Функция убывает на r. Экстремумы функции

С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word . Если же задана функция f(x,y) , следовательно, необходимо найти экстремум функции двух переменных . Также можно найти интервалы возрастания и убывания функции .

Найти наибольшее и наименьшее значение функции

y =

на отрезке [ ;]

Включать теорию

Правила ввода функций :

Необходимое условие экстремума функции одной переменной

Уравнение f" 0 (x *) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x * первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки x с, в которых функция не возрастает и не убывает.

Достаточное условие экстремума функции одной переменной

Пусть f 0 (x) дважды дифференцируемая по x , принадлежащему множеству D . Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) > 0

То точка x * является точкой локального (глобального) минимума функции.

Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) < 0

То точка x * - локальный (глобальный) максимум.

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке .
Решение.

Критическая точка одна x 1 = 2 (f’(x)=0). Эта точка принадлежит отрезку . (Точка x=0 не является критической, так как 0∉).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 / 2 , f(3)=3 8 / 81
Ответ: f min = 5 / 2 при x=2; f max =9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π / 3 +2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π / 3 +2πk, k∈Z – точки минимума функции; , значит x=- π / 3 +2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x 0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

возрастающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1

Функция называется неубывающей

\(\blacktriangleright\) Функция \(f(x)\) называется убывающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1f(x_2)\) .

Функция называется невозрастающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1

\(\blacktriangleright\) Возрастающие и убывающие функции называют строго монотонными , а невозрастающие и неубывающие - просто монотонными .

\(\blacktriangleright\) Основные свойства:

I. Если функция \(f(x)\) - строго монотонна на \(X\) , то из равенства \(x_1=x_2\) (\(x_1,x_2\in X\) ) следует \(f(x_1)=f(x_2)\) , и наоборот.

Пример: функция \(f(x)=\sqrt x\) является строго возрастающей при всех \(x\in \) , поэтому уравнение \(x^2=9\) имеет на этом промежутке не более одного решения, а точнее одно: \(x=-3\) .

функция \(f(x)=-\dfrac 1{x+1}\) является строго возрастающей при всех \(x\in (-1;+\infty)\) , поэтому уравнение \(-\dfrac 1{x+1}=0\) имеет на этом промежутке не более одного решения, а точнее ни одного, т.к. числитель левой части никогда не может быть равен нулю.

III. Если функция \(f(x)\) - неубывает (невозрастает) и непрерывна на отрезке \(\) , причем на концах отрезка она принимает значения \(f(a)=A, f(b)=B\) , то при \(C\in \) (\(C\in \) ) уравнение \(f(x)=C\) всегда имеет хотя бы одно решение.

Пример: функция \(f(x)=x^3\) является строго возрастающей (то есть строго монотонной) и непрерывной при всех \(x\in\mathbb{R}\) , поэтому при любом \(C\in (-\infty;+\infty)\) уравнение \(x^3=C\) имеет ровно одно решение: \(x=\sqrt{C}\) .

Задание 1 #3153

Уровень задания: Легче ЕГЭ

имеет ровно два корня.

Перепишем уравнение в виде: \[(3x^2)^3+3x^2=(x-a)^3+(x-a)\] Рассмотрим функцию \(f(t)=t^3+t\) . Тогда уравнение перепишется в виде: \ Исследуем функцию \(f(t)\) . \ Следовательно, функция \(f(t)\) возрастает при всех \(t\) . Значит, каждому значению функции \(f(t)\) соответствует ровно одно значение аргумента \(t\) . Следовательно, для того, чтобы уравнение имело корни, нужно: \ Чтобы полученное уравнение имело два корня, нужно, чтобы его дискриминант был положительным: \

Ответ:

\(\left(-\infty;\dfrac1{12}\right)\)

Задание 2 #2653

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при которых уравнение \

имеет два корня.

(Задача от подписчиков.)

Сделаем замену: \(ax^2-2x=t\) , \(x^2-1=u\) . Тогда уравнение примет вид: \ Рассмотрим функцию \(f(w)=7^w+\sqrtw\) . Тогда наше уравнение примет вид: \

Найдем производную \ Заметим, что при всех \(w\ne 0\) производная \(f"(w)>0\) , т.к. \(7^w>0\) , \(w^6>0\) . Заметим также, что сама функция \(f(w)\) определена при всех \(w\) . Т.к. к тому же \(f(w)\) непрерывна, то мы можем сделать вывод, что \(f(w)\) возрастает на всем \(\mathbb{R}\) .
Значит, равенство \(f(t)=f(u)\) возможно тогда и только тогда, когда \(t=u\) . Вернемся к изначальным переменным и решим полученное уравнение:

\ Для того, чтобы данное уравнение имело два корня, оно должно быть квадратным и его дискриминант должен быть положительным:

\[\begin{cases} a-1\ne 0\\ 4-4(a-1)>0\end{cases} \quad\Leftrightarrow\quad \begin{cases}a\ne1\\a<2\end{cases}\]

Ответ:

\((-\infty;1)\cup(1;2)\)

Задание 3 #3921

Уровень задания: Равен ЕГЭ

Найдите все положительные значения параметра \(a\) , при которых уравнение

имеет как минимум \(2\) решения.

