Гамма-излучение: понятие, источники, применение и способы защиты. Гамма - излучение и его основные свойства

46. Природа, происхождение и свойства гамма- и рентгеновского излучений. Механизмы взаимодействия гамма- и рентгеновских квантов с атомами вещества. Вероятность различных способов взаимодействия квантов с атомами в зависимости от энергии квантов.

Важнейшей характеристикой любого ионизирующего излучения явл. Его ионизирующая способность. Количественной мерой этой способности служит линейная плотность ионизации (ЛПИ). Она равняется числу пар ионов, создаваемых частицей (квантам) на единице пути в веществе. ЛПИ зависит от природы и энергии частицы и от свойств вещества. В литературе обычно указывается ЛПИ для стандартного вещества – сухого воздуха, а за единицу пути принимается один сантиметр. Легко понять, что повреждающее действие на организм тем больше, чем больше ЛПИ. Проходя через вещество кванты, постепенно теряют энергию, которая расходуется на ионизацию молекул и атомов. Скоростью потери энергии определяется проникающая способность данного ионизирующего излучения. За меру проникающей способности для частиц принимают расстояние, на к-м частица замедляется до энергии близкой к средней энергии теплового движения. Для квантов рентгеновских или гамма-лучей за меру проникающей способности принимают расстояние, на к-м мощность излучения падает в «е» раз. Чем больше ЛПИ, тем в данном веществе меньше проникающая способность излучения. Излучения с высокой ПС называются жесткими; если же ПС мала, такое излучение называют мягким. Но эти термины относительны. Альфа-частицы обладают очень малой ПС; даже в воздухе их пробег равен нескольким см. Более плотные вещества непроницаемы для альфа-частиц при толщине в доли мм. Поток альфа-частиц, падающих на человека, целиком поглощается в верхних слоях кожи. Из-за малой ПС альфа-частицы практически совершенно безопасны для человека при внешнем облучении. Но если альфа-активный изотоп попадет внутрь организма, то опасность будет очень велика, т.к. испускаемые изотопом внутри тканей частицы вызовут очень сильную ионизацию, повреждающую живые структуры. ПС бета-частиц примерно в 100 раз больше; в воздухе они проходят неск-ко м, в твердых средах – неск-ко мм (в зависимости от энергии). Рентгеновские лучи и гамма-кванты, имеющие малую ЛПИ, проникают глубоко даже в плотные среды. Гамма-кванты с высокой энергией могут проходить через слой земли или бетона в неск-ко метров.

Взаимодействие с вещ-м альфа- и бета-частиц

Отдельные альфа- и бетта-частицы могут проникнуть в ядра атомов и вызвать там те или иные ядерные реакции. Но подавляющее число частиц взаимодействует только с электронными оболочками. Имея большую массу, альфа-частицы практически не отклоняются от прямолинейной траектории при столкновении с электронами атома. Электроны же отрываются от атомов и молекул, т.е. происходит ионизация. Для определенного изотопа все альфа-частицы обладают приблизительно одной и той же энергией, поэтому все альфа-частицы данного изотопа имеют одинаковый пробег в вещ-ве. Бета-частицы легкие, поэтому они значительно изменяют направление своего движения при столкновении с атомом. Такой процесс называется рассеянием. Рассеянные бета-частицы летят во все стороны и могут явиться источником поражения людей, находящихся поблизости от тела, на к-е падает поток бета-частиц, даже если этот поток непосредственно на человека не попадает. Источником опасности может явиться тормозное рентгеновское излучение, возникающее при торможении ** в твердых веществах. Из-за существования тормозного излучения даже чистые бета-излучатели требуют при хранении или перевозке достаточно серьезной защиты. Наконец, в вещ-х с позитронной активностью происходит аннигиляция, т.е. при столкновении позитронов с электронами вещ-ва частицы превращаются в два гамма-кванта с энергией 0,51 МэВ каждый, поэтому все позитронно-активные изотопы явл. Одновременно источниками гамма-излучений.

Практически важные эффекты обусловленные рассеянием

А. Рассеянное излучение распростр. Во все стороны. Это требует принятия доп. Мер предосторожности. К примеру, при рентгеновском снимке прямой пучок лучей направлен вниз, однако рассеянное в теле больного излучение идет в стороны и вверх, что заставляет принимать меры по защите соседних и даже выше расположенных помещений. Точно так же гамма-излучение, создаваемое реактором подводной лодки, рассеивается в морской воде, и часть его возвращается в отсеки лодки, увеличивая радиационный фон.

