Гидроксиды. Кислотно-основные свойства гидроксидов d-элементов Химические свойства гидроксидов металлов

  1. Основания способны реагировать с кислотами и кислотными оксидами. В ходе взаимодействия происходит образование солей и воды
  2. Щелочи, гидроксид аммония всегда реагируют с растворами солей, только в случае образования нерастворимых оснований:
  3. Реакция кислоты с основанием именуется нейтрализацией. В ходе данной реакции, катионы кислот Н + и анионы оснований ОН - образуют молекулы воды. После чего, среда раствора становится нейтральной. В результате начинается выделение тепла. В растворах, это ведет к постепенному нагреву жидкости. В случае крепких растворов, тепла более чем достаточно, чтобы жидкость начала кипеть. Необходимо помнить, что реакция нейтрализации происходит достаточно быстро.

Сильные основания

  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH) 2 гидроксид бария
  • Ca(OH) 2 гидроксид кальция (гашеная известь)

Слабые основания

  • Mg(OH) 2 гидроксид магния
  • Fe(OH) 2 гидроксид железа (II)
  • Zn(OH) 2 гидроксид цинка
  • NH 4 OH гидроксид аммония
  • Fe(OH) 3 гидроксид железа (III)

Химические свойства амфотерных гидроксидов

  1. Амфотерные основания реагируют и с кислотами и со щелочами. В ходе взаимодействия происходит образование соли и воды. При прохождении какой - либо реакции с кислотами, амфотерные основания всегда проявляют свойства типичных оснований.
  2. В ходе реакции со щелочами, амфотерные основания способны проявлять свойства кислот. В процессе сплавления со щелочами, образуется соль и вода.
  3. При взаимодействии с растворами щелочей, всегда будут образовываться комплексные соли.
  4. Щелочи растворяют амфотерные металлы. В ходе данной реакции выделяется водород. В результате данной химической реакции, при опускании в раствор щелочи алюминия, выделяется газ. Так же это можно увидеть при его поджигании.

Гидроксиды и их классификация

Основания образуются атомами металлов и гидроксогруппой (ОН -), поэтому их называют гидроксидами.

1. По отношению к воде основания подразделяются на:

  • растворимые - гидроксиды щелочных и щелочноземельных металлов, поэтому их называют щелочами, гидроксид аммония, но он слабый электролит. Основания, образованные остальными металлами в воде не растворяются. Щелочи в водном растворе диссоциируются полностью до катионов металла и анионов гидроксид - ионов ОН - .
  • нерастворимые

2. По взаимодействию с иными химическими веществами гидроксиды делятся на:

  • основные гидроксиды - заряд катиона равен +1 или +2
  • кислотные гидроксиды (кислородсодержащие кислоты),
  • амфотерные гидроксиды - заряд катиона равен +3 или +4

Ряд исключений:

  • La(OH) 3 , Bi(OH) 3 , Tl(OH) 3 – основания;
  • Be (OH) 2 , Sn (OH)2, Pb(OH) 2 , Zn(OH) 2 , Ge(OH) 2 - амфотерными основания.

Смотри химические свойства

Основные классы неорганических соединений

*(Уважаемые студенты! Для изучения данной темы и выполнения тестовых заданий в качестве наглядного материала необходимо иметь таблицу Периодической системы элементов, таблицу растворимости соединений и ряд напряжений металлов.

Все вещества делятся на простые, состоящие из атомов одного элемента, и сложные, состоящие из атомов двух и более элементов. Сложные вещества принято делить на органические, к которым относятся почти все соединения углерода (кроме простейших, как, например: CO, CO 2 , H 2 CO 3 , HCN) и неорганические. К наиболее важным классам неорганических соединений относятся:

а) оксиды - бинарные соединения элемента с кислородом;

б) гидроксиды, которые подразделяются на оснóвные (основания), кислотные (кислоты) и амфотерные;

Прежде, чем приступить к характеристике классов неорганических соединений, необходимо рассмотреть понятия валентности и степени окисления.