Перенесем все слагаемые, содержащие \(ax\) , влево, а содержащие \(x^2\) – вправо, и рассмотрим функцию
\

Тогда исходное уравнение примет вид:
\

Найдем производную:
\

Т.к. \((t-2)^2 \geqslant 0, \ e^t>0, \ 1+\cos{2t} \geqslant 0\) , то \(f"(t)\geqslant 0\) при любых \(t\in \mathbb{R}\) .

Причем \(f"(t)=0\) , если \((t-2)^2=0\) и \(1+\cos{2t}=0\) одновременно, что не выполняется ни при каких \(t\) . Следовательно, \(f"(t)> 0\) при любых \(t\in \mathbb{R}\) .

Таким образом, функция \(f(t)\) строго возрастает при всех \(t\in \mathbb{R}\) .

Значит, уравнение \(f(ax)=f(x^2)\) равносильно уравнению \(ax=x^2\) .

Уравнение \(x^2-ax=0\) при \(a=0\) имеет один корень \(x=0\) , а при \(a\ne 0\) имеет два различных корня \(x_1=0\) и \(x_2=a\) .
Нам нужно найти значения \(a\) , при которых уравнение будет иметь не менее двух корней, учитывая также то, что \(a>0\) .
Следовательно, ответ: \(a\in (0;+\infty)\) .

Ответ:

\((0;+\infty)\) .

Задание 4 #1232

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственное решение.

Домножим правую и левую части уравнения на \(2^{\sqrt{x+1}}\) (т.к. \(2^{\sqrt{x+1}}>0\) ) и перепишем уравнение в виде: \

Рассмотрим функцию \(y=2^t\cdot \log_{\frac{1}{9}}{(t+2)}\) при \(t\geqslant 0\) (т.к. \(\sqrt{x+1}\geqslant 0\) ).

Производная \(y"=\left(-2^t\cdot \log_9{(t+2)}\right)"=-\dfrac{2^t}{\ln9}\cdot \left(\ln 2\cdot \ln{(t+2)}+\dfrac{1}{t+2}\right)\) .

Т.к. \(2^t>0, \ \dfrac{1}{t+2}>0, \ \ln{(t+2)}>0\) при всех \(t\geqslant 0\) , то \(y"<0\) при всех \(t\geqslant 0\) .

Следовательно, при \(t\geqslant 0\) функция \(y\) монотонно убывает.

Уравнение можно рассматривать в виде \(y(t)=y(z)\) , где \(z=ax, t=\sqrt{x+1}\) . Из монотонности функции следует, что равенство возможно только в том случае, если \(t=z\) .

Значит, уравнение равносильно уравнению: \(ax=\sqrt{x+1}\) , которое в свою очередь равносильно системе: \[\begin{cases} a^2x^2-x-1=0\\ ax \geqslant 0 \end{cases}\]

При \(a=0\) система имеет одно решение \(x=-1\) , которое удовлетворяет условию \(ax\geqslant 0\) .

Рассмотрим случай \(a\ne 0\) . Дискриминант первого уравнения системы \(D=1+4a^2>0\) при всех \(a\) . Следовательно, уравнение всегда имеет два корня \(x_1\) и \(x_2\) , причем они разных знаков (т.к. по теореме Виета \(x_1\cdot x_2=-\dfrac{1}{a^2}<0\) ).

Это значит, что при \(a<0\) условию \(ax\geqslant 0\) подходит отрицательный корень, при \(a>0\) условию подходит положительный корень. Следовательно, система всегда имеет единственное решение.

Значит, \(a\in \mathbb{R}\) .

Ответ:

\(a\in \mathbb{R}\) .

Задание 5 #1234

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень из отрезка \([-1;0]\) .

Рассмотрим функцию \(f(x)=2x^3-3x(ax+x-a^2-1)-3a-a^3\) при некотором фиксированном \(a\) . Найдем ее производную: \(f"(x)=6x^2-6ax-6x+3a^2+3=3(x^2-2ax+a^2+x^2-2x+1)=3((x-a)^2+(x-1)^2)\) .

