Гипотеза Римана. Распределение простых чисел

Математической науки. Работа над ними оказала колоссальное влияние на развитие этой области человеческого знания. Спустя 100 лет Математический институт Клэя представил список из 7 проблем, известных как задачи тысячелетия. За решение каждой из них была предложена премия в 1 миллион долларов.

Единственной задачей, которая оказалась в числе обоих перечней головоломок, уже не одно столетие не дающих покоя ученым, стала гипотеза Римана. Она еще ждет своего решения.

Краткая биографическая справка

Георг Фридрих Бернхард Риман родился в 1826 году в Ганновере, в многодетной семье бедного пастора, и прожил всего 39 лет. Ему удалось опубликовать 10 трудов. Однако уже при жизни Риман считался преемником своего учителя Иоганна Гаусса. В 25 лет молодой ученый защитил диссертацию «Основания теории функций комплексной переменной». Позже он сформулировал свою гипотезу, ставшую знаменитой.

Простые числа

Математика появилась, когда человек научился считать. Тогда же возникли первые представления о числах, которые позже попытались классифицировать. Было замечено, что некоторые из них обладают общими свойствами. В частности, среди натуральных чисел, т. е. таких, которые использовались при подсчете (нумерации) или обозначении количества предметов, была выделена группа таких, которые делились только на единицу и на самих себя. Их назвали простыми. Изящное доказательство теоремы бесконечности множества таких чисел дал Евклид в своих «Началах». На данный момент продолжается их поиск. В частности, самым большим из уже известных является число 2 74 207 281 - 1.

Формула Эйлера

Наряду с понятием о бесконечности множества простых чисел Евклид определил и вторую теорему о единственно возможном разложении на простые множители. Согласно ей любое целое положительное число является произведением только одного набора простых чисел. В 1737 году великий немецкий математик Леонард Эйлер выразил первую теорему Евклида о бесконечности в виде формулы, представленной ниже.

Она получила название дзета-функции, где s — константа, а p принимает все простые значения. Из нее напрямую следовало и утверждение Евклида о единственности разложения.

Дзета-функция Римана

Формула Эйлера при ближайшем рассмотрении является совершенно удивительной, так как задает отношение между простыми и целыми числами. Ведь в ее левой части перемножаются бесконечно много выражений, зависящих только от простых, а в правой расположена сумма, связанная со всеми целыми положительными числами.

Риман пошел дальше Эйлера. Для того чтобы найти ключ к проблеме распределения чисел, он предложил определить формулу как для действительной, так и для комплексной переменной. Именно она впоследствии получила название дзета-функции Римана. В 1859 году ученый опубликовал статью под заголовком «О количестве простых чисел, которые не превышают заданной величины», где обобщил все свои идеи.

Риман предложил использовать ряд Эйлера, сходящийся для любых действительных s>1. Если ту же формулу применяют для комплексных s, то ряд будет сходиться при любых значениях этой переменной с действительной частью больше 1. Риман применил процедуру аналитического продолжения, расширив определение zeta(s) на все комплексные числа, но «выбросив» единицу. Она была исключена, потому что при s = 1 дзета-функция возрастает в бесконечность.

Практический смысл

Возникает закономерный вопрос: чем интересна и важна дзета-функция, которая является ключевой в работе Римана о нулевой гипотезе? Как известно, на данный момент не выявлено простой закономерности, которая бы описывала распределение простых чисел среди натуральных. Риману удалось обнаружить, что число pi(x) простых чисел, которые не превосходили x, выражается посредством распределения нетривиальных нулей дзета-функции. Более того, гипотеза Римана является необходимым условием для доказательства временных оценок работы некоторых криптографических алгоритмов.

Гипотеза Римана

Одна из первых формулировок этой математической проблемы, не доказанной и по сей день, звучит так: нетривиальные 0 дзета-функции — комплексные числа с действительной частью равной ½. Иными словами они расположены на прямой Re s = ½.

Существует также обобщенная гипотеза Римана, представляющая собой то же утверждение, но для обобщений дзета-функций, которые принято называть L-функциями Дирихле (см. фото ниже).

В формуле χ(n) — некоторый числовой характер (по модулю k).

Римановское утверждение считается так называемой нулевой гипотезой, так как была проверена на согласованность с уже имеющимися выборочными данными.

Как рассуждал Риман

Замечание немецкого математика изначально было сформулировано достаточно небрежно. Дело в том, что на тот момент ученый собирался доказать теорему о распределении простых чисел, и в этом контексте данная гипотеза не имела особого значения. Однако ее роль при решении многих других вопросов огромна. Именно поэтому предположение Римана на данный момент многими учеными признается важнейшей из недоказанных математических проблем.

Как уже было сказано, для доказательства теоремы о распределении полная гипотеза Римана не нужна, и достаточно логически обосновать, что действительная часть любого нетривиального нуля дзета-функции находится в промежутке от 0 до 1. Из этого свойства следует, что сумма по всем 0-м дзета-функции, которые фигурируют в точной формуле, приведенной выше, — конечная константа. Для больших значений x она вообще может потеряться. Единственным членом формулы, который останется неизменным даже при очень больших x, является сам x. Остальные сложные слагаемые в сравнении с ним асимптотически пропадают. Таким образом, взвешенная сумма стремится к x. Это обстоятельство можно считать подтверждением истинности теоремы о распределении простых чисел. Таким образом, у нулей дзета-функции Римана появляется особая роль. Она заключается в том, чтобы значения не могут внести существенного вклада в формулу разложения.