Валентность и степень окисления

Валентность характеризует способность атома образовывать химические связи. Количественно валентность - это число связей, которые образует атом данного элемента в молекуле. В соответствии с современными представлениями о строении атомов и химической связи атомы элементов способны отдавать, присоединять электроны и образовывать общие электронные пары. Полагая, что каждая химическая связь образована парой электронов, валентность можно определить как число электронных пар, которыми атом связан с другими атомами. Валентность не имеет знака.

Степень окисления (СО ) - это условный заряд атома в молекуле, вычисленный из предположения, что молекула состоит из ионов.

Ионы - это положительно и отрицательно заряженные частицы вещества. Положительно заряженные ионы называются катионами , отрицательно - анионами . Ионы могут быть простыми, например Cl - (состоять из одного атома) или сложными, например SO 4 2- (состоять из нескольких атомов).

Если молекулы веществ состоят из ионов, то условно можно предположить, что между атомами в молекуле осуществляется чисто электростатическая связь. Это значит, что независимо от природы химической связи в молекуле, атомы более электроотрицательного элемента притягивают к себе электроны менее электроотрицательного атома.



Степень окисления обычно обозначается римскими цифрами со знаком “+” или “-” перед цифрой (например, +III), а заряд иона обозначается арабской цифрой со знаком “+” или “-” позади цифры (например, 2-).

Правила определения степени окисления элемента в соединении:

1. СО атома в простом веществе равна нулю, например, О 2 0 , С 0 , Na 0 .

2. СО фтора всегда равна -I, т.к. это самый электроотрицательный элемент.

3. СО водорода равна +I в соединениях с неметаллами (Н 2 S, NH 3) и -I в соединениях с активными металлами (LiH, CaH 2).

4. СО кислорода во всех соединениях равна -II (кроме пероксида водорода Н 2 О 2 и его производных, где степень окисления кислорода равна -I, и ОF 2 , где кислород проявляет СО +II).

5. Атомы металлов всегда имеют положительную степень окисления, равную их номеру группы в Периодической таблице, или меньшую, чем номер группы. Для первых трех групп СО металлов совпадает с номером группы, исключение составляют медь и золото, для которых более устойчивыми степенями окисления являются +II и +III соответственно.

6. Высшая (максимальная) положительная СО элемента равна номеру группы, в которой он расположен (например, Р находится в V группе А подгруппе и имеет СО +V). Это правило применимо к элементам как главных, так и побочных подгрупп. Исключение - для элементов I B и VIII А и В подгрупп, а также для фтора и кислорода.

7. Отрицательная (минимальная) СО характерна только для элементов главных подгрупп IV A - VII A, причем она равна номеру группы минус 8.

8. Сумма СО всех атомов в молекуле равна нулю, а в сложном ионе равна заряду этого иона.

Пример: Рассчитайте степень окисления хрома в соединении K 2 Cr 2 O 7 .

Решение: Обозначим СО хрома за х . Зная СО кислорода, равную -II, и СО калия +I (по номеру группы, в которой находится калий) составим уравнение:

K 2 +I Cr 2 х O 7 -II

1·2 + х ·2 + (-2)·7 = 0

Решив уравнение, получим х = 6. Следовательно, СО атома хрома равна +VI.

Оксиды

Оксиды - это соединения элементов с кислородом. Степень окисления кислорода в оксидах -II.

Составление формул оксидов

Формула любого оксида будет иметь вид Э 2 О х, где х - степень окисления элемента, образующего оксид (четные индексы следует сократить на два, например, пишут не S 2 O 6 , а SO 3). Для составления формулы оксида необходимо знать, в какой группе Периодической системы находится элемент. Максимальная СО элемента равна номеру группы. В соответствии с этим формула высшего оксида любого элемента в зависимости от номера группы будет иметь вид:

Задание : Составьте формулы высших оксидов марганца и фосфора.

Решение : Марганец расположен в VII B подгруппе Периодической системы, значит его высшая СО равна +VII. Формула высшего оксида будет иметь вид Mn 2 O 7 .

Фосфор расположен в V A подгруппе, отсюда формула его высшего оксида имеет вид Р 2 О 5 .

