Геологический круговорот веществ обусловлен взаимодействием. Большой геологический круговорот веществ

В биосфере происходит глобальный (большой, или геологический) круговорот веществ, который существовал и до появления первых живых организмов. В него вовлечены самые разнообразные химические элементы. Геологический круговорот осуществляется благодаря солнечной, гравитационной, тектонической и космической видам энергии.

С появлением живого вещества на основе геологического круговорота возник круговорот органического вещества – малый (биотический, или биологический) круговорот.

Биотический круговорот веществ– непрерывный, циклический, неравномерный во времени и пространстве процесс перемещения и превращения веществ, происходящий при непосредственном участии живых организмов. Он представляет собой непрерывный процесс создания и разрушения органического вещества и реализуется при участии всех трех групп организмов: продуцентов, консументов и редуцентов. В биотические круговороты вовлечено около 40 биогенных элементов. Наибольшее значение для живых организмов имеют круговороты углерода, водорода, кислорода, азота, фосфора, серы, железа, калия, кальция и магния.

По мере развития живой материи из геологического круговорота постоянно извлекается все больше элементов, которые вступают в новый, биологический круговорот. Общая масса зольных веществ, вовлекаемая ежегодно в биотический круговорот веществ только на суше, составляет около 8 млрд. тонн. Это в несколько раз превышает массу продуктов извержения всех вулканов мира на протяжении года. Скорость круговорота вещества в биосфере различна. Живое вещество биосферы обновляется в среднем за 8 лет, масса фитопланктона в океане обновляется ежедневно. Весь кислород биосферы проходит через живое вещество за 2000 лет, а углекислый газ – за 300 лет.

В экосистемах осуществляются локальные биотические круговороты, а в биосфере – биогеохимические циклы миграции атомов, которые не только связывают все три наружные оболочки планеты в единое целое, но и обуславливают непрерывную эволюцию её состава.

АТМОСФЕРА ГИДРОСФЕРА

­ ¯ ­ ¯

ЖИВОЕ ВЕЩЕСТВО

ПОЧВА

Эволюция биосферы

Биосфера появилась с зарождением первых живых организмов примерно 3,5 млрд. лет назад. В ходе развития жизни она изменялась. Этапы эволюции биосферы можно выделить с учетом характеристики типа экосистем.

1. Возникновение и развитие жизни в воде. Этап связан с существованием водных экосистем. Кислород в атмосфере отсутствовал.



2. Выход живых организмов на сушу, освоение наземно-воздушной среды и почвы и появление наземных экосистем. Это стало возможно благодаря появлению кислорода в атмосфере и озонового экрана. Произошло 2,5 млрд. лет назад.

3. Появление человека, превращение его в биосоциальное существо и возникновение антропоэкосистем произошло 1 млн. лет назад.

4. Переход биосферы под влиянием разумной деятельности человека в новое качественное состояние – в ноосферу.


Ноосфера

Высшим этапом развития биосферы является ноосфера – этап разумного регулирования взаимоотношений между человеком и природой. Этот термин ввел в 1927 году французский философ Э. Леруа. Он считал, что ноосфера включает человеческое общество с его индустрией, языком и прочими атрибутами разумной деятельности. В 30-40-х гг. ХХ века В.И. Вернадский развил материалистические представления о ноосфере. Он считал, что ноосфера возникает в результате взаимодействия биосферы и общества, управляется за счет тесной взаимосвязи законов природы, мышления и социально-экономических законов общества, и подчеркивал, что

ноосфера (сфера разума) – стадия развития биосферы, когда разумная деятельность людей станет главным, определяющим фактором ее устойчивого развития.

Ноосфера – новая, высшая стадия биосферы, связанная с возникновением и развитием в ней человечества, которое, познавая законы природы и совершенствуя технику, становится крупнейшей силой, сопоставимой по масштабам с геологическими, и начинает оказывать определяющее влияние на ход процессов на Земле, глубоко изменяя ее своим трудом. Становление и развитие человечества выразилось в возникновении новых форм обмена веществом и энергией между обществом и природой, во все возрастающем воздействии человека на биосферу. Ноосфера наступит тогда, когда человечество с помощью науки сможет осмысленно управлять природными и социальными процессами. Поэтому нельзя ноосферу считать особой оболочкой Земли.



Науку управления взаимоотношениями между человеческим обществом и природой называют ноогеникой.

Основная цель ноогеники – планирование настоящего во имя будущего, а её главные задачи – исправление нарушений в отношениях человека и природы, вызванных прогрессом техники, сознательное управление эволюцией биосферы. Должно сформироваться плановое, научно обоснованное использование природных ресурсов, предусматривающее восстановление в круговороте веществ того, что нарушил человек, в противоположность стихийному, хищническому отношению к природе, приводящему к ухудшению окружающей среды. Для этого необходимо устойчивое развитие общества, которое удовлетворяет потребности настоящего времени и не ставит под угрозу способность будущих поколений удовлетворять свои потребности.

В настоящее время на планете сформировалась биотехносфера – часть биосферы, коренным образом преобразованная человеком в инженерно-технические сооружения: города, заводы и фабрики, карьеры и шахты, дороги, плотины и водохранилища и т.п.

БИОСФЕРА И ЧЕЛОВЕК

Биосфера для человека является и средой обитания, и источником природных ресурсов.

Природные ресурсы природные объекты и явления, которые человек использует в процессе труда. Они обеспечивают человеку пищу, одежду, жилище. По степени истощения они делятся на исчерпаемые и неисчерпаемые . Исчерпаемые ресурсы подразделяются на возобновимые и невозобновимые . К невозобновимым относят те ресурсы, которые не возрождаются (или возобновляются в сотни раз медленнее, чем расходуются): нефть, каменный уголь, металлические руды и большинство полезных ископаемых. Возобновимые природные ресурсы – почва, растительный и животный мир, минеральное сырьё (поваренная соль). Эти ресурсы постоянно восстанавливаются с разной скоростью: животные – несколько лет, леса – 60-80 лет, почвы, потерявшие плодородие, – в течение нескольких тысячелетий. Превышение темпов расходования над скоростью воспроизводства ведет к полному исчезновению ресурса.