Последователи Римана

Трагическая смерть от туберкулеза не позволила этому ученому довести до логического конца свою программу. Однако от него приняли эстафету Ш-Ж. де ла Валле Пуссен и Жак Адамар. Независимо друг от друга ими была выведена теорема о распределении простых чисел. Адамару и Пуссену удалось доказать, что все нетривиальные 0 дзета-функции находятся в пределах критической полосы.

Благодаря работе этих ученых появилось новое направление в математике — аналитическая теория чисел. Позже другими исследователями было получено несколько более примитивных доказательств теоремы, над которой работал Риман. В частности, Пал Эрдеш и Атле Сельберг открыли даже подтверждающую ее весьма сложную логическую цепочку, не требовавшую использования комплексного анализа. Однако к этому моменту посредством идеи Римана уже было доказано несколько важных теорем, включая аппроксимацию многих функций теории чисел. В связи с этим новая работа Эрдеша и Атле Сельберга практически ни на что не повлияла.

Одно из самых простых и красивых доказательств проблемы было найдено в 1980 году Дональдом Ньюманом. Оно было основано на известной теореме Коши.

Угрожает ли римановская гипотеза основам современной криптографии

Шифрование данных возникло вместе с появлением иероглифов, точнее, они сами по себе могут считаться первыми кодами. На данный момент существует целое направление цифровой криптографии, которое занимается разработкой

Простые и «полупростые» числа, т. е. такие, которые делятся только на 2 других числа из этого же класса, лежат в основе системы с открытым ключом, известной как RSA. Она имеет широчайшее применение. В частности, используется при генерировании электронной подписи. Если говорить в терминах, доступных «чайникам», гипотеза Римана утверждает существование системы в распределении простых чисел. Таким образом, значительно снижается стойкость криптографических ключей, от которых зависит безопасность онлайн-транзакций в сфере электронной коммерции.

Другие неразрешенные математические проблемы

Закончить статью стоит, посвятив несколько слов другим задачам тысячелетия. К их числу относятся:

  • Равенство классов P и NP. Задача формулируется так: если положительный ответ на тот или иной вопрос проверяется за полиномиальное время, то верно ли, что и сам ответ на этот вопрос можно найти быстро?
  • Гипотеза Ходжа. Простыми словами ее можно сформулировать так: для некоторых типов проективных алгебраических многообразий (пространств) циклы Ходжа являются комбинациями объектов, которые имеют геометрическую интерпретацию, т. е. алгебраических циклов.
  • Гипотеза Пуанкаре. Это единственная из доказанных на данный момент задач тысячелетия. Согласно ей любой 3-мерный объект, обладающий конкретными свойствами 3-мерной сферы, обязан являться сферой с точностью до деформации.
  • Утверждение квантовой теории Янга — Миллса. Требуется доказать, что квантовая теория, выдвинутая этими учеными для пространства R 4 , существует и имеет 0-й дефект массы для любой простой калибровочной компактной группы G.
  • Гипотеза Берча — Свиннертон-Дайера. Это еще одна проблема, имеющая отношение к криптографии. Она касается элиптических кривых.
  • Проблема о существовании и гладкости решений уравнений Навье — Стокса.

Теперь вам известна гипотеза Римана. Простыми словами мы сформулировали и некоторые из других задач тысячелетия. То, что они будут решены либо будет доказано, что они не имеют решения, — это вопрос времени. Причем вряд ли этого придется ждать слишком долго, так как математика все больше использует вычислительные возможности компьютеров. Однако не все подвластно технике, и для решения научных проблем прежде всего требуется интуиция и творческий подход.

Командир судна 18 января 2018 в 13:05

Доказательство Гипотезы Римана

  • Математика

Гипотеза Римана это математическая гипотеза, выведенная в 1859 году Бернхардом Риманом. И которая до сих пор не была решена.

Гипотеза Римана звучит так:

Все нетривиальные нули дзета-функции имеют действительную часть равную 1/2.
Мне удалось доказать это утверждение. Мои выводы основываются на резултате фон Коха 1901 года.

Если Гипотеза Римана верна, то

π(x) = Li(x) + Ο(√x∙ln x)

Гипотеза Римана имеет большое значение в квантовой механике, а также в криптографии.

Формула π(x) и Li(x)

В данном разделе я представлю две формулы с помощью которых я доказал Гипотезу Римана. Это новая формула функции π(x) и новый метод интегрирования функции 1/ln(x).

Функция π(x) показывает сколько в данном числе x простых чисел. Простые числа - это числа, которые делятся только на себя и на единицу. Например: 2 3 5 7…

Формула функции π(x).:

(1.1)
Доказательство:

Эта формула исключает из данного числа x все не простые числа, по правилам решета Эратосфена. Решето Эретосфена это метод, придуманный Эратосфеном Киренским для определения последовательности простых чисел. Алгоритм таков, если взять ряд из натуральных чисел без единицы

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18…

И исключить из него все четные числа, кроме самой маленькой из них, т.е. двойки, получится:

2 3 5 7 9 11 13 15 17…

А потом из этой получившейся последовательности исключить все числа которые делятся на следующее простое число после двойки, это число 3, не считая ее самой. Получится:

2 3 5 7 11 13 17…

Если так делать до бесконечности, то останутся только простые числа. Моя формула работает по такому принципу. Сначала формула исключает единицу из данного числа x, а потом количество всех четных чисел, кроме 2. Далее количество чисел, которые делятся на 3, кроме тройки, а из данного количества исключаются четные числа, которые которые делятся на 3 и т.д.
fn(x) обозначает самое минимальное число, которое надо исключить из x, чтобы получилось то число которое делится на n без остатка.