Если элемент находится не в высшей степени окисления, необходимо знать эту степень окисления. Например, сера, находясь в VI A подгруппе, может иметь оксид, в котором она проявляет СО равную +IV. Формула оксида серы (+IV) будет иметь вид SO 2 .

Номенклатура оксидов

В соответствии с Международной номенклатурой (IUPAC) название оксидов образуется из слова “оксид” и названия элемента в родительном падеже.

Например: СаО - оксид (чего?) кальция

Н 2 О - оксид водорода

SiO 2 - оксид кремния

CО элемента, образующего оксид, можно не указывать, если он проявляет только одну СО, например:

Al 2 O 3 - оксид алюминия;

MgO - оксид магния

Если элемент имеет несколько степеней окисления, необходимо их указывать:

СuO - оксид меди (II), Сu 2 O - оксид меди (I)

N 2 O 3 - оксид азота (III), NO - оксид азота (II)

Сохранились и часто употребляются старые названия оксидов с указанием числа атомов кислорода в оксиде. При этом используются греческие числительные- моно-, ди-, три-, тетра-, пента-, гекса- и т.д.

Например:

SO 2 - диоксид серы, SO 3 - триоксид серы

NO - монооксид азота

В технической литературе, а также в промышленности широко употребляются тривиальные или технические названия оксидов, например:

CaO - негашеная известь, Al 2 O 3 - глинозем

СО 2 - углекислый газ, СО - угарный газ

SiO 2 - кремнезем, SO 2 - сернистый газ

Методы получения оксидов

а) Непосредственное взаимодействие элемента с кислородом в надлежащих условиях:

Al + O 2 → Al 2 O 3 ;(~ 700 °С)

Cu + O 2 → CuO(< 200 °С)

S + O 2 → SO 2

Данным способом нельзя получить оксиды инертных газов, галогенов, “благородных” металлов.

б) Термическое разложение оснований (кроме оснований щелочных и щелочноземельных металлов):

Cu(OH) 2 → CuO + H 2 O(> 200 °С)

Fe(OH) 3 → Fe 2 O 3 + H 2 O(~ 500-700 °С)

в) Термическое разложение некоторых кислот:

H 2 SiO 3 → SiO 2 + H 2 O(1000°)

H 2 CO 3 → CO 2 + H 2 O(кипячение)

г) Термическое разложение солей:

СаСО 3 → СаО + СО 2 (900° C)

FeCO 3 → FeO + CO 2 (490°)

Классификация оксидов

По химическим свойствам оксиды делятся на солеобразующие и несолеобразующие.

Несолеобразующие (безразличные) оксиды не образуют ни кислот, ни оснований (не взаимодействуют ни с кислотами, ни с основаниями, ни с водой). К ним относятся: оксид углерода (II) - CO, оксид азота (I) - N 2 O, оксид азота (II) - NO и некоторые другие.

Солеобразующие оксиды подразделяются на оснóвные, кислотные и амфотерные.

Оснóвными называют те оксиды, которым соответствуют гидроксиды, называемые основаниями. Это оксиды большинства металлов в низшей степени окисления (Li 2 O, Na 2 O, MgO, CaO, Ag 2 O, Cu 2 O, CdO, FeO, NiO, V 2 O 3 и др.).

Присоединяя (прямо или косвенно) воду, основные оксиды образуют основные гидроксиды (основания). Например, оксиду меди (II) - СuO соответствует гидроксид меди (II) - Cu(OH) 2 , оксиду BaO - гидроксид бария - Ba(OH) 2 .

Важно помнить, что СО элемента в оксиде и соответствующем ему гидроксиде одинакова!

Оснoвные оксиды взаимодействуют с кислотами или кислотными оксидами, образуя соли.

Кислотными называют те оксиды, которым соответствуют кислотные гидроксиды, называемые кислотами . Кислотные оксиды образуют неметаллы и некоторые металлы в высших степенях окисления (N 2 O 5 , SO 3 , SiO 2 , CrO 3 , Mn 2 O 7 и др.).