Неисчерпаемые ресурсы включают водные, климатические (атмосферный воздух и энергия ветра) и космические: солнечная радиация, энергия морских приливов и отливов. Однако растущее загрязнение окружающей среды требует осуществления природоохранных мероприятий для сохранения этих ресурсов.

Удовлетворение человеческих потребностей немыслимо без эксплуатации природных ресурсов.

Все виды деятельности человека в биосфере можно объединить в четыре формы.

1. Изменение структуры земной поверхности (распашка земель, осушение водоемов, вырубка лесов, строительство каналов). Человечество становится мощной геологической силой. Человек использует 75% суши, 15% речных вод, каждую минуту вырубается 20 га лесов.

· Геолого-геоморфологические изменения – интенсификация процессов образования оврагов, появление и учащение селей и оползней.

· Комплексные (ландшафтные) изменения – нарушение целостности и естественной структуры ландшафтов, уникальности памятников природы, потеря продуктивных земель, опустынивание.

Геологический кругооборот веществ имеет наибольшую скорость в горизонтальном направлении между сушей и морем. Смысл большого кругооборота в том, что горные породы подвергаются разрушению, выветриванию, а продукты выветривания, в том числе растворимые в воде питательные вещества, сносятся потоками воды в Мировой океан с образованием морских напластований и возвращаются на сушу лишь частично, например, с осадками или с извлеченными человеком из воды организмами. Далее в течение длительного временного отрезка протекают медленные геотектонические изменения - движение материков, поднятие и опускание морского дна, вулканические извержения и т.д., в результате которых образовавшиеся напластования возвращаются на сушу и процесс начинается вновь.

Большой геологический круговорот вещества. Под действием денудационных процессов происходит разрушение горных пород и осадконакопление. Образуются осадочные породы. В областях устойчивого погружения (обычно это океаническое дно) вещество географической оболочки входит в глубокие слои Земли. Далее под действием температуры и давления идут метаморфические процессы, в результате которых образуются горные породы, вещество продвигается ближе к центру Земли. В недрах Земли в условиях очень высоких температур происходит магматизм: породы плавятся, поднимаются в виде магмы по разломам к земной поверхности и выливаются на поверхность при извержениях. Таким образом, осуществляется круговорот вещества. Геологический круговорот осложняется, если учитывать обмен веществом с космическим пространством. Большой геологический круговорот не является замкнутым в том смысле, что какая-то частица вещества, попавшая в недра Земли, совсем не обязательно выйдет на поверхность, и наоборот, частица, поднимающаяся при извержении, могла никогда раньше не находиться на земной поверхности


Основные источники энергии природных процессов на Земле

Излучение Солнца - основной источник энергии на Земле. Его мощность характеризуется солнечной постоянной - количеством энергии, проходящей через площадку единичной площади, перпендикулярную солнечным лучам. На расстоянии в одну астрономическую единицу (то есть на орбите Земли) эта постоянная равна приблизительно 1370 Вт/м².

Живые организмы используют энергию Солнца (фотосинтез) и энергию химических связей (хемосинтез). Эта энергия может использоваться в различных естественных и искусственных процессах. Треть всей энергии отражается атмосферой, 0,02 % используется растениями для фотосинтеза, а остальное на поддержание многих природных процессов – обогрев земли, океана, атмосферы движение возд. масс. Прямое нагревание солнечными лучами или преобразование энергии с помощью фотоэлементов может быть использовано для производства электроэнергии (солнечными электростанциями) или выполнения другой полезной работы. Путём фотосинтеза была в далёком прошлом получена и энергия, запасённая в нефти и других видах ископаемого топлива.

Это огромная энергия ведет к всеобщему потеплению,потому что после того,как прошла через природные процессы излучается обратно и атмосфера не дает ей уйти обратно.

2. Внутренняя энергия Земли; проявление – вулканы, горячие источники


18. Преобразования энергии биотического и абиотического происхождения

В функционирующей природной экосистеме не существует отходов. Все организмы, живые или мертвые, потенциально являются пищей для других организмов: гусеница ест листву, дрозд питается гусеницами, ястреб способен съесть дрозда. Когда растения, гусеница, дрозд и ястреб погибают, они в свою очередь перерабатываются редуцентами.

Все организмы, пользующиеся одним типом пищи, принадлежат к одному трофическому уровню.

Организмы природных экосистем вовлечены в сложную сеть многих связанных между собой пищевых цепей. Такая сеть называется пищевой сетью.

Пирамиды энергетических потоков: С каждым переходом из одного трофического уровня в другой в пределах пищевой цепи или сети совершается работа и в окружающую среду выделяется тепловая энергия, а количество энергии высокого качества, используемой организмами следующего трофического уровня, снижается.

Правило 10%: при переходе с одного трофического уровня на другой 90% энергии теряется, и 10% передается на следующий уровень.

Чем длиннее пищевая цепь, тем больше теряется полезной энергии. Поэтому длина пищевой цепи обычно не превышает 4 - 5 звеньев.

Энергетика ландшафтной сферы Земли:

1) солнечная энергия: тепловая, лучистая

2) поток тепловой энергии из недр Земли

3) энергия приливных течений

4) тектоническая энергия

5) ассимиляция энергии при фотосинтезе


Круговорот воды в природе

Круговорот воды в природе – процесс циклического перемещения воды в земной биосфере. Состоит из испарения, конденсации и осадков (атмосферные осадки частично испаряются, частично образуют временные и постоянные водостоки и водоемы, частично - просачиваются в землю и образуют подземные воды), а также процессы дегазации мантии: из мантии непрервыно поступает вода. вода обнаружена даже на огромной глубине.