График функции fn(x):


Рис.(1.1) График функции fn(x)

Область определения функции

Область значения

Каждое выражение в скобках содержит количество определенных не простых чисел не превосходящих x.

Рано или позно определенное выражение в скобках формулы π(x) будет равна нулю (1.1). Поэтому данная сумма не бесконечна.

Я не могу доказать математически формулу (1.1), но можно понять, что формула верна, исходя из того что ее функция напоминает решето Эретосфена. Можно сказать, что эта формула-аналитический вариант решета Эретосфена.

Формула функции Li(x):

(1.2)
Доказательство:

Все члены этой суммы это площадь прямоугольника под графиком функции 1/ln(x), бесконечное количество площадей прямоугольников сходятся к площади под графиком функции 1/ln(x), начиная с аргумента 2. А так как функция Li(x) это интеграл графика функции 1/ln(x), то формула (1.2) равна Li(x).


Рис.(1.2) Прямоугольники под графиком функции 1/ln(x)

Верхний правый угол всех прямоугольников лежат на определенной точке графика, а так как прямоугольников бесконечно много, то углы прямоугольников охватывают все точки графика от 1/ln(2) до 1/ln(x).

Доказательство

Итак, если Гипотеза Римана верна то

π(x) = Li(x) + Ο(√x∙ln x)

А если переделать это выражение то получится, что

То есть, если доказать это неравенство то получится что Гипотеза Римана верна.
Подставив подставив выведенные формулы в неравенство получим:


(1.3) Остаточный член

При условии что x>2.Преобразуем это выражение, для упрощения.

Из этого можно сделать вывод что, если неравенство


(1.5)

Верное, то и Гипотеза Римана верна. Проверем это. Если перенести все члены неравенства (1.5) в правую часть неравенства, то получится


(1.6)

Первая разность этого выражения, при x>2, всегда отрицательна. А вторая разность отрицательна приблизительно лишь при x>10, но это не страшно, так как нас интересуют только большие аргументы, выражение (1.6) все равно будет верное.

Неравенство (1.6) верное, значит и неравенство

Тоже верное.

Гипотеза Римана доказана.

Теги: Задачи тысячелетия, простые числа

8 августа 1900 года на 2-м Международном конгрессе математиков в Париже один из величайших математиков современности Давид Гильберт сформулировал двадцать три задачи, которые во многом предопределили развитие математики XX столетия. В 2000 году специалисты из Clay Mathematics Institute решили, что грешно входить в новое тысячелетие, не наметив новую программу развития, -тем более что от двадцати трех проблем Гильберта остались лишь две[Еще две считаются слишком расплывчатыми или нематематическими, еще одна была решена частично, а по поводу еще одной - знаменитой континуум-гипотезы - консенсус пока не достигнут ()].

В результате появился знаменитый список из семи задач, за полное решение любой из которых обещан миллион долларов из специально учрежденного фонда. Чтобы получить деньги, нужно опубликовать решение и подождать два года; если в течение двух лет никто его не опровергнет (будьте уверены - попытаются), вы получите миллион вожделенных зеленых бумажек.
Я попытаюсь изложить суть одной из этих задач, а также постараюсь (в меру своих скромных сил) объяснить ее сложность и важность. Настойчиво рекомендую зайти на официальный сайт конкурса www.claymath.org/millennium ; опубликованные там описания проблем полны и интересны, и именно они стали главным источником при написании статьи.

Гипотеза Римана

Однажды один из моих научных руководителей, выдающийся петербургский алгебраист Николай Александрович Вавилов, начал занятие своего спецкурса с формулы

1 + 2 + 3 + 4 + 5 + … = –1/12.

Нет, занятие не было посвящено гипотезе Римана, и узнал я о ней вовсе не от Николая Александровича. Но формула, тем не менее, имеет к гипотезе самое прямое отношение. И что удивительно - это кажущееся абсурдным равенство действительно верно. Точнее сказать, не совсем оно, но дьявол деталей тоже вскоре будет удовлетворен.

В 1859 году Бернард Риман (Bernhard Riemann) опубликовал статью (или, как тогда выражались, мемуар), которой была суждена очень долгая жизнь. В ней он изложил совершенно новый метод асимптотической оценки распределения простых чисел. В основе метода лежала функция, связь которой с простыми числами обнаружил еще Леонард Эйлер, но которая все же получила имя математика, продолжившего ее на всю комплексную плоскость: так называемая дзета-функция Римана. Определяется она очень просто:

ς (s) = 1/1 s + 1/2 s + 1/3 s + 1/3 s + … .

Любой студент, прослушавший курс математического анализа, тут же скажет, что этот ряд сходится для всякого вещественного s > 1. Более того, он сходится и для комплексных чисел, вещественная часть которых больше единицы. Еще более того, функция ς (s) - аналитическая в этой полуплоскости.