Б. Если при измерении ионизирующих излучений измерительный прибор окажется рядом с массивными предметами или стенами, рассеянное в них излучение может существенно исказить результаты измерений.

В. Рассеянное излучение портит рентгеновское изображение. Отклонившиеся от первоначального направления кванты попадают в случайные места экрана или пленки, «засвечивая» ее и делая изображение менее четким и контрастным.

Пояснительная записка к курсовой работе выполнена в объёме 36 листов. Она содержит таблицу значений гамма-функции при некоторых значениях переменных и тексты программ для вычисления значений Гамма-функции и для построения графика, а также 2 рисунка.

Для написания курсовой работы было использовано 7 источников.

Введение

Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.

Такие функции называются интегралами зависящими от параметра. К их числу относятся гамма и бета функции Эйлера.

Бета функции представимы интегралом Эйлера первого рода:

Гамма функция представляется интегралом Эйлера второго рода:

Гамма-функция относится к числу самых простых и значимых специальных функций, знание свойств которой необходимо для изучения многих других специальных функций, например, цилиндрических, гипергеометрических и других.

Благодаря её введению значительно расширяются наши возможности при вычислении интегралов. Даже в случаях, когда конечная формула не содержит иных функций, кроме элементарных, получение её всё же часто облегчает использование функции Г, хотя бы в промежуточных выкладках.

Эйлеровы интегралы представляют собой хорошо изученные неэлементарные функции. Задача считается решённой, если она приводится к вычислению эйлеровых интегралов.


1. Бэта-функци я Эйлера

Бэта – функции определяются интегралом Эйлера первого рода:

=(1.1)

Он представляет функцию от двух переменных параметров

и : функцию B . Если эти параметры удовлетворяют условиям и ,то интеграл (1.1) будет несобственным интегралом, зависящим от параметров и ,причём особыми точками этого интеграла будут точки и

Интеграл (1.1) сходятся при

.Полагая получим: = - =

т.e. аргумент

и входят в симметрично. Принимая во внимание тождество

по формуле интегрирования почестям имеем

Откуда получаем

=

При целом b = n последовательно применяя (1.2)

при целых

= m,= n, имеем

но B(1,1) = 1,следовательно:

Положим в (1.1)

.Так как график функции симметрична относительно прямой ,то

и в результате подстановки

, получаем

полагая в(1.1)

,откуда , получим

разделяя интеграл на два в пределах от 0 до 1 и от 1 до

и применение ко второму интегралу подстановки ,получим

2. Гамма-функция

2.1 Определение

Восклицательный знак в математических трудах обычно означает взятие факториала какого-либо целого неотрицательного числа:

n! = 1·2·3·...·n.

Функцию факториал можно еще записать в виде рекурсионного соотношения:

(n+1)! = (n+1)·n!.

Это соотношение можно рассматривать не только при целых значениях n.

Рассмотрим разностное уравнение

Несмотря на простую форму записи, в элементарных функциях это уравнение не решается. Его решение называется гамма-функцией. Гамма-функцию можно записать в виде ряда или в виде интеграла. Для изучения глобальных свойств гамма-функции обычно пользуются интегральным представлением.

2.2 Интегральное представление

Перейдем к решению этого уравнения. Будем искать решение в виде интеграла Лапласа:

В этом случае правая часть уравнения (2.1) может быть записана в виде:

Эта формула справедлива, если существуют пределы для внеинтегрального члена. Заранее нам не известно поведение образа [(G)\tilde](p) при p®±¥. Предположим, что образ гамма-функции таков, что внеинтегральное слагаемое равно нулю. После того, как будет найдено решение, надо будет проверить, верно ли предположение о внеинтегральном слагаемом, иначе придется искать G(z) как-нибудь по-другому.

Экспериментально установлено, что g-излучение (см. § 255) не является самостоятельным видом радиоактивности, а только сопровождает a- и b-распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. g-Спектр является линейчатым. g-Спектр - это распределение числа g-квантов по энергиям (такое же толкование b-спектра дано в §258). Дискретность g-спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.

В настоящее время твердо установлено, что g-излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбуж денным, за время примерно 10 -13 - 10 -14 с, значительно меньшее времени жизни возбужденного атома (примерно 10 -8 с), переходит в основное состояние с испусканием g-излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому g-излучение одного и того же радиоактивного изотопа может содержать несколько групп g-квантов, отличающихся одна от другой своей энергией.