Моря теряют из-за испарения больше воды, чем получают с осадками, на суше - положение обратное. Вода непрерывно циркулирует на земном шаре, при этом её общее количество остаётся неизменным.

75% поверхности Земли покрыты водой. Водная оболочка Земли – гидросфера. Большую ее часть составляет соленая вода морей и океанов, а меньшую - пресная вода озер, рек, ледников, грунтовые воды и водяной пар.

На земле вода существует в трех агрегатных состояниях: жидком, твердом и газообразном. Без воды невозможно существование живых организмов. В любом организме вода является средой, в которой происходят химические реакции, без которых не могут жить живые организмы. Вода является самым ценным и самым необходимым веществом для жизнедеятельности живых организмов.

Различают несколько видов круговоротов воды в природе:

Большой, или мировой, круговорот - водяной пар, образовавшийся над поверхностью океанов, переносится ветрами на материки, выпадает там в виде атмосферных осадков и возвращается в океан в виде стока. В этом процессе изменяется качество воды: при испарении соленая морская вода превращается в пресную, а загрязненная - очищается.

Малый, или океанический, круговорот - водяной пар, образовавшийся над поверхностью океана, сконденсируется и выпадает в виде осадков снова в океан.

Внутриконтинентальный круговорот - вода, которая испарилась над поверхностью суши, опять выпадают на сушу в виде атмосферных осадков.

В конце концов, осадки в процессе движения опять достигают Мирового океана.

Скорость переноса различных видов воды изменяется в широких пределах, так и периоды расходов, и периоды обновления воды также разные. Они изменяются от нескольких часов до нескольких десятков тысячелетий. Атмосферная влага, которая образуется при испарении воды из океанов, морей и суши и существует в виде облаков, обновляется в среднем через восемь дней.

Воды, входящих в состав живых организмов, восстанавливаются в течение нескольких часов. Это наиболее активная форма водообмена. Период обновления запасов воды в горных ледниках составляет около 1 600 лет, в ледниках полярных стран значительно больше - около 9 700 лет.

Полное обновление вод Мирового океана происходит примерно через 2 700 лет.


Эффекты взаимодействия солнечного излучения, движущейся и вращающейся земли.

В данном вопросе следует рассмотреть сезонную переменчивость: зима/лето. Расписать, что из-за вращения и движения Земли, солнечное излучение поступает неравномерно, а значит, климатические условия меняются с широтой.

Земля наклонена к плоскости эклиптики 23,5 градуса.

Лучи проходят под разными углами. Радиационный баланс. Важно не только, сколько получает,но и сколько теряет, и сколько остается с учетом альбедо.


Центры действия атмосферы

Крупные области устойчивого высокого или низкого давления, связанные с общей циркуляцией атмосферы – центры действия атмосферы . Они определяют господствующее направление ветров и служат очагами формирования географических типов воздушных масс. На синоптических картах они выражаются замкнутыми линиями – изобарами.

Причины : 1) неоднородность Земли;

2) различие физ. свойств суши и воды (теплоемкость)

3) различие в альбедо поверхностей (R/Q): вода – 6%, экв. леса – 10-12%, шир.леса – 18%, луг – 22-23%, снег – 92%;

4) F Кориолиса

Это вызывает ОЦА.

Центры действия атмосферы :

перманентные – в них высокое или низкое давление существует круглый год:

1. экваториальная полоса пониж. давления, ось которой несколько мигрирует от экватора вслед за Солнцем в сторону летнего полушария - Экваториальная депрессия (причины: большое количество Q и океаны);

2. по одной субтропической полосе повыш. давления в Сев. и Юж. полушарии; несколько мигрируют летом в более высокие субтропич. широты, зимой - в более низкие; распадаются на ряд океанич. антициклонов: в Сев. полушарии - Азорский антициклон (особенно летом) н Гавайский; в Юж.- Южно-Индийский, Южно-Тихоокеанский и Южно-Атлантический;

3. области пониж. давления над океанами в высоких широтах умеренных поясов: в Сев. полушарии - Исландский (особенно зимой) и Алеутский минимумы, в Юж.- сплошное кольцо пониженного давления, окружающее Антарктиду (50 0 ю.ш.);

4. области повыш. давления над Арктикой (особенно зимой) и Антарктидой – антициклоны;

сезонные – прослеживаются как области высокого или низкого давления на протяжении одного сезона, сменяясь в другой сезон на центр действий атмосферы противоположного знака. Их существование связано с резким изменением в течение года темп-ры поверхности суши по отношению к темп-ре поверхности океанов; летний перегрев суши создаёт благоприятные условия для формирования здесь областей пониж. давления, зимнее переохлаждение - для областей повыш. давления. В Сев. полушарии к зимним областям повыш. давления относятся Азиатский (Сибирский) с центром в Монголии и Канадский максимумы, в Юж.- Австралийский, Южно-Американский и Южно-Африканский максимумы. Летние области пониж. давления: в Сев. полушарии - Южно-Азиатский (или Переднеазиатский) и Северо-Американский минимумы, в Юж. - Австралийский, Южно-Американский и Южно-Африканский минимумы).

Центрам действия атмосферы присущ определенный тип погоды. Поэтому воздух здесь сравнительно быстро приобретает свойства подстилающей поверхности – жаркий и влажный в Экваториальной депрессии, холодный и сухой в Монгольском антициклоне, прохладный и влажный в Исландском минимуме и т.д.


Планетарный теплообмен и его причины

Основные черты планетарного теплообмена . Солнечная энергия, поглощаемая поверхностью земного шара, расходуется затем на испарение и перенос тепла турбулентными потоками. На испарение уходит в среднем по всей планете около 80%, а на турбулентный теплообмен - остальные 20% от общего тепла.

Процессы теплообмена и изменения с географической широтой его составляющих в океане и на суше отличаются большим своеобразием. Все тепло, поглощаемое сушей весной и летом, полностью теряется осенью и зимой; при сбалансированном годовом бюджете тепла он, следовательно, повсеместно оказывается равным нулю.