Рассматривать формулу для отрицательных s кажется дурной шуткой: ну какой смысл складывать, например, все положительные целые числа или, тем более, их квадраты или кубы? Однако комплексный анализ - упрямая наука, и свойства дзета-функции таковы, что ее можно продолжить на всю плоскость. Это и было одной из идей Римана, изложенных в мемуаре 1859 года. У полученной функции только одна особая точка (полюс): s = 1, а, например, в отрицательных вещественных точках функция вполне определена. Именно значение аналитически продолженной дзета-функции в точке –1 и выражает формула, с которой я начал этот раздел.

(Специально для патриотов и неравнодушных к истории науки людей отмечу в скобках, что, хотя мемуар Бернарда Римана внес в теорию чисел много свежих идей, он не был первым исследованием, в котором распределение простых чисел изучалось аналитическими методами. Впервые это сделал наш соотечественник Пафнутий Львович Чебышёв, 24 мая 1848 года прочитавший в петербургской Академии наук доклад, в котором изложил ставшие классическими асимптотические оценки количества простых чисел.)

Но вернемся к Риману. Ему удалось показать, что распределение простых чисел - а это центральная проблема теории чисел - зависит от того, где дзета-функция обращается в нуль. У нее есть так называемые тривиальные нули - в четных отрицательных числах (–2, –4, –6, …). Задача состоит в том, чтобы описать все остальные нули дзета-функции.

Этот орешек вот уже полторы сотни лет не могут разгрызть самые талантливейшие математики планеты.

Правда, мало кто сомневается в том, что гипотеза Римана верна. Во-первых, численные эксперименты более чем убедительны; о последнем из них рассказывает статья Хавьера Гурдона (Xavier Gourdon), название которой говорит само за себя: «Первые 10 13 нулей дзета-функции Римана и вычисление нулей на очень большой высоте» (вторая часть названия означает, что предложен метод вычисления не только первых нулей, но и некоторых, пусть и не всех, более далеких, вплоть до нулей с номером около 10 24). Эта работа пока венчает более чем столетнюю историю попыток проверки гипотезы Римана для некоторого количества первых нулей. Разумеется, контрпримеров к гипотезе Римана не найдено. Кроме того, строго установлено, что больше 40% нулей дзета-функции гипотезе удовлетворяют.

Второй аргумент напоминает одно из доказательств существования Бога, опровергнутых еще Иммануилом Кантом. Если Риман все же ошибся, то неверной станет очень много красивой и правдоподобной математики, построенной в предположении, что гипотеза Римана правильна. Да, этот аргумент не имеет научного веса, но все же… математика - это наука, где красота играет ключевую роль. Красивое, но неверное доказательство сплошь и рядом оказывается полезнее, чем верное, но некрасивое. Так, например, из неудачных попыток доказать великую теорему Ферма выросло не одно направление современной алгебры. И еще одно эстетическое замечание: теорема, аналогичная гипотезе Римана, была доказана в алгебраической геометрии. Получившаяся теорема Делиня (Deligne) по праву считается одним из самых сложных, красивых и важных результатов математики XX столетия.
Итак, гипотеза Римана, по всей видимости, верна - но не доказана. Кто знает, возможно, сейчас этот журнал читает человек, которому суждено войти в историю математики, доказав гипотезу Римана. В любом случае, как и со всеми остальными великими задачами, сразу предупреждаю: не пытайтесь повторить эти трюки дома. Иными словами, не пытайтесь решать великие проблемы, не поняв теории, которая их окружает. Сэкономите нервы и себе, и окружающим.

На десерт - еще немного интересного о дзета-функции. Оказывается, у нее есть и практические применения, и даже физический смысл. Более того, и гипотеза Римана (точнее говоря, ее обобщение, считающееся столь же сложным, сколь и она сама) имеет прямые практические следствия. Например, одной из важных вычислительных задач является проверка чисел на простоту (дано число, нужно сказать, простое оно или нет). Самый теоретически быстрый на данный момент алгоритм решения этой задачи - тест Миллера-Рабина (Miller-Rabin test) - работает за время O(log 4 n), где n - данное число (соответственно log n - длина входа алгоритма). Однако доказательство того, что он работает так быстро, опирается на гипотезу Римана.

Впрочем, тест на простоту - не слишком сложная проблема с точки зрения теории сложности (в 2002 году был разработан не зависящий от гипотезы Римана алгоритм, который медленнее теста Миллера-Рабина, но тоже полиномиален). Раскладывать числа на простые сомножители гораздо интереснее (и прямые криптографические приложения налицо - стойкость схемы RSA зависит от того, можно ли быстро разложить число на простые), и здесь гипотеза Римана тоже является необходимым условием для доказательства оценок времени работы некоторых быстрых алгоритмов.

Обратимся к физике. В 1948 году голландский ученый Хендрик Казимир (Hendrik Casimir) предсказал эффект, носящий теперь его имя[Эффект Казимира долгое время оставался лишь изящной теоретической идеей; однако в 1997 году Стив Ламоро (Steve K. Lamoreaux), Умар Мохидин (Umar Mohideen) и Анушри Руа (Anushri Roy) смогли провести подтверждающие предшествующую теорию эксперименты]. Оказывается, если сблизить две незаряженные металлические пластины на расстояние в несколько атомных диаметров, они притянутся друг к другу за счет флуктуаций расположенного между ними вакуума - постоянно рождающихся пар частиц и античастиц. Этот эффект чем-то напоминает притяжение подплывших слишком близко друг к другу судов в океане (еще больше он напоминает теорию Стивена Хокинга о том, что черные дыры все же излучают энергию, - впрочем, тут трудно сказать, кто кого напоминает). Расчеты физической модели этого процесса показывают, что сила, с которой притягиваются пластины, должна быть пропорциональна сумме частот стоячих волн, возникающих между пластинами. Вы уже догадались - эта сумма сводится к сумме 1+2+3+4+…. И более того - правильным значением этой суммы для расчетов эффекта Казимира является именно –1/12.