При g-излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. g-Излучение большинства ядер является столь коротковолно вым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому g-излучение рассматривают как поток частиц - g-квантов. При радиоактивных распадах различных ядер g-кванты имеют энергии от 10 кэВ до 5МэВ.

Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании g-кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания g-кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии. Само явление называется внутренней конверсией. Внутренняя конверсия - процесс, конкурирующий с g-излучением.

Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е, отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Евыделяется в виде у-кванта, то частота излучения v определяется из извест ного соотношения E=hv. Бели же испускаютЛ электроны внутренней конверсии, то их энергии равны Е-А К, E-A L , ..., где А к, A L , ...- работа выхода электрона из К- и L-оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от b-электронов, спектр которых непрерывен (см. § 258). Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электро нами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.

g-Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении g-излучения сквозь вещество они либо поглощаются, либо рассеива ются им. g-Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка у-квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, изменение которой описывается экспоненциальным законом I = I 0 е - m x (I 0 и I - интенсивности g-излучения на входе и выходе слоя поглощающего вещества толщиной х, m- коэффициент поглощения). Так как g-излучение - самое проникающее излучение, то mдля многих веществ - очень малая величина; mзависит от свойств вещества и от энергии g-квантов.

g-Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике доказывается, что основными процессами, сопровождающими прохождение g-излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.

Фотоэффект, или фотоэлектрическое поглощение g-нзлучення, - это процесс, при котором атом поглощает g-квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электронами из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом поглощения в области малых энергий g-квантов (E g < 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить g-квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.

По мере увеличения энергии g-квантов (Е g » 0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия g-квантов с веществом является комптоновское рассеяние (см. § 206).

При Е g >1,02 МэВ = 2m е с 2 (m е - масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероятность этого процесса пропорциональна Z 2 и увеличивается с ростом Е g .Поэтому при Е g » 10 МэВ основным процессом взаимодействия g-излучения в любом веществе является образование электроиво-позитронных пар.

Если энергия g-кванта превышает энергию связи нуклонов в ядре (7-8 МэВ), то в результате поглощения g-кванта может наблюдаться ядерный фотоэффект - выброс из ядра одного из нуклонов, чаще всего нейтрона.

Большая проникающая способность g-излучения используется в гамма-дефектоскопии - методе дефектоскопии, основанном на различном поглощении g-излучения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.

Воздействие g-излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения. Различаются:

Поглощенная доза излучения - физическая величина, равная отношению энергии излучения к массе облучаемого вещества.

Единица, поглощенной дозы излучения - грей (Гр)*: 1 Гр= 1 Дж/кг - доза из лучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.

Экспозиционная доза излучения - физическая величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха.

Единила экспозиционной дозы излучения - кулон на килограмм (Кл/кг); внеси стемной единицей является рентген (Р): 1 Р=2,58× 10 -4 Кл/кг.

Биологическая доза - величина, определяющая воздействие излучения на организм.

Единица биологической дозы - биологический эквивалент рентгена (бэр): 1 бэр - доза любого вида ионизирующего излучения, производящая такое же биоло гическое действие, как и доза рентгеновского или g-излучения в 1 Р (1 бэр= 10 -2 Дж/кг).