В Мировом океане благодаря большой теплоемкости воды и ее подвижности в низких широтах происходит накопление тепла, откуда оно переносится течениями в высокие широты, где расходование его превышает поступление. Таким образом покрывается дефицит, создающийся в теплообмене воды с воздухом.

В экваториальной зоне Мирового океана при большой величине поглощаемой солнечной радиации и пониженном расходовании энергии годовой бюджет тепла имеет максимальные положительные значения. С удалением от экватора положительный годовой бюджет тепла уменьшается из-за увеличения расходных составляющих теплообмена, главным образом испарения. С переходом от тропиков к умеренным широтам бюджет тепла становится отрицательным.

В пределах суши все тепло, получаемое в весенне-летнее время, расходуется в осенне-зимний период. В водах же Мирового океана за долгую историю Земли накопилось огромное количество тепла равное 7,6 * 10^21 ккал. Аккумуляция столь большой массы объясняется высокой теплоемкостью воды и ее интенсивным перемешиванием, в процессе которого происходит довольно сложное перераспределение тепла в толще океаносферы. Теплоемкость всей атмосферы в 4 раза меньше, чем у десятиметрового слоя вод Мирового океана.

Несмотря на то что удельный вес солнечной энергии, идущей на турбулентный теплообмен между поверхностью Земли и воздухом, сравнительно невелик, он является основным источником нагревания приповерхностной части атмосферы. Интенсивность этого теплообмена зависит от разности температур между воздухом и подстилающей поверхностью (водой или сушей). В низких широтах планеты (от экватора примерно до сороковых широт обоих полушарий) воздух нагревается главным образом от суши, неспособной аккумулировать солнечную энергию и отдающей все получаемое тепло атмосфере. За счет турбулентного теплообмена воздушная оболочка получает от 20 до 40 ккал/см^2 в год, а в областях с малым увлажнением (Сахара, Аравия и др.) - даже более 60 ккал/см^2. Воды же в этих широтах накапливают тепло, отдавая воздуху в процессе турбулентного теплообмена лишь 5-10 ккал/см^2 в год и менее. Только в отдельных районах (ограниченной площади) вода в среднем за год оказывается холоднее и потому получает тепло от воздуха (в экваториальной зоне, на северо-западе Индийского океана, а также у западного побережья Африки и Южной Америки).


Является выдающийся русский ученый академик В.И. Вернадский.

Биосфера — сложная наружная оболочка Земли, в которой содержится вся совокупность живых организмов и та часть вещества планеты, которая находится в процессе непрерывного обмена с этими организмами. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.

Земля состоит из концентрических оболочек (геосфер) как внутренних, так и внешних. К внутренним относятся ядро и мантия, а к внешним: литосфера - каменная оболочка Земли, включая земную кору (рис. 1) толщиной от 6 км (под океаном) до 80 км (горные системы); гидросфера - водная оболочка Земли; атмосфера — газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли.

На высоте от 10 до 50 км расположен слой озона, с максимальной его концентрацией на высоте 20-25 км, защищающий Землю от чрезмерного ультрафиолетового излучения, гибельного для организма. Сюда же (к внешним геосферам) относится и биосфера.

Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км

Рис. 1. Схема строения земной коры

(рис. 2). Особенность этих частей состоит в том, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы — воздуха, воды, горных пород и органического вещества - биоты обусловило формирование почв и осадочных пород.

Рис. 2. Структура биосферы и соотношение поверхностей, занятых основными структурными единицами

Круговорот веществ в биосфере и экосистемах

Все доступные для живых организмов химические соединения в биосфере ограничены. Исчерпаемость пригодных для усвоения химических веществ часто тормозит развитие тех или иных групп организмов в локальных участках суши или океана. По выражению академика В.Р. Вильямса, единственный способ придать конечному свойства бесконечного состоит в том, чтобы заставить его вращаться по замкнутой кривой. Следовательно, устойчивость биосферы поддерживается благодаря круговороту веществ и потокам энергии. Имеются два основных круговорота веществ: большой — геологический и малый — биогеохимический.

Большой геологический круговорот (рис. 3). Кристаллические горные породы (магматические) под воздействием физических, химических и биологических факторов преобразуются в осадочные породы. Песок и глина — типичные осадки, продукты преобразования глубинных пород. Однако формирование осадков происходит не только за счет разрушения уже существующих пород, но также и путем синтеза биогенных минералов — скелетов микроорганизмов — из природных ресурсов — вод океана, морей и озер. Рыхлые водянистые осадки по мере их изоляции на дне водоемов новыми порциями осадочного материала, погружения на глубину, попадания в новые термодинамические условия (более высокие температуры и давления) теряют воду, отвердевают, преобразуясь при этом в осадочные горные породы.

В дальнейшем эти породы погружаются в еше более глубокие горизонты, где и протекают процессы их глубинного преобразования к новым температурным и барическим условиям, — происходят процессы метаморфизма.

Под воздействием потоков эндогенной энергии глубинные породы переплавляются, образуя магму — источник новых магматических пород. После поднятия этих пород на поверхность Земли, под действием процессов выветривания и переноса снова происходит их трансформация в новые осадочные породы.

Таким образом, большой круговорот обусловлен взаимодействием солнечной (экзогенной) энергии с глубинной (эндогенной) энергией Земли. Он перераспределяет вещества между биосферой и более глубокими горизонтами нашей планеты.

Рис. 3. Большой (геологический) круговорот веществ (тонкие стрелки) и изменение разнообразия в земной коре (сплошные широкие стрелки — рост, прерывистые — уменьшение разнообразия)

Большим круговоротом называется и круговорот воды между гидросферой, атмосферой и литосферой, который движется энергией Солнца. Вода испаряется с поверхности водоемов и суши и затем вновь поступает на Землю в виде осадков. Над океаном испарение превышает осадки, над сушей наоборот. Эти различия компенсируют речные стоки. В глобальном круговороте воды немаловажную роль играет растительность суши. Транспирация растений на отдельных участках земной поверхности может составить до 80-90% выпадающих здесь осадков, а в среднем по всем климатическим поясам — около 30%. В отличие от большого малый круговорот веществ происходит лишь в пределах биосферы. Взаимосвязь большого и малого круговорота воды показана на рис. 4.