Но и это еще не все. Некоторые исследователи считают, что дзета-функция играет важную роль… в музыке! Возможно[Я пишу «возможно», потому что единственный источник, который мне удалось разыскать, это переписка в usenet-конференции sci.math . Если вы (читатели) сможете найти более авторитетные источники, мне будет очень интересно об этом услышать], максимумы дзета-функции соответствуют значениям частот, которые могут служить хорошей основой для построения музыкальной шкалы (такой, как наш нотный стан). Что ж, Герман Гессе в своей «Игре в бисер» не зря объявил Игру комбинацией математики и музыки: между ними и впрямь много общего…

Отрывок из книги «Величайшие математические задачи» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта о важнейших нерешенных математических задачах и их месте в общем контексте математики и естественных наук.


В 1859 году немецкий математик Бернхард Риман взял давнюю идею Эйлера и развил ее совершенно по-новому, определив так называемую дзета-функцию. Одним из результатов этой работы стала точная формула для количества простых чисел до заданного предела. Формула представляла собой бесконечную сумму, но специалистам по анализу к этому не привыкать. И это не было бесполезной игрой ума: благодаря этой формуле удалось получить новые подлинные знания о мире простых чисел. Мешала только одна маленькая неувязка. Хотя Риман мог доказать, что его формула точна, самые важные потенциальные следствия из нее полностью зависели от одного простого утверждения, касающегося дзета-функции, и вот это то простое утверждение Риман никак не мог доказать. И сегодня, полтора столетия спустя, мы все еще не сумели сделать это. Сегодня это утверждение называется гипотезой Римана и представляет собой, по сути, священный Грааль чистой математики.

Теорема о распределении простых чисел была ответом на евклидову теорему о том, что простые числа уходят в бесконечность и могут быть сколь угодно большими. Другая фундаментальная евклидова теорема говорит о единственности разложения на простые множители: каждое положительное целое число есть произведение простых чисел, причем только одного их набора. В 1737 году Эйлер понял, что первую теорему можно переформулировать в виде поразительной формулы из действительного анализа, и тогда второе утверждение становится простым следствием этой формулы. Для начала я представлю формулу, а затем попытаюсь разобраться в ней. Вот она:


Здесь принимает все простые значения, а - константа. Эйлера интересовал в основном случай, при котором - целое число, но его формула работает и для действительных чисел, в случае если больше единицы. Это условие необходимо для того, чтобы ряд в правой части сошелся, т. е., будучи продолжен до бесконечности, принял бы осмысленное значение.

Это необыкновенная формула. В левой части мы перемножаем бесконечно много выражений, которые зависят только от простых чисел. В правой - складываем бесконечное число выражений, которые зависят от всех положительных целых чисел. Эта формула выражает, на языке анализа, некоторое отношение между целыми и простыми числами. Главное отношение такого рода - это единственность разложения на простые множители, именно она оправдывает существование формулы.

Вот теперь сцена была готова к появлению Римана. Он тоже понял, что дзета-функция - это ключ к теореме о распределении простых чисел, но для реализации этого подхода ему пришлось предложить смелое расширение: определить дзета-функцию не только действительной, но и комплексной переменной. А начать можно с ряда Эйлера. Он сходится для любых действительных больше единицы, и если использовать для комплексного в точности ту же формулу, то ряд будет сходиться при любых , у которых действительная часть больше . Однако Риман обнаружил, что можно сделать и лучше. Применив процедуру так называемого аналитического продолжения, он расширил определение на все комплексные числа, за исключением . Это значение s исключено потому, что при значение дзета-функции становится бесконечным.

В 1859 году Риман собрал все свои мысли о дзета-функции в одну статью, заголовок которой можно перевести как «О количестве простых чисел, не превышающих заданной величины». В ней он привел полную и точную формулу . Я опишу более простую формулу, эквивалентную римановой, чтобы показать, как появляются нули дзета-функции. Идея заключается в том, чтобы подсчитать, сколько простых чисел, или степеней простых чисел, укладывается до любого заданного предела. Однако вместо того чтобы сосчитать каждое число по одному разу, как функция делает с простыми числами, мы придаем большим простым числам дополнительный вес. Более того, любая степень простого числа учитывается в соответствии с логарифмом этого простого числа. Так, для предела мы имеем следующие степени простых чисел:

Поэтому взвешенный подсчет дает

Что составляет примерно .

Воспользовавшись методами анализа, информацию об этом более хитроумном способе подсчета простых чисел можно превратить в информацию об обычном способе. Однако этот метод приводит к более простым формулам, и присутствие логарифма - не слишком дорогая цена за это. В этих терминах точная формула Римана говорит о том, что взвешенный подсчет до предела эквивалентен


где обозначает сумму по всем числам , для которых равна нулю, исключая отрицательные четные целые числа. Эти значения называются нетривиальными нулями дзета-функции. Тривиальные нули - это отрицательные четные целые числа Во всех этих точках дзета-функция равняется нулю из за формулы, которая используется в определении аналитического продолжения, но, как выяснилось, для римановой формулы эти нули несущественны (как и почти везде в других местах).