Область определения гамма-функции Г(ж) В интеграле (1) имеются особенности двух типов: 1) интегрирование по полупрямой 2) в точке подынтегральная функция обращается в бесконечность. Чтобы разделить эти особенности, представим функцию Г(ж) в виде суммы двух интегралов Гамма-функцией называется интеграл Область определения гамма-функции Некоторые свойства гамма-функции Бета-функция и ее свойства Область определения бета-функции Применение интегралов Эйлера в вычислении определенных интегралов и рассмотрим каждый из них отдельно. Так как то интеграл сходится при (по признаку сравнения). Интеграл сходится при любом х. В самом деле, взяв произвольное, получим, что при любом х При интеграл сходится, следовательно, интеграл сходится при любом x. Тем самым, сходится при и мы доказал и, что областью определения гамма-функции Г(ж) является полупрямая Покажем, что интеграл (1) сходится равномерно по х на любом отрезке Пусть. Тогда при имеем Интегралы в правых частях формул (2) и (3) сходятся, а по признаку Вейерштрасса равномерно сходятся интегралы, стоящие в левых частях неравенств (2) и (3). Следовательно, в силу равенства получаем равномерную сходимость Г(х) на любом отрезке [с, й],где. Из равномерной сходимости Г(ж) вытекает непрерывность этой функции при Некоторые свойства гамма-функции 1. (гамма-функция при х > 0 не имеет нулей). 2. При любом х > 0 имеет место формула приведения для гамма-функции 3. При х = п имеет место формула При х = 1 имеем Пользуясь формулой (4), получим Применяя формулу п раз, при получаем 4. Кривая у = Г(х) выпукла вниз. В самом деле, Отсюда следует, что производная на полупрямой может иметь только один нуль. А так как, то по теореме Ролля этот нуль х0 производной Г"(х) существует и лежит в интервале (1,2). Поскольку, то в точке х0 функция Г(х) имеет минимум. Можно показать, что на (0, +оо) функция Г(х) дифференцируема любое число раз. Из формулы ибо непрерывна и при 6. Формула дополнения. График гамма-функции имеет вид, изображенный на рис. 4. § 4. Бета-функция и ее свойства Бета-функцией называется интеграл зависящий от параметров 4.1. Область определения бета-функции В(х) Подынтегральная функция при имеет две особые точки Для отыскания области определения представим интеграл (7) в виде суммы двух интегралов первый из которых (при) имеет особую точку, а второй (при - особую точку t = 1. Интеграл - несобственный интеграл 2-го рода. Он сходится при условии, что при, а инте!рал Гамма-функцией называется интеграл Область определения гамма-функции Некоторые свойства гамма-функции Бета-функция и ее свойства Область определения бета-функции Применение интегралов Эйлера в вычислении определенных интегралов сходится при Тем самым, бета-функция В(х} у) определена для всех положительных значений хну. Можно доказать, что интеграл (7) равномерно сходится в каждой области х^а>0, У>Ь>Оу так что бета-функция непрерывна при Некоторые свойства бета-функции 1. При справедлива формула Бета-функция является симметричной относительно хну, Это следует из формулы (9). §5. Применение интегралов Эйлера в вычислении определенных интегралов Рассмотрим несколько примеров. Пример 1. Вычислить интеграл 4 Введем замену получаем Поэтому Пример 2. Вычислить интеграл Положим, тогда, пределы интегрирования остаются прежними, так что заданный интеграл сводится к бета-функции: Пример 3. Исходя из равенства вычислить интеграл Здесь мы воспользовались определением бета-функции и формулами Упражнения Вычислите пределы: Найдите производные F"(y) для следующих функций: о. Исходя из равенства. вычислите интеграл 7. Используя равенство, путем дифференцирования по параметру получите следующую формулу: 8. Докажите, что интеграл РавномеРно сходится по у на всей вещественной оси. 7 dx 9. Докажи те, что интеграл сходится равномерно по параметру s на любом отрезке 10. Используя равенство вычислите путем дифференцирования по параметру интеграл С помощью Эйлеровых интегралов вычислите следующие интегралы: Выразите через Эйлеровы интегралы: Гамма-функцией называется интеграл Область определения гамма-функции Некоторые свойства гамма-функции Бета-функция и ее свойства Область определения бета-функции Применение интегралов Эйлера в вычислении определенных интегралов целое положительное) Докажем, что интеграл равномерно сходится на всей вещественной оси: 1) имеет место соотношение всякого в качестве Л(е), упоминаемого в определении несобственного интеграла, равномерно сходящегося по параметру у, можно взять При В > А будем иметь Докажем, что интеграл /(«) = / равномерно сходится при а Так как при О 1 и интеграл сходится, то по достаточному признаку Вейерштрасса заключаем, чгто данный интеграл рав- номерно сходится. 10. Имеем Дифференцируя п раз о

ГАММА-ФУНКЦИЯ, Г-функция,- трансцендентная функция T(z), распространяющая значения факториала z! на случай любого комплексного z ≠ 0, -1, -2, .... Г.-ф. введена Л. Эйлером [(L. Euler), 1729, письмо к X. Гольдбаху (Ch. Goldbach)] при помощи бесконечного произведения

из к-рого Л. Эйлер получил интегральное представление (эйлеров интеграл второго рода)

верное для Re z > 0. Многозначность функции x z-1 устраняется формулой x z-1 = e (z-1)ln x с действительным ln х. Обозначение Г(z) и назв. Г.-ф. были предложены А. М. Лежандром (А. М. Legendre, 1814).

На всей плоскости z с выброшенными точками z = 0, -1, -2, ... для Г.-ф. справедливо интегральное представление Ганкеля:

где s z-1 = e (z-1)ln s , причем ln s есть ветвь логарифма, для к-рой 0

Основные соотношения и свойства Г.-ф.