Круговороты планетарного масштаба создаются из бесчисленных локальных циклических перемещений атомов, движимых жизнедеятельностью организмов в отдельных экосистемах, и тех перемещений, которые вызваны действием ландшафтных и геологических причин (поверхностный и подземный сток, ветровая эрозия, движение морского дна, вулканизм, горообразование и т.п.).

Рис. 4. Взаимосвязь большого геологического круговорота (БГК) воды с малым биогеохимическим круговоротом (МБК) воды

В отличие от энергии, которая однажды использована организмом, превращается в тепло и теряется, вещества в биосфере циркулируют, создавая биогеохимические круговороты. Из девяноста с лишним элементов, встречающихся в природе, живым организмам нужно около сорока. Наиболее важные для них требуются в больших количествах — углерод, водород, кислород, азот. Круговороты элементов и веществ осуществляются за счет саморегулирующих процессов, в которых участвуют все составные части . Эти процессы являются безотходными. Существует закон глобального замыкания биогеохимического круговорота в биосфере , действующий на всех этапах ее развития. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимичес
кого круговорота. Еще большее влияние на биогеохимический круговорот оказывает Человек. Но его роль проявляется в противоположном направлении (круговороты становятся незамкнутыми). Основу биогеохимического круговорота вешеств составляют энергия Солнца и хлорофилл зеленых растений. Другие наиболее важные круговороты — воды, углерода, азота, фосфора и серы — связаны с биогеохимическим и способствуют ему.

Круговорот воды в биосфере

Растения используют водород воды при фотосинтезе в построении органических соединений, выделяя молекулярный кислород. В процессах дыхания всех живых существ, при окислении органических соединений вода образуется вновь. В истории жизни вся свободная вода гидросферы многократно прошла циклы разложения и новообразования в живом веществе планеты. В круговорот воды на Земле ежегодно вовлекается около 500 000 км 3 воды. Круговорот воды и ее запасы показаны на рис. 5 (в относительных величинах).

Круговорот кислорода в биосфере

Своей уникальной атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. С круговоротом кислорода тесно связано образование озона в высоких слоях атмосферы. Кислород освобождается из молекул воды и является по сути побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемых фотосинтезом. Между содержанием кислорода в атмосфере и гидросфере существует подвижное равновесие. В воде его примерно в 21 раз меньше.

Рис. 6. Схема круговорота кислорода: полужирные стрелки — основные потоки поступления и расхода кислорода

Выделившийся кислород интенсивно расходуется на процессы дыхания всех аэробных организмов и на окисление разнообразных минеральных соединений. Эти процессы происходят в атмосфере, почве, воде, илах и горных породах. Показано, что значительная часть кислорода, связанного в осадочных породах, имеет фотосинтетическое происхождение. Обменный фонд О, в атмосфере составляет не более 5% общей продукции фотосинтеза. Многие анаэробные бактерии также окисляют органические вещества в процессе анаэробного дыхания, используя для этого сульфаты или нитраты.

На полное разложение органического вещества, создаваемого растениями, требуется точно такое же количество кислорода, которое выделилось при фотосинтезе. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда кислорода в атмосфере. Весь имеющийся в ней кислород проходит полный цикл через живые организмы примерно за 2000 лет.

В настоящее время значительная часть кислорода атмосферы связывается в результате работы транспорта, промышленности и других форм антропогенной деятельности. Известно, что человечество тратит уже более 10 млрд т свободного кислорода из общего его количества в 430-470 млрд т, поставляемого процессами фотосинтеза. Если учесть, что в обменный фонд поступает лишь небольшая часть фотосинтетического кислорода, деятельность людей в этом отношении начинает приобретать угрожающие масштабы.

Круговорот кислорода теснейшим образом сопряжен с углеродным циклом.

Круговорот углерода в биосфере

Углерод как химический элемент является основой жизни. Он может разными способами соединяться со многими другими элементами, образуя простые и сложные органические молекулы, входящие в состав живых клеток. По распространению на планете углерод занимает одиннадцатое место (0,35% веса земной коры), но в живом веществе он в среднем составляет около 18 или 45% сухой биомассы.

В атмосфере углерод входит в состав углекислого газа С0 2 , в меньшей мере — в состав метана СН 4 . В гидросфере С0 2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО 2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Некоторая часть молекул С0 2 реагирует с водой, образуя угольную кислоту, которая затем диссоциирует на ионы НСО 3 - и СО 2- 3 " Эти ионы реагируют с катионами кальция или магния с выпадением в осадок карбонатов. Подобные реакции лежат в основе буферной системы океана, поддерживающей постоянство рН воды.

Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли. Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов — бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества.

Рис. 7. Круговорот углерода

Особенно активно происходит возврат в атмосферу С0 2 из почвы, где сосредоточена деятельность многочисленных групп организмов, разлагающих остатки отмерших растений и животных и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда С0 2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус — богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус почв является одним из важных резервуаров углерода на суше.

В условиях, где деятельность деструкторов тормозят факторы внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода, надолго выключаясь из биологического круговорота. Углерод временно депонируется также в живой биомассе, в мертвом опаде, в растворенном органическом веществе океана и т.п. Однако основным резервным фондом углерода на пишете являются не живые организмы и не горючие ископаемые, а осадочные породы — известняки и доломиты. Их образование также связано с деятельностью живого вещества. Углерод этих карбонатов надолго захоронен в недрах Земли и поступает в круговорот лишь в ходе эрозии при обнажении пород в тектонических циклах.

В биогеохимическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4-5 лет, запасы в почвенном гумусе — за 300-400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая его часть (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов.

В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых.