На случай, если формула вас немного пугает, я укажу главное: хитрый способ подсчета простых чисел до заданного предела , который при помощи кое каких аналитических фокусов можно превратить в обычный способ, в точности эквивалентен сумме по всем нетривиальным нулям дзета-функции простого выражения плюс некая несложная функция от . Если вы специалист по комплексному анализу, вы сразу увидите, что доказательство теоремы о распределении простых чисел эквивалентно доказательству того, что взвешенный подсчет до предела асимптотически сходится к . Воспользовавшись комплексным анализом, получим: это утверждение верно, если у всех нетривиальных нулей дзета-функции действительная часть лежит между и . Чебышев не смог этого доказать, но подошел достаточно близко, чтобы извлечь полезную информацию.

Почему нули дзета-функции так важны? Одна из базовых теорем комплексного анализа утверждает, что при некоторых формальных условиях функция комплексной переменной полностью определяется значениями переменной, при которых функция равна нулю или бесконечности, плюс некоторая дополнительная информация о поведении функции в этих точках. Эти особые точки известны как нули и полюсы функции. В действительном анализе эта теорема не работает - и это одна из причин, по которым комплексный анализ завое­вал такую популярность, несмотря на необходимость извлекать корень квадратный из . У дзета-функции один полюс (при ), так что все ее характеристики определяются нулями (если, конечно, не забывать о существовании этого единственного полюса).

Для удобства Риман работал в основном с зависимой кси-функцией , которая тесно связана с дзета-функцией и получается из метода аналитического продолжения. Он заметил:

«Весьма вероятно, что все [нули кси-функции] действительны. Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких бесплодных попыток я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования».


Это заявление о кси-функции эквивалентно аналогичному заявлению о зависимой от нее дзета-функции. А именно: все нетривиальные нули дзета-функции представляют собой комплексные числа вида: они лежат на критической линии «действительная часть равна » (см. рис.). Эта версия замечания и есть знаменитая гипотеза Римана.

Замечание Римана звучит достаточно небрежно, как будто высказано между делом и эта гипотеза не имеет особого значения. И это действительно так, если говорить только о программе Римана по доказательству теоремы о распределении простых чисел. Но во многих других вопросах верно обратное. Многие считают гипотезу Римана важнейшим из остающихся на сегодняшний день открытыми математических вопросов.

Чтобы понять, почему это так, мы должны последовать за рассуждениями Римана чуть дальше. В тот момент ученый был нацелен на теорему о распределении простых чисел. Его точная формула предлагала верный путь к этому достижению: нужно было разобраться в нулях дзета-функции или эквивалентной ей кси-функции. Полная риманова гипотеза для этого не нужна, достаточно доказать, что у всех нетривиальных нулей дзета-функции действительная часть лежит в промежутке от до , т. е. что сами комплексные корни лежат на расстоянии не более от римановой критической линии - в так называемой критической полосе. Это свойство нулей подразумевает, что сумма по всем нулям дзета-функции, фигурирующая в приведенной выше точной формуле, представляет собой конечную константу. Асимптотически для больших она вообще может потеряться. Единственный член формулы, который сохранит свое значение при очень больших , это сам . Все остальные сложные слагаемые асимптотически пропадают в сравнении с . Следовательно, взвешенная сумма асимптотически стремится к , и это доказывает теорему о распределении простых чисел. Так что, по иронии судьбы, роль нулей дзета-функции заключается в том, чтобы доказать, что они не вносят существенного вклада в точную формулу.

Риман так и не довел свою программу до логического конца. Более того, он никогда больше ничего не писал по этому вопросу.

Но два других математика, приняв у него эстафету, показали, что догадка Римана верна. В 1896 году Жак Адамар и Шарль-Жан де ла Валле Пуссен независимо друг от друга вывели теорему о распределении простых чисел, доказав, что все нетривиальные нули дзета-функции лежат в пределах критической полосы. Доказательства у обоих получились очень сложными и техничными, но тем не менее свою задачу они выполнили. Возникла новая мощная область математики - аналитическая теория чисел. Применение ей нашлось в самых разных уголках теории чисел: с ее помощью решали давние задачи и выявляли новые закономерности. Другие математики позже нашли несколько более простых доказательств теоремы о числе простых, а Атле Сельберг и Пал Эрдеш открыли даже очень сложное доказательство, вовсе не требовавшее применения комплексного анализа. Но к тому моменту при помощи идеи Римана было доказано бесчисленное множество важных теорем, включая аппроксимации многих функций теории чисел. Так что это новое доказательство хоть и добавило в эту историю каплю иронии, но ни на что, в сущности, не повлияло. В 1980 году Дональд Ньюман нашел гораздо более простое доказательство, для которого достаточно оказалось всего лишь одной из самых базовых теорем комплексного анализа - теоремы Коши.

Хотя Риман объявил свою гипотезу ненужной для достижения ближайших целей, оказалось, что она жизненно необходима для разрешения многих других вопросов теории чисел. Прежде чем обсуждать гипотезу Римана, нам стоит взглянуть на некоторые теоремы, которые - если бы гипотеза была доказана - из нее следуют.