Присоединяя воду (прямо или косвенно), кислотные оксиды образуют кислоты. Например, оксиду азота (III) - N 2 O 3 соответствует азотистая кислота HNO 2 , оксиду хрома (VI) - CrO 3 - хромовая кислота H 2 CrO 4 .

Кислотные оксиды взаимодействуют с основаниями или основными оксидами, образуя соли.

Кислотные оксиды можно рассматривать как продукты “отнятия” воды от кислот и называть их ангидридами (т.е. безводными). Например, SO 3 - ангидрид серной кислоты H 2 SO 4 (или просто серный ангидрид), P 2 O 5 - ангидрид ортофосфорной кислоты H 3 PO 4 (или просто фосфорный ангидрид).

Важно помнить, что СО элемента в оксиде и соответствующей ему кислоте, а также в анионе этой кислоты одинакова!

Амфотерными называются те оксиды, которым могут соответствовать и кислоты, и основания. К ним относятся BeO, ZnO, Al 2 O 3 , SnO, SnO 2 , Cr 2 O 3 и оксиды некоторых других металлов, находящихся в промежуточных степенях окисления. Кислотные и оснóвные свойства у этих оксидов выражены в различной степени. Например, у оксидов алюминия и цинка кислотные и основные свойства выражены примерно одинаково, у Fe 2 O 3 преобладают основные свойства, у PbO 2 преобладают кислотные свойства.

Амфотерные оксиды образуют соли при взаимодействии как с кислотами, так и с основаниями.

Химические свойства оксидов

Химические свойства оксидов (и соответствующих им гидроксидов) подчиняются принципу кислотно-основного взаимодействия, согласно которому соединения, проявляющие кислотные свойства, реагируют с соединениями, обладающими основными свойствами.

Основные оксиды взаимодействуют:

а) с кислотами:

CuO + H 2 SO 4 → H 2 O + CuSO 4 ;

BaO + H 3 PO 4 → H 2 O + Ba 3 (PO 4) 2 ;

б) с кислотными оксидами:

CuO + SO 2 → CuSO 3 ;

BaO + N 2 O 5 → Ba(NO 3) 2 ;

в) оксиды щелочных и щелочноземельных металлов могут растворяться в воде:

Na 2 O + H 2 O → NaOH;

BaO + H 2 O → Ba(OH) 2 .

Кислотные оксиды взаимодействуют:

а) с основаниями:

N 2 O 3 + NaOH → H 2 O + NaNO 2 ;

CO 2 + Fe(OH) 2 → H 2 O + FeCO 3 ;

б) с основными оксидами:

SO 2 + CaO → CaSO 3 ;

SiO 2 + Na 2 O → Na 2 SiO 3 ;

в) могут (но не все) растворяться в воде:

SO 3 + H 2 O → H 2 SO 4 ;

P 2 O 3 + H 2 O → H 3 PO 3 .

Амфотерные оксиды могут взаимодействовать:

а) c кислотами:

ZnO + H 2 SO 4 → H 2 O + ZnSO 4 ;

Al 2 O 3 + H 2 SO 4 → H 2 O + Al 2 (SO 4) 3 ;

б) с кислотными оксидами:

ZnO + SO 3 → ZnSO 4 ;

Al 2 O 3 + SO 3 → Al 2 (SO 4) 3 ;

в) с основаниями:

ZnO + NaOH + H 2 O → Na 2 ;

Al 2 O 3 + NaOH + H 2 O → Na 3 ;

г) c основными оксидами:

ZnO + Na 2 O → Na 2 ZnO 2 ;

Al 2 O 3 + Na 2 O → NaAlO 2 .

В первых двух случаях амфотерные оксиды проявляют свойства оснóвных оксидов, в двух последних случаях - свойства кислотных оксидов.

Гидроксиды

Гидроксиды представляют собой гидраты оксидов с общей формулой m Э 2 О х ·n H 2 O (n и m - небольшие целые числа, х - валентность элемента). Гидроксиды отличаются от оксидов по составу только наличием воды в их молекуле. По своим химическим свойствам гидроксиды делятся на основные (основания), кислотные (кислоты) и амфотерные .