Круговорот азота в биосфере

В атмосфере и живом веществе содержится менее 2% всего азота на Земле, но именно он поддерживает жизнь на планете. Азот входит в состав важнейших органических молекул — ДНК, белков, липопротеидов, АТФ, хлорофилла и др. В растительных тканях его соотношение с углеродом составляет в среднем 1: 30, а в морских водорослях I: 6. Биологический цикл азота поэтому также тесно связан с углеродным.

Молекулярный азот атмосферы недоступен растениям, которые могут усваивать этот элемент только в виде ионов аммония, нитратов или из почвенных или водных растворов. Поэтому недостаток азота часто является фактором, лимитирующим первичную продукцию — работу организмов, связанную с созданием органических веществ из неорганических. Тем не менее атмосферный азот широко вовлекается в биологический круговорот благодаря деятельности особых бактерий (азотфиксаторов).

В круговороте азота большое участие также принимают аммонифицирующие микроорганизмы. Они разлагают белки и другие содержащие азот органические вещества до аммиака. В аммонийной форме азот частью вновь поглощается корнями растений, а частью перехватывается нитрифицирующими микроорганизмами, что противоположно функциям группы микроорганизмов — денитрификаторов.

Рис. 8. Круговорот азота

В анаэробных условиях в почвах или водах они используют кислород нитратов для окисления органических веществ, получая энергию для своей жизнедеятельности. Азот при этом восстанавливается до молекулярного. Азотфиксация и денитрификация в природе приблизительно уравновешены. Цикл азота, таким образом, зависит преимущественно от деятельности бактерий, тогда как растения встраиваются в него, используя промежуточные продукты этого цикла и намного увеличивая масштабы циркуляции азота в биосфере за счет продуцирования биомассы.

Роль бактерий в круговороте азота настолько велика, что если уничтожить только 20 их видов, жизнь на нашей планете прекратится.

Небиологическая фиксация азота и поступление в почвы его окислов и аммиака происходит также с дождевыми осадками при ионизации атмосферы и грозовых разрядах. Современная промышленность удобрений фиксирует азот атмосферы в размерах, превышающих природную фиксацию азота, в целях увеличения продукции сельскохозяйственных растений.

В настоящее время деятельность человека все сильнее влияет на круговорот азота, в основном в сторону превышения перевода его в связанные формы над процессами возврата в молекулярное состояние.

Круговорот фосфора в биосфере

Этот элемент, необходимый для синтеза многих органических веществ, включая АТФ, ДНК, РНК, усваивается растениями только в виде ионов ортофосфорной кислоты (Р0 3 4 +). Он относится к элементам, лимитирующим первичную продукцию и на суше, и особенно в океане, поскольку обменный фонд фосфора в почвах и водах невелик. Круговорот этого элемента в масштабах биосферы незамкнут.

На суше растения черпают из почвы фосфаты, освобожденные редуцентами из разлагающихся органических остатков. Однако в щелочной или кислой почве растворимость фосфорных соединений резко падает. Основной резервный фонд фосфатов содержится в горных породах, созданных на дне океана в геологическом прошлом. В ходе выщелачивания пород часть этих запасов переходит в почву и в виде взвесей и растворов вымывается в водоемы. В гидросфере фосфаты используются фитопланктоном, переходя по цепям питания в другие гидробионты. Однако в океане большая часть фосфорных соединений захоранивается с остатками животных и растений на дне с последующим переходом с осадочными породами в большой геологический круговорот. На глубине растворенные фосфаты связываются с кальцием, образуя фосфориты и апатиты. В биосфере, по сути, происходит однонаправленный поток фосфора из горных пород суши в глубины океана, следовательно, обменный фонд его в гидросфере очень ограничен.

Рис. 9. Круговорот фосфора

Наземные залежи фосфоритов и апатитов используются при производстве удобрений. Попадание фосфора в пресные водоемы является одной из главных причин их «цветения».

Круговорот серы в биосфере

Круговорот серы, необходимой для построения ряда аминокислот, отвечает за трехмерную структуру белков, поддерживается в биосфере широким спектром бактерий. В отдельных звеньях этого цикла участвуют аэробные микроорганизмы, окисляющие серу органических остатков до сульфатов, а также анаэробные редукторы сульфата, восстанавливающие сульфаты до сероводорода. Кроме перечисленных группы серобактерий окисляют сероводород до элементарной серы и далее до сульфатов. Растения усваивают из почвы и воды только ионы SO 2- 4 .

Кольцо в центре иллюстрирует процесс окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках.

Рис. 10. Круговорот серы. Кольцо в центре иллюстрирует процесс окисления (0) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках

Основное накопление серы происходит в океане, куда ионы сульфатов непрерывно поступают с суши с речным стоком. При выделении из вод сероводорода сера частично возвращается в атмосферу, где окисляется до диоксида, превращаясь в дождевой воде в серную кислоту. Промышленное использование большого количества сульфатов и элементарной серы и сжигание горючих ископаемых поставляют в атмосферу большие объемы диоксида серы. Это вредит растительности, животным, людям и служит источником кислотных дождей, усугубляющих отрицательные эффекты вмешательства человека в круговорот серы.

Скорость круговорота веществ

Все круговороты веществ происходят с различной скоростью (рис. 11)

Таким образом, круговороты всех биогенных элементов на планете поддерживаются сложным взаимодействием разных частей . Они формируются деятельностью разных по функциям групп организмов, системой стока и испарения, связывающих океан и сушу, процессами циркуляции вод и воздушных масс, действием сил гравитации, тектоникой литосферных плит и другими масштабными геологическими и геофизическими процессами.

Биосфера действует как единая сложная система, в которой происходят различные круговороты веществ. Главным двигателем этихкруговоротов является живое вещество планеты, все живые организмы, обеспечивающие процессы синтеза, трансформации и разложения органического вещества.