Одно из важнейших следствий - это величина погрешности в теореме о распределении простых чисел. Теорема, как вы помните, утверждает, что для большого отношение к приближается к , причем чем дальше, тем сильнее. Иными словами, разница между двумя функциями снижается до нуля относительно величины x. Однако реальная разница при этом может расти (и растет). Просто она делает это медленнее, чем растет сам . Компьютерные расчеты позволяют предположить, что величина погрешности примерно пропорциональна . Если гипотеза Римана верна, это утверждение можно доказать. В 1901 году Хельге фон Кох доказал, что гипотеза Римана логически эквивалентна оценке


для всех . Здесь вертикальными линиями обозначена абсолютная величина: разность, умноженная на , чтобы сделать ее положительной. Эта формула дает наилучшие возможные ограничения для разницы между и .

Из гипотезы Римана можно получить немало других оценок для функций теории чисел. К примеру, из нее прямо следует, что сумма делителей меньше


для всех , где - постоянная Эйлера (). Эти утверждения могут показаться случайными и странными фактами, но хорошая оценка для важной функции жизненно важна во многих приложениях, и большинство специалистов по теории чисел отдали бы свою правую руку ради того, чтобы доказать любую из них.

Кроме того, гипотеза Римана говорит нам, насколько велико может быть расстояние между последовательными простыми числами. Типичный размер промежутка между ними можно вывести на основании теоремы о распределении простых чисел: в среднем промежуток между простым числом и следующим простым числом сравним с . Некоторые промежутки могут быть меньше, некоторые больше, но математикам жилось бы легче, если бы можно было сказать наверняка, насколько велики могут быть самые большие из них. Харальд Крамер доказал в 1936 г., что если гипотеза Римана верна, то промежуток при простом числе не может превышать величины , домноженной на некую константу.

Но подлинное значение гипотезы Римана куда глубже. Существуют далеко идущие обобщения и сильное подозрение, что тот, кто сумеет доказать гипотезу Римана, сможет, вероятно, доказать и связанную с ней обобщенную гипотезу Римана. А это, в свою очередь, даст математикам власть над обширными областями теории чисел.

Обобщенная гипотеза Римана вырастает из более подробного описания простых чисел. Все простые числа, кроме двойки, нечетные, и в главе 2 мы видели, что все нечетные простые можно разделить на два типа: те, что на больше числа, кратного , и те, что на больше числа, кратного . Говорят, что это числа вида или , где - число, на которое вы умножаете , чтобы получить данное простое число. Приведем короткий список первых нескольких простых чисел того и другого типа, вместе с соответствующими числами, кратными :


Прочерки указывают на то, что соответствующее число не простое.

Сколько существует простых чисел того и другого типа? Как они распределены среди всех простых чисел или среди всех целых чисел? Евклидово доказательство того факта, что простых чисел существует бесконечно много, можно без больших усилий модифицировать, доказав при этом, что существует бесконечно много простых чисел вида .

Доказать, что простых чисел вида тоже бесконечно много, гораздо сложнее, - это можно сделать, но лишь при помощи некоторых достаточно сложных теорем. Разница в подходах обусловлена тем, что любое число вида имеет делитель того же вида, а в отношении чисел вида это не всегда верно.

В числах этих двух видов нет ничего чудесного или священного. Все простые числа, кроме и , имеют вид или , и мы можем задать в отношении них аналогичные вопросы. Если уж на то пошло, все простые числа, кроме , имеют вид , , , . Мы оставляем в стороне числа вида , поскольку они кратны и, соответственно, все, кроме , не являются простыми.

Кстати говоря, на любой из подобных вопросов нетрудно выдвинуть разумное предположение - простые числа в арифметической последовательности. Случай с достаточно типичен. Эксперимент быстро показывает, что числа приведенных выше четырех видов имеют примерно равные шансы оказаться простыми. Вот похожая таблица:


Так что должно существовать бесконечное количество простых чисел каждого вида, и в среднем к каждому виду должна относиться четверть всех простых чисел до заданного предела.

Для некоторых видов доказать, что простых чисел такого вида существует бесконечно много, совсем несложно. Для других видов требуются более изощренные рассуждения. Но до середины XIX века никому не удавалось доказать, что существует бесконечно много простых чисел каждого возможного вида, не говоря уже о том, чтобы доказать их более или менее равномерное распределение. Лагранж в 1785 году в работе, посвященной закону квадратичной взаимности - глубокому свойству квадратов простых модулей, - принимал этот факт без доказательства. Результаты дали очевидно полезные следствия, и пора было кому-нибудь это доказать. В 1837 году Дирихле выяснил, как применить идеи Эйлера, связанные с теоремой о распределении простых чисел, для доказательства обоих этих утверждений. Первым делом следовало определить аналоги дзета-функции для этих типов простых чисел. То, что получилось, называется -функциями Дирихле. К примеру, в случае возникает следующая функция:

Где коэффициенты равны для чисел вида , для чисел вида и 0 для остальных. Греческую букву называют характером Дирихле, и это напоминает нам о том, какие именно знаки следует использовать.

Для римановой дзета-функции важен не только ряд, но и его аналитическое продолжение, придающее функции значения во всех комплексных точках.

То же относится и к -функции, и Дирихле определил подходящее аналитическое продолжение. Приспособив к случаю идеи, которые использовались для доказательства теоремы о распределении простых чисел, он сумел доказать аналогичную теорему о простых числах особых видов. К примеру, число простых чисел вида , меньших или равных , асимптотически приближается к ; то же относится и к остальным трем случаям , , . Это означает, что простых чисел каждого вида бесконечно много.

