря водородным связям – называются неупорядоченными, бесструктурными – статистическим клубком. Все эти структуры возникают самопроизвольно и автоматически вследствие того, что данный полипептид имеет определенную аминокислотную последовательность, которая предопределена генетически. -спирали и-структуры обуславливают определенную способность белков к выполнению специфических биологических функций. Так,-спиральная структура (-кератин) хорошо приспособлена к тому, чтобы образовывать наружные защитные структуры-перья, волосы, рога, копыта.-структура способствует образованию гибких и нерастяжимых нитей шелка и паутины, а конформация белка коллагена обеспечивает высокую прочность на разрыв, необходимую для сухожилий. Наличие только-спиралей или-структур характерно для нитевидных-фибрилярных белков. В составе глобулярных-шаровидных белков содержание-спиралей и-структур и бесструктурных участков сильно варьирует. Например: инсулин спирализован-на 60%, фермент рибонуклеаза – 57%, белок куриного яйца лизоцим – на 40%.

Сведения о чередовании аминокислотных остатков в полипептидной цепи, а также о наличии в белковой молекуле спирализованных, складчатых и неупорядоченных участков еще не дают полного представления ни об объеме, ни о форме, ни тем более о взаимном расположении участков полипептидной цепи по отношению друг к другу.

Эти особенности строения белка выясняются при изучении его третичной структуры, под которой понимают общее расположение в пространстве в определенном объеме полипептидной цепи.

Третичная структура устанавливается с помощью рентгеноструктурного анализа. Первая модель молекулы белка – миоглобина, отражающая его третичную структуру, была создана Дж. Кендрю с сотрудниками в 1957г. Несмотря на большие трудности к настоящему времени удалось установить третичную структуру более 1000 белков, в том числе гемоглобина, пепсина, лизоцима, инсулина и т.д.

Третичная структура белков образуется путем дополнительного складывания пептидной цепи содержащей -спираль,-структуры и участки без периодической структуры. Третичная структура белка формируется совершенно автоматически, самопроизвольно и полностью предопределяется первичной структурой. Основной движущей силой в возникновении трехмерной структуры, является взаимодействие радикалов аминокислот с молекулами воды. При этом неполярные гидрофобные радикалы аминокислот группируются внутри белковой молекулы, в то время как полярные радикалы ориентируются в сторону воды. В какой-то момент возникает термодинамически наиболее выгодная стабильная конформация молекулы – глобула. В такой форме белковая молекула характеризуется минимальной свободной энергией. На конформацию возникшей глобулы оказывают влияние такие факторы как рН раствора, ионная сила раствора, а также взаимодействие белковых молекул с другими веществами.

В последнее время появились доказательства, что процесс формирования третичной структуры не является автоматическим, а регулируется и контролируется специальными молекулярными механизмами. В этом процессе задействованы специфические белки – шапероны. Основными функциями их являются способность предотвращать образование из полипептидной цепи неспецифических (хаотичных) беспорядочных клубков, и обеспечение доставки (транспорта) их к субклеточным мишеням, создавая условия для завершения свертывания белковой молекулы.

Стабилизация третичной структуры обеспечивается благодаря нековалентным взаимодействиям между атомными группировками боковых радикалов следующих типов:

    водородные связи могут возникать между функциональными группами боковых радикалов. Например, между ОН группой тирозина и –Nв кольце остатка гистидина.

    электростатические силы притяжения между радикалами, несущими противоположно заряженные ионные группы (ион-ионные взаимодействия), например отрицательно заряженная карбоксильная группа (– СОО –) аспарагиновой кислоты и (NН 3 +) положительно заряженной-аминогруппой остатка лизина.

    гидрофобные взаимодействия обусловлены силами Ван-дер-Ваальса между неполярными радикалами аминокислот. (Например, группами –СН 3 – аланина.

Стабилизируется третичная структура и ковалентной дисульфидной связью (–S–S–) между остатками цистеина. Эта связь очень прочная и присутствует не во всех белках. Важную роль эта связь играет в белковых веществах зерна и муки, т.к. оказывает влияние на качество клейковины, структурно-механические свойства теста и соответственно на качество готовой продукции – хлеба и т.д.

Белковая глобула не является абсолютно жесткой структурой: в известных приделах возможны обратимые перемещения частей пептидной цепи относительно друг друга с разрывом небольшого количества слабых связей и образования новых. Молекула как бы дышит, пульсирует в разных своих частях. Эти пульсации не нарушают основного плана конформации молекулы, подобно тому, как тепловые колебания атомов в кристалле не изменяют структуру кристалла, если температура не настолько велика, что наступает плавление.