Рис. 11. Темпы циркуляции веществ (П. Клауд, А. Джибор, 1972)

В основе экологического взгляда на мир лежит представление о том, что каждое живое существо окружено множеством влияющих на него различных факторов, образующих в комплексе его место обитания — биотоп. Следовательно, биотоп — участок территории, однородный по условиям жизни для определенных видов растений или животных (склон оврага, городской лесопарк, небольшое озеро или часть большого, но с однородными условиями — прибрежная часть, глубоководная часть).

Организмы, характерные для определенного биотопа, составляют жизненное сообщество, или биоценоз (животные, растения и микроорганизмы озера, луга, береговой полосы).

Жизненное сообщество (биоценоз) образует со своим биотопом единое целое, которое называется экологической системой (экосистемой). Примером естественных экосистем могут служить муравейник, озеро, пруд, луг, лес, город, ферма. Классическим примером искусственной экосистемы является космический корабль. Как видно, здесь нет строгой пространственной структуры. Близким к понятию экосистемы является понятие биогеоценоза.

Основными компонентами экосистем являются:

  • неживая (абиотическая) среда. Это вода, минеральные вещества, газы, а также органические вещества и гумус;
  • биотические компоненты. К ним относятся: продуценты или производители (зеленые растения), консументы, или потребители (живые существа, питающиеся продуцентами), и редуценты, или разлагатели (микроорганизмы).

Природа действует в высшей степени экономно. Так, созданная организмами биомасса (вещество тел организмов) и содержащаяся в них энергия передаются другим членам экосистемы: животные поедают растения, этих животных поедают другие животные. Этот процесс называют пищевой, или трофической, цепью. В природе пищевые цепи зачастую перекрещиваются, образуя пищевую сеть.

Примеры пищевых цепей: растение — растительноядное животное — хищник; злак — полевая мышь — лиса и др. и пищевая сеть показаны на рис. 12.

Таким образом, состояние равновесия в биосфере основано на взаимодействии биотических и абиотических факторов среды, которое поддерживается благодаря непрерывному обмену веществом и энергией между всеми компонентами экосистем.

В замкнутых круговоротах естественных экосистем наряду с другими обязательно участие двух факторов: наличие редуцентов и постоянное поступление солнечной энергии. В городских и искусственных экосистемах мало или совсем нет редуцентов, поэтому жидкие, твердые и газообразные отходы накапливаются, загрязняя окружающую среду.

Рис. 12. Пищевая сеть и направление потока вещества

Чтобы биосфера продолжала существовать, чтобы движение (развитие) ее не прекращалось, на Земле постоянно должен происходить круговорот биологически важных веществ. Этот переход биологически важных веществ из звена в звено может осуществляться только при определенных затратах энергии, источником которой является Солнце.

Солнечная энергия обеспечивает на Земле два круговорота веществ:

- геологический (абиотический), или большой, круговорот;

- биологический (биотический), или малый, круговорот.

Геологический круговорот наиболее четко проявлятся в круговороте воды и циркуляции атмосферы.

На Землю от Солнца ежегодно поступает примерно 21 10 20 кДж лучистой энергии. Около половины ее расходуется на испарение воды. Это и обусловливает большой круговорот.

Круговорот воды в биосфере основан на том, что суммарное ее испарение с поверхности Земли компенсируется выпадением осадков. При этом из океана испаряется воды больше, чем возвращается с осадками. На суше, наоборот, больше выпадает осадков, чем испаряется воды. Излишки ее стекают в реки и озера, а оттуда - снова в океан.

В процессе геологического круговорота воды с одного места в другое в масштабе всей планеты переносятся минеральные соединения, а также изменяется агрегатное состояние воды (жидкая, твердая - снег, лед; газообразная - пары). Наиболее интенсивно вода циркулирует в парообразном состоянии.

С появлением живого вещества на основе круговорота атмосферы, воды, растворенных в ней минеральных соединений, т.е. на базе абиотического, геологического круговорота возник круговорот органического вещества, или малый, биологический круговорот .

По мере развития живой материи из геологического круговорота постоянно извлекается все больше элементов, которые вступают в новый, биологический круговорот.

В отличие от простого переноса-перемещения минеральных элементов в большом (геологическом) круговороте, в малом (биологическом) круговороте самыми важными моментами являются синтез и разрушение органических соединений. Эти два процесса находятся в определенном соотношении, что лежит в основе жизни и составляет одну из главных ее особенностей.

В противоположность геологическому, биологический круговорот обладает более низкой энергией. На создание органического вещества, как известно, затрачивается всего 0,1-0,2%, падающей на Землю солнечной энергии (на геологический круговорот - до 50%). Несмотря на это энергия, вовлеченная в биологический круговорот, затрачивается на огромную работу по созиданию на Земле первичной продукции.

С появлением на Земле живой материи химические элементы беспрерывно циркулируют в биосфере, переходя из внешней среды в организмы и обратно во внешнюю среду.

Такая циркуляция химических элементов по более или менее замкнутым путям, протекающая с использованием солнечной энергии через живые организмы, называется биогеохимическим круговоротом (циклом).

Основными биогеохимическими циклами являются круговороты кислорода, углерода, азота, фосфора, серы, воды и биогенных элементов.

Круговорот углерода.

На суше круговорот углерода начинается с фиксации углекислого газа растениями в процессе фотосинтеза. Далее из углекислого газа и воды образуются углеводы и высвобождается кислород. При этом углерод частично выделяется во время дыхания растений в составе углекислого газа. Фиксированный в растениях углерод в некоторой степени потребляется животными. Животные при дыхании также выделяют углекислый газ. Отжившие животные и растения разлагаются микроорганизмами, в результате чего углерод мертвого органического вещества окисляется до углекислого газа и снова попадает в атмосферу.

Подобный круговорот углерода совершается и в океане.

Круговорот азота.

Круговорот азота, как и другие биогеохимические циклы, охватывает все области биосферы. Круговорот азота связан с его превращением в нитраты за счет деятельности азотфиксирующих и нитрифицирующих бактерий. Нитраты усваиваются растениями из почвы или воды. Растения поедаются животными. В конце концов редуценты вновь переводят азот в газообразную форму и возвращают его в атмосферу.