1) Функциональное уравнение Эйлера:

zГ(z) = Г(z + 1),

Г(1) = 1, Г(n + 1) = n!, если n > 0 - целое, при этом считают 0! = Г(1) = 1.

2) Формула дополнения Эйлера:

Г(z)Г(1 - z) = π/sin πz.

В частности,

если n > 0 - целое, то

y - действительное.

3) Формула умножения Гаусса:

При m = 2 это есть формула удвоения Лежандра.

4) При Rе z ≥ δ > 0 или |Im z| ≥ δ > 0 имеет место асимптотич. разложение ln Г(z) в ряд Стирлинга:

где B 2n - Бернулли числа. Из чего следует равенство

В частности,

Более точной является формула Сонина :

5) В действительной области Г(х) > 0 для х > 0 и принимает знак (-1) k+1 на участках -k - 1

ГГ"" > Г" 2 ≥ 0,

т. е. все ветви как |Г(x)|, так и ln |Г(х)| - выпуклые функции. Свойство логарифмич. выпуклости определяет Г.-ф. среди всех решений функционального уравнения

Г(1 + х) = хГ(х)

с точностью до постоянного множителя.

Рис. 2. График функции y = Г(х).

Для положительных х Г.-ф. имеет единственный минимум при х = 1,4616321..., равный 0,885603... . Локальные минимумы функции |Г(х)| при х → -∞ образуют последовательность, стремящуюся к нулю.

Рис. 3. График функции 1/Г(x).

6) В комплексной области, при Re z > 0, Г.-ф. быстро убывает при |Im z| → -∞

7) Функция 1/Г(z) (см. рис. 3) является целой функцией 1-го порядка максимального типа, причем асимптотически при Г → ∞

ln М(r) ~ r ln r,

Она представима бесконечным произведением Вейерштрасса:

абсолютно и равномерно сходящимся на любом компактном множестве комплексной плоскости (здесь С -Эйлера постоянная). Справедливо интегральное представление Ганкеля:

где контур С * изображен на рис. 4.

Интегральные представления для степеней Г.-ф. были получены Г. Ф. Вороным .

В приложениях большую роль играют так наз. полигамма-функции, являющиеся к-ми производными от ln Г(z). Функция (ψ-функция Гаусса)

мероморфна, имеет простые полюсы в точках z = 0,- 1,_-2, ... и удовлетворяет функциональному уравнению

ψ(z + 1) - ψ(z) = 1/z.

Из представления ψ(z) при |z|

эта формула полезна для вычисления Г(z) в окрестности точки z = 1.

О других полигамма-функциях см. . Неполная гамма-функция определяется равенством

Функции Г(z), ψ(z) суть трансцендентные функции, не удовлетворяющие никакому линейному дифференциальному уравнению с рациональными коэффициентами (теорема Гёльдера).

Исключительная роль Г.-ф. в математич. анализе определяется тем, что при помощи Г.-ф. выражается большое количество определенных интегралов, бесконечных произведений и сумм рядов (см., напр., Бета-функция). Кроме того, Г.-ф. находит широкие применения в теории специальных функций (гипергеометрической функции, для которой Г.-ф. является предельным случаем, цилиндрических функций и др.), в аналитич. теории чисел и т. д.

Лит.: Уиттекер Э. Т., Ватсон Дж. Н., Курс современного анализа, пер. с англ., т. 2, 2 изд., М., 1963; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции Гипергеометрическая функция. Функции Лежандра, пер. с англ., М., 1965; Бурбаки Н., Функции действительного переменного. Элементарная теория, пер. с франц., М., 1965; Математический анализ. Функции, пределы, ряды, цепные дроби, (Справочная математическая библиотека), М., 1961; Nielsen N.. Handbuch der Theorie der Gamma-funktion, Lpz., 1906; Сонин Н. Я., Исследования о цилиндрических функциях и специальных полиномах, М., 1954; Вороной Г. Ф., Собр. соч., т. 2, К., 1952, с. 53-62; Янке Е., Эмде Ф., Леш Ф., Специальные функции. Формулы, графики, таблицы, пер. с нем., 2 изд., М., 1968; Анго А., Математика для электро- и радиоинженеров, пер. с франц., 2 изд., М., 1967.

Л. П. Купцов.


Источники:

  1. Математическая Энциклопедия. Т. 1 (А - Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] - М., «Советская Энциклопедия», 1977, 1152 стб. с илл.


Понравилась статья? Поделитесь с друзьями!