Только после приобретения белковой молекулой естественной, нативной третичной структуры он проявляет свою специфическую функциональную активность: каталитическую, гормональную, антигенную и т.д. Именно при образовании третичной структуры происходит формирование активных центров ферментов, центров ответственных за встраивание белка в мультиферментный комплекс, центров, ответственных за самосборку надмолекуляных структур. Поэтому любые воздействия (термические, физические, механические, химические), приводящие к разрушению этой нативной конформации белка (разрыв связей), сопровождается частичной или полной потерей белком его биологических свойств.

Изучение полных химических структур некоторых белков показало, что в их третичной структуре выявляются зоны, где сконцентрированы гидрофобные радикалы аминокислот, и полипептидная цепь фактически обматывается вокруг гидрофобного ядра. Более того, в ряде случаев в белковой молекуле обособляются два и даже три гидрофобных ядра, в результате возникает 2-х или 3-х ядерная структура. Такой тип строения молекулы характерен для многих белков, обладающих каталитической функцией (рибонуклеаза, лизоцим и т.д.). Обособленная часть или область молекулы белка обладающая в определенной степени структурной и функциональной автономией называется доменом. У ряда ферментов, например, обособленны субстрат-связывающие и кофермент связывающие домены.

Третичная структура белка имеет прямое отношение к его форме, которая может быть различной: от шарообразной до нитевидной. Форма белковой молекулы характеризуется таким показателем, как степень асимметрии (отношение длинной оси к короткой). У фибриллярных или нитевидных белков степень асимметрии больше 80. При степени асимметрии меньше 80 белки относятся к глобулярным. Большинство из них имеет степень асимметрии 3-5, т.е. третичная структура характеризуется достаточно плотной упаковкой полипептидной цепи, приближающейся по форме к шару.

В биологическом отношении фибриллярные белки играют очень важную роль, связанную с анатомией и физиологией животных. У позвоночных на долю этих белков приходится 1/3 от их общего содержания. Примером фибрилярных белков может служить белок шелка – фиброин, который состоит из нескольких антипараллельных цепей со структурой складчатого листа. Белок -кератин содержит от 3-7 цепей. Коллаген имеет сложную структуру, в которой 3 одинаковые левовращающие цепи скручены вместе с образованием правовращающей тройной спирали. Эта тройная спираль стабилизирована многочисленными межмолекулярными водородными связями. Наличие таких аминокислот, как гидроксипролина и гидроксилизина также вносит вклад в образование водородных связей, стабилизирующих структуру тройной спирали. Все фибриллярные белки плохо растворимы или совсем нерастворимы в воде, так как в их составе содержится много аминокислот, содержащих гидрофобные, нерастворимые в водеR-группы изолейцин, фенилаланин, валин, аланин, метионин. После специальной обработки нерастворимый и неперевариваемый коллаген превращается в желатин-растворимую смесь полипептидов, который затем используют в пищевой промышленности.

Глобулярные белки выполняют разнообразные биологические функции. Они выполняют транспортную функцию, т.е. переносят питательные вещества, неорганические ионы, липиды и т.д. К этому же классу белков принадлежат гормоны, а также компоненты мембран и рибосом. Все ферменты тоже глобулярные белки.

Белки содержащие две или большее число полипептидных цепей называют олигомерными белками для них характерно наличие четвертичной структуры. Полипептидные цепи (промеры) в таких белках могут быть либо одинаковыми либо разными. Олигомерные белки называют гомогенными, если их протомеры одинаковы и гетерогенными, если их протомеры различны. Например-белок гемоглобин состоит из 4-х цепей: двух -и двух -протомеров. Фермент-амилаза состоит из 2-х одинаковых полипептидных цепей. В олигомерных белках каждая из полипептидных цепей характеризуется своей вторичной и третичной структурой, и называется субъединицей или протомером. Протомеры взаимодействуют друг с другом не любой частью своей поверхности, а определенным участком (контактной поверхностью). Контактные поверхности имеют такое расположение атомных группировок, между которыми возникают водородные, ионные, гидрофобные связи. Кроме того, геометрия протомеров также способствует их соединению. Протомеры подходят друг к другу, как ключ к замку. Такие поверхности называются комплиментарными. Каждый протомер взаимодействует с другим во множестве точек, это приводит к тому, что соединение с другими полипептидными цепями или белками невозможно. Такие комплиментарные взаимодействия молекул лежат в основе всех биохимических процессов в организме. Под четвертичной структурой понимают расположение полипептидных цепей (протомеров) относительно друг друга, т.е. способ их совместной укладки и упаковки с образованием нативной конформации олигомерного белка, в результате чего белок обладает той или иной биологической активностью.



Понравилась статья? Поделитесь с друзьями!