В современных условиях в круговорот азота вмешался человек, который выращивая на обширных площадях азотфиксирующие бобовые растения, искусственно связывает природный азот. Считается, что сельское хозяйство и промышленность дают почти на 60% больше фиксированного азота, чем естественные наземные экосистемы.

Подобный круговорот азота наблюдается и в водной среде.

Круговорот фосфора.

В отличие от углерода и азота соединения фосфора находятся в горных породах, которые подвергаются эрозии и высвобождают фосфаты. Большая часть их попадает в моря и океаны и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами. Некоторая часть фосфатов попадает в почву и поглощается корнями растений. Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту. Далее растения поедаются животными.

Основными звеньями биогеохимических циклов выступают различные организмы, многообразие форм которых обусловливает интенсивность протекания круговоротов и вовлечение в них практически всех элементов земной коры.

В целом каждый круговорот любого химического элемента является частью общего грандиозного круговорота веществ на Земле, т.е. они тесно связаны между собой.

До возникновения биосферы на Земле были три круговорота веществ: минеральный круговорот - перемещение магматических продуктов из глубин на поверхность и обратно ; газовый круговорот - циркуляция воздушных масс, периодически разогреваемых Солнцем, круговорот воды - испарение воды и перенос ее воздушными массами, выпадение осадков (дождь, снег). Эти три круговорота объединяют единым термином - геологический (абиотический) круговорот. С появлением жизни к газовому, минеральному и водному круговоротам добавился биотический (биогенный) круговорот - круговорот химических элементов, осуществляемый жизнедеятельностью организмов. Вместе с геологическим образовался единый биогеохимический круговорот веществ на Земле.

Геологический круговорот.

Около половины достигающей поверхности Земли солнечной энергии расходуется на испарение воды, выветривание горных пород, растворение минералов, перемещение воздушных масс и вместе с ними паров воды, пыли, твердых частиц выветривания.

Движение воды и ветра приводит к эрозии почв, перемещению, перераспределению и накоплению механических и химических осадков в гидросфере и литосфере. Данный круговорот происходит и в настоящее время.

Большой интерес представляет круговорот воды. Из гидросферы за один год испаряется примерно 3,8 10 14 т воды, а возвращается с осадками в водную оболочку Земли только 3,4 10 14 т воды. Недостающая часть выпадает на сушу. Всего осадков на сушу выпадает около 1 10 14 т, а испаряется примерно 0,6 10 14 т воды. Излишки воды, образующиеся в литосфере, стекают в озера и реки, а затем в Мировой океан (рис. 2.4). Поверхностный сток равен примерно 0,2 10 14 т, оставшиеся 0,2 10 14 т воды поступают в подпочвенные водоносные горизонты, откуда вода поступает в реки, озера и океан, а также пополняет резервуары грунтовых вод .

биотический круговорот . В его основе лежат процессы синтеза органических веществ с последующим их разрушением на исходные минералы. Процессы синтеза и разрушения органических веществ являются фундаментом существования живого вещества и основной особенностью функционирования биосферы.

Жизнедеятельность любого организма невозможна без обмена веществ с окружающей средой. В процессе обмена организм потребляет и усваивает необходимые вещества и выделяет отходы жизнедеятельности, размеры нашей планеты не бесконечны, и в конечном итоге все полезное вещество было бы переработано в бесполезные отбросы. Однако в процессе эволюции был найден великолепный выход: кроме организмов, умеющих строить живое вещество из неживого, появились и другие организмы, разлагающие это сложное органическое вещество на исходные минералы, готовые к новому использованию. «Единственный способ придать ограниченному количеству свойства бесконечного, - писал В.Р. Вильямс, - это заставить его вращаться по замкнутой кривой».

Механизм взаимодействия живой и неживой природы состоит из вовлечения неживой материи в область жизни. После ряда превращений неживой материи в живых организмах происходит возврат ее в прежнее исходное состояние. Такой круговорот возможен из-за того, что живые организмы содержат те же химические элементы, что и неживая природа.

Как же происходит такой круговорот? В. И. Вернадский обосновал, что главным преобразователем энергии, поступающей из космоса (в основном солнечной), является зеленое вещество растений. Только они способны синтезировать первичные органические соединения под воздействием солнечной энергии. Ученый подсчитал, что общая площадь поверхности зеленого вещества растений, поглощающей энергию, в зависимости от времени года составляет от 0,86 до 4,2% от площади поверхности Солнца. В то же время площадь поверхности Земли

Животные, пищей для которых являются растения или другие животные, синтезируют в своем организме новые органические соединения.

Останки животных и растений служат пищей для червей, грибков и микроорганизмов, которые в конечном итоге превращают их в исходные минералы, выделяя при этом углекислый газ. Эти минералы вновь служат первоначальным сырьем для создания первичных органических соединений растениями. Так круг замыкается и начинается новое движение атомов.

Вместе с тем круговорот веществ не является абсолютно замкнутым. Часть атомов выходит из круговорота, закрепляется и организуется новыми формами живых организмов и продуктов их жизнедеятельности. Проникая в литосферу, гидросферу и тропосферу, живые организмы производили и производят огромную геохимическую работу по перемещению и перераспределению имеющихся веществ и созданию новых. В этом суть поступательного развития биосферы, так как при этом расширяется сфера биогеохимических циклов и укрепляется биосфера. Как отмечал В. И. Вернадский, в биосфере наблюдается постоянное биогенное движение атомов в виде «вихрей».

В отличие от геологического биотический круговорот характеризуется незначительным потреблением энергии. Как уже отмечалось, на создание первичного органического вещества расходуется около 1% солнечной энергии, достигающей поверхности Земли. Этой энергии достаточно для функционирования сложнейших биогеохимических процессов на планете.



Понравилась статья? Поделитесь с друзьями!