Основания (основные гидроксиды)

Основанием называется соединение элемента с одной, двумя, тремя и реже четырьмя гидроксильными группами с общей формулой Э(ОН) х . В качестве элемента всегда выступают металлы главных или побочных подгрупп.

Растворимые основания - это электролиты, которые в водном растворе диссоциируют (распадаются на ионы) с образованием анионов гидроксильной группы ОН ‾ и катиона металла. Например:

KOH = K + + OH ‾ ;

Ba(OH) 2 = Ba 2+ + 2OH ‾

За счёт наличия в водном растворе гидроксильных ионов ОН ‾ основания проявляют щелочную реакцию среды.

Составление формулы основания

Чтобы составить формулу основания, необходимо написать символ металла и, зная его степень окисления, приписать рядом соответствующее число гидроксильных групп. Например: иону Mg +II соответствует основание Mg(OH) 2 , иону Fe +III соответствует основание Fe(OH) 3 и т.д. Для первых трех групп главных подгрупп Периодической системы степень окисления металлов равна номеру группы, поэтому формула основания будет ЭОН (для металлов I A подгруппы), Э(OH) 2 (для металлов II A подгруппы), Э(ОН) 3 (для металлов III A подгруппы). Для других групп (в основном побочных подгрупп) необходимо знать степень окисления элемента, т.к. она может не совпадать с номером группы.

Номенклатура оснований

Названия оснований образуются из слова “гидроксид” и названия элемента в родительном падеже, после которого римскими цифрами в скобках указывается степень окисления элемента, если это необходимо. Например: KOH - гидроксид калия, Fe(OH) 2 - гидроксид железа (II), Fe(OH) 3 - гидроксид железа (III) и т.д.

Существуют технические названия некоторых оснований: NaOH - едкий натр, КОН - едкое кали, Са(ОН) 2 - гашеная известь.

Методы получения оснований

а) Растворение в воде оснoвных оксидов (в воде растворимы только оксиды щелочных и щелочноземельных металлов):

Na 2 O + H 2 O → NaOH;

CaO + H 2 O → Ca(OH) 2 ;

б) Взаимодействие щелочных и щелочноземельных металлов с водой:

Na + H 2 O → H 2 + NaOH;

Ca + H 2 O → H 2 + Ca(OH) 2 ;

в) Вытеснение сильным основанием слабого из соли:

NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4 ;

Ba(OH) 2 + FeCl 3 → Fe(OH) 3 ↓ + BaCl 2 .

Классификация оснований

а) По количеству гидроксильных групп основания делятся на одно- и многокислотные: ЭОН, Э(ОН) 2 , Э(ОН) 3 , Э(ОН) 4 . Индекс х в формуле основания Э(ОН) х носит название “кислотность” основания.

б) Основания могут быть растворимыми и нерастворимыми в воде. Большинство оснований нерастворимы в воде. Хорошо растворимые в воде основания образуют элементы I A подгруппы - Li, Na, K, Rb, Cs, Fr (щелочные металлы). Они называются щелочами . Кроме того, растворимым основанием является гидрат аммиака NH 3 ·H 2 O, или гидроксид аммония NH 4 OH, но он не относится к щелочам. Меньшей растворимостью обладают гидроксиды Ca, Sr, Ba (щелочноземельных металлов), причем растворимость их увеличивается по группе сверху вниз: Ba(OH) 2 - наиболее растворимое основание.

в) По способности диссоциировать в растворе на ионы основания делятся на сильные и слабые . Сильными основаниями являются гидроксиды щелочных и щелочноземельных металлов - они диссоциируют на ионы полностью. Остальные основания являются основаниями средней силы или слабыми. Гидрат аммиака также является слабым основанием.