Заметим, что \(f"(x)\geqslant 0\) при всех значениях \(x\) и \(a\) , причем равна \(0\) только при \(x=a=1\) . Но при \(a=1\) :
\(f"(x)=6(x-1)^2 \Rightarrow f(x)=2(x-1)^3 \Rightarrow\) уравнение \(2(x-1)^3=0\) имеет единственный корень \(x=1\) , не удовлетворяющий условию. Следовательно, \(a\) не может быть равно \(1\) .

Значит, при всех \(a\ne 1\) функция \(f(x)\) является строго возрастающей, следовательно, уравнение \(f(x)=0\) может иметь не более одного корня. Учитывая свойства кубической функции, график \(f(x)\) при некотором фиксированном \(a\) будет выглядеть следующим образом:


Значит, для того, чтобы уравнение имело корень из отрезка \([-1;0]\) , необходимо: \[\begin{cases} f(0)\geqslant 0\\ f(-1)\leqslant 0 \end{cases} \Rightarrow \begin{cases} a(a^2+3)\leqslant 0\\ (a+2)(a^2+a+4)\geqslant 0 \end{cases} \Rightarrow \begin{cases} a\leqslant 0\\ a\geqslant -2 \end{cases} \Rightarrow -2\leqslant a\leqslant 0\]

Таким образом, \(a\in [-2;0]\) .

Ответ:

\(a\in [-2;0]\) .

Задание 6 #2949

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \[(\sin^2x-5\sin x-2a(\sin x-3)+6)\cdot (\sqrt2a+8x\sqrt{2x-2x^2})=0\]

имеет корни.

(Задача от подписчиков)

ОДЗ уравнения: \(2x-2x^2\geqslant 0 \quad\Leftrightarrow\quad x\in \) . Следовательно, для того, чтобы уравнение имело корни, нужно, чтобы хотя бы одно из уравнений \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad {\small{\text{или}}}\quad \sqrt2a+8x\sqrt{2x-2x^2}=0\] имело решения на ОДЗ.

1) Рассмотрим первое уравнение \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &\sin x=2a+2\\ &\sin x=3\\ \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \sin x=2a+2\] Данное уравнение должно иметь корни на \(\) . Рассмотрим окружность:

Таким образом, мы видим, что для любых \(2a+2\in [\sin 0;\sin 1]\) уравнение будет иметь одно решение, а для всех остальных – не будет иметь решений. Следовательно, при \(a\in \left[-1;-1+\sin 1\right]\) уравнение имеет решения.

2) Рассмотрим второе уравнение \[\sqrt2a+8x\sqrt{2x-2x^2}=0 \quad\Leftrightarrow\quad 8x\sqrt{x-x^2}=-a\]

Рассмотрим функцию \(f(x)=8x\sqrt{x-x^2}\) . Найдем ее производную: \ На ОДЗ производная имеет один ноль: \(x=\frac34\) , который к тому же является точкой максимума функции \(f(x)\) .
Заметим, что \(f(0)=f(1)=0\) . Значит, схематично график \(f(x)\) выглядит так:

Следовательно, для того, чтобы уравнение имело решения, нужно, чтобы график \(f(x)\) пересекался с прямой \(y=-a\) (на рисунке изображен один из подходящих вариантов). То есть нужно, чтобы \ . При этих \(x\) :

Функция \(y_1=\sqrt{x-1}\) является строго возрастающей. Графиком функции \(y_2=5x^2-9x\) является парабола, вершина которой находится в точке \(x=\dfrac{9}{10}\) . Следовательно, при всех \(x\geqslant 1\) функция \(y_2\) также строго возрастает (правая ветвь параболы). Т.к. сумма строго возрастающих функций есть строго возрастающая, то \(f_a(x)\) – строго возрастает (константа \(3a+8\) не влияет на монотонность функции).

Функция \(g_a(x)=\dfrac{a^2}{x}\) при всех \(x\geqslant 1\) представляет собой часть правой ветви гиперболы и является строго убывающей.

Решить уравнение \(f_a(x)=g_a(x)\) - значит найти точки пересечения функций \(f\) и \(g\) . Из их противоположной монотонности следует, что уравнение может иметь не более одного корня.

При \(x\geqslant 1\) \(f_a(x)\geqslant 3a+4, \ \ \ 0. Следовательно, уравнение будет иметь единственное решение в том случае, если:


\\cup

Ответ:

\(a\in (-\infty;-1]\cup .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .



Понравилась статья? Поделитесь с друзьями!