Химические свойства оснований

Основания взаимодействуют с соединениями, проявляющими кислотные свойства:

а) Взаимодействуют с кислотами с образованием соли и воды. Эта реакция называется реакцией нейтрализации:

Ca(OH) 2 + H 2 SO 4 → CaSO 4 + H 2 O;

б) Взаимодействуют с кислотными или амфотерными оксидами (эти реакции также можно отнести к реакциям нейтрализации или кислотно-основного взаимодействия):

Cu(OH) 2 + SO 2 → H 2 O + CuSO 4 ;

NaOH + ZnO → Na 2 ZnO 2 + H 2 O;

в) Взаимодействуют с кислыми солями (кислые соли содержат атом водорода в анионе кислоты);

Ca(OH) 2 + Ca(HCO 3) 2 → CaCO 3 + H 2 O;

NaOH + Ca(HSO 4) 2 → CaSO 4 + Na 2 SO 4 + H 2 O;

г) Сильные основания могут вытеснять слабые из солей:

NaOH + MnCl 2 → Mn(OH) 2 ↓ + NaCl;

Ba(OH) 2 + Mg(NO 3) 2 → Mg(OH) 2 ↓ + Ba(NO 3) 2 ;

д) нерастворимые в воде основания при нагревании разлагаются на оксид и воду.

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH) 2 . Однако существуют исключения. Так, гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 . Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH) 2 могут образовывать основные соли при недостатке кислоты, например:

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P 2 O 5 , SO 3 , N 2 O 5 , с образованием средних соле1:

Нерастворимые основания вида Me(OH) 2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na образуется соль Na 3 :

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH) 2 , устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH) 2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с сильными кислотами:

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3, не реагируют с такими кислотами, как H 2 S, H 2 SO 3 и H 2 СO 3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO 3 , P 2 O 5 , N 2 O 5):

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3 , не реагируют с кислотными оксидами SO 2 и СO 2 .

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду.

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Так как оксиды d-металлов нерастворимы в воде, их гидроксиды получают косвенным путем с помощью обменных реакций между их солями и растворами щелочей:

ZnCl 2 + 2NaOH = Zn(OH) 2 + 2NaCl;

MnCl 2 + 2NaOH = Mn(OH) 2 + 2NaCl (в отсутствии кислорода);

FeSO 4 + 2KOH = Fe(OH) 2 + K 2 SO 4 (в отсутствии кислорода) .

Гидроксиды d-элементов в низших степенях окисления являются слабыми основаниями; они нерастворимы в воде, но хорошо растворяются в кислотах:

Cu(OH) 2 + 2HCl = CuCl 2 + H 2 O

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + H 2 O

Гидроксиды d-элементов в промежуточных степенях окисления и гидроксид цинка растворяются не только в кислотах, но и в избытке растворов щелочей с образованием гидроксокомплексов (т.е. проявляют амфотерные свойства), например:

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O;

Zn(OH) 2 + 2NaOH = Na 2 ;

Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O;

Cr(OH) 3 + 3KOH = K 3 .

В более высоких степенях окисления переходные металлы образуют гидроксиды, которые проявляют кислотные свойства или амфотерные свойства с преобладанием кислотных:

С увеличением степени окисления элемента основные свойства оксидов и гидроксидов ослабевают, а кислотные - возрастают.

Поэтому, по периоду слева направо наблюдается усиление кислотных свойств гидроксидов d-металлов в высших степенях окисления до подгруппы Mn, затем кислотные свойства ослабевают:

Sc(OH) 3 - TiO 2 xH 2 O - V 2 O 5 xH 2 O - H 2 CrO 4 - HMnO 4

Усиление кислотных свойств

Fe(OH) 3 - Co(OH) 2 - Cu(OH) 2 - Zn(OH) 2

Медленное ослабление кислотных свойств

Рассмотрим изменение свойств гидроксидов d-металлов в подгруппах. Сверху вниз по подгруппе основные свойства гидроксидов d-элементов в высших степенях окисления возрастают, кислотные свойства уменьшаются. Например, для шестой группы d-металлов:

H 2 CrO 4 - резко - MoO 3 H 2 O - слабо - WO 3 H 2 O

Кислотные свойства уменьшаются

Окислительно-восстановительные свойства соединений d-элементов

Соединения d - элементов в низших степенях окисления проявляют, в основном, восстановительные свойства, особенно в щелочной среде. Поэтому, например, гидроксиды Mn(+2), Cr(+2), Fe(+2) являются очень неустойчивыми и быстро окисляются кислородом воздуха:

2Mn(OH)2 + O2 + 2H2O = 2Mn(OH)4;

4Cr(OH) 2 + O 2 + 2H 2 O = 4Cr(OH) 3

Чтобы гидроксид кобальта (II) или никеля (II) перевести в Co(OH) 3 или Ni(OH) 3 , необходимо использовать более сильный окислитель - например, перекись водорода H 2 O 2 в щелочной среде или бром Br 2:

2Co(OH) 2 + H 2 O 2 = 2Co(OH) 3;

2 Ni(OH) 2 + Br 2 +2NaOH = 2 Ni(OH) 3 + 2NaBr

Производные Ti(III), V(III), V(II), Cr (II) легко окисляются на воздухе, некоторые соли могут окисляться даже водой :

2Ti 2 (SO 4) 3 + O 2 + 2H 2 O = 4TiOSO 4 + 2H 2 SO 4;

2CrCl 2 + 2H 2 O = 2Cr(OH) Cl 2 + H 2

Соединения d-элементов в высших степенях окисления (от +4 до +7) обычно проявляют окислительные свойства. Однако, соединения Ti (IV) и V (V) всегда устойчивы и поэтому обладают относительно слабыми окислительными свойствами:

TiOSO 4 + Zn + H 2 SO 4 = Ti 2 (SO 4) 3 + ZnSO 4 + H 2 O;

Na 3 VO 4 + Zn + H 2 SO 4 = VOSO 4 + ZnSO 4 + H 2 O

Восстановление идет в жестких условиях - атомарным водородом в момент его выделения (Zn + 2H + = 2H· + Zn 2+).

А соединения хрома в высших степенях окисления являются сильными окислителями, особенно в кислой среде:

K2Cr2O7 + 3SO2 + H2SO4 = Cr2(SO4)3 + K2SO4 + H2O;

2CrO 3 + C 2 H 5 OH = Cr 2 O 3 + CH 3 COH + H 2 O

Еще более сильные окислительные свойства проявляют соединения Mn(VI), Mn(VII) и Fe(VI):

2KMnO 4 + 6KI + 4H 2 O = 2MnO 2 + 3I 2 + 8KOH;

4K 2 FeO 4 + 10H 2 SO 4 = 2Fe 2 (SO 4) 3 + 3O 2 +10H 2 O+ 4K 2 SO 4

Таким образом, окислительные свойства соединений d-элементов в высших степенях окисления по периоду слева направо возрастают.

Окислительная способность соединений d-элементов в высших степенях окисления по подгруппе сверху вниз ослабевает . Например, в подгруппе хрома: бихромат калия K 2 Cr 2 O 7 взаимодействует даже с таким слабым восстановителем, как SO 2 . Чтобы восстановить молибдат- или вольфрамат-ионы необходим очень сильный восстановитель, например, солянокислый раствор хлорида олова (II):

K 2 Cr 2 O 7 + SO 2 + H 2 SO 4 = Cr 2 (SO 4) 3 + K 2 SO 4 + H 2 O

3 (NH 4) 2 MoO 4 + НSnCl 3 + 9HCl = MoO 3 MoO 5 + H 2 SnCl 6 +4H 2 O + 6NH 4 Cl

Последняя реакция идет при нагревании, а степень окисления d-элемента уменьшается совсем незначительно.

Соединения d-металлов в промежуточной степени окисления обладают окислительно-восстановительной двойственностью . Например, соединения железа (III) в зависимости от характера вещества-партнера могут проявлять как свойства восстановителя:

2FeCl3 + Br2 + 16KOH = 2K2FeO4 + 6KBr + 6KCl +8H2O,

так и окислительные свойства:

2FeCl 3 + 2KI = 2FeCl 2 + I 2 +2KCl.



Понравилась статья? Поделитесь с друзьями!