Риманова дзета-функция - это особый случай -функции Дирихле для простых чисел вида , т. е. для всех простых чисел. Обобщенная гипотеза Римана представляет собой очевидное обобщение оригинальной гипотезы: нули любой -функции Дирихле либо имеют действительную часть, равную , либо являются тривиальными нулями, действительная часть которых отрицательна или больше единицы.

Если обобщенная гипотеза Римана верна, то верна и обычная его гипотеза. Многие следствия обобщенной гипотезы Римана аналогичны следствиям обычной. К примеру, схожие границы ошибки можно доказать для аналогичных версий теоремы о распределении простых чисел в применении к простым числам любого конкретного вида. Однако обобщенная гипотеза Римана подразумевает много такого, что совершенно отличается от всего, что мы можем вывести из обычной гипотезы Римана. Так, в 1917 году Годфри Харди и Джон Литтлвуд доказали, что из обобщенной гипотезы Римана следует гипотеза Чебышева, в том смысле, что (буквально) простые числа вида встречаются чаще, чем числа вида . Согласно теореме Дирихле, оба вида равновероятны в конечном итоге, но это не мешает простым числам вида выигрывать у чисел , конечно, в правильной игре.

Имеется множество косвенных свидетельств того, что гипотеза Римана - как оригинальная, так и обобщенная - справедлива. Много хорошего следовало бы из истинности этих гипотез. Ни одно из этих следствий за все время не удалось опровергнуть, а ведь сделать это - то же самое, что опровергнуть гипотезу Римана. Но ни доказательства, ни опровержения пока нет. Широко распространено мнение, что доказательство оригинальной гипотезы Римана открыло бы дорогу и к доказательству обобщенного ее варианта. Но на самом деле, возможно, лучше было бы атаковать сразу обобщенную гипотезу Римана во всей ее грозной красе - воспользоваться всем арсеналом доступных на сегодняшний день методов, доказать, а затем вывести оригинальную гипотезу Римана как ее частный случай.

Сегодня у исследователей появился новый стимул к борьбе за доказательство гипотезы Римана: крупный приз.

В математике не существует Нобелевской премии. Самой престижной наградой в этой области является Филдсовская премия за выдающиеся открытия, вместе с которой вручается медаль. Эта премия названа в честь канадского математика Джона Филдса, который и завещал на нее средства. Раз в четыре года на Международном конгрессе математиков двум, трем или четырем молодым ученым не старше 40 лет вручают золотую медаль и денежную премию (в настоящее время это $15 000).

Многие представители математической науки считают правильным, что в их области не присуждается Нобелевская премия. В настоящее время она составляет чуть больше миллиона долларов, а такая сумма легко может исказить цели исследователей и породить споры о приоритетах. Однако отсутствие крупной математической премии также может исказить представления общества о значимости и полезности этой науки. Можно подумать, что открытия, за которые никто не хочет платить, не так уж важны. Возможно, поэтому не так давно появились две очень престижные новые математические премии. Одна из них - Абелевская - присуждается ежегодно Норвежской академией науки и словесности и названа в честь великого норвежского математика Нильса Хенрика Абеля. Вторая награда - это премии за решение семи «проблем тысячелетия», объявленные Математическим институтом Клэя. Этот институт основали в 1998 году в Кембридже (штат Массачусетс) американский бизнесмен Лэндон Клэй и его жена Лавиния. Лэндон Клэй активно занимается паевыми инвестиционными фондами и при этом любит и уважает математику. Его организация проводит встречи, выделяет гранты на исследования, организует публичные лекции и присуждает ежегодную премию за математические исследования.

В 2000 году сэр Майкл Атья и Джон Тейт, ведущие математики Великобритании и США, объявили, что Математический институт Клэя учредил новую премию, которая должна будет стимулировать работу над семью важнейшими нерешенными задачами математики. Эти задачи будут известны как «проблемы тысячелетия», а надлежащим образом опубликованное и отреферированное решение любой из них будет вознаграждено денежной суммой в $1 млн. Все вместе эти задачи призваны привлечь внимание к некоторым центральным для математики вопросам, до сих пор не имеющим ответов. Вопросы эти были тщательно отобраны лучшими математиками мира. Немалый приз должен ясно показать обществу: математика имеет огромную ценность. Всякий, кто имеет отношение к науке, прекрасно знает, что интеллектуальная ценность вполне может быть выше любых денег, но все же деньги помогают сосредоточиться. Самой известной и давней из задач тысячелетия является гипотеза Римана. Это единственный вопрос, который вошел одновременно и в список Гильберта (1900), и в список задач тысячелетия. Остальные шесть проблем тысячелетия обсуждаются далее в главах 10–15. Тем не менее математики не особенно гонятся за призами, и работа над гипотезой Римана продолжалась бы и без обещанной премии. Все, что для этого нужно, - новая перспективная идея.

Стоит также помнить о том, что гипотезы, даже освященные временем, иногда оказываются ошибочными. Сегодня большинство математиков, судя по всему, считает, что когда-нибудь гипотеза Римана будет доказана. Некоторые, однако, думают, что она, возможно, все-таки неверна, и где-то в дебрях очень больших чисел может скрываться нуль дзета-функции, который не лежит на критической линии. Если такой «контрпример» существует, то он, скорее всего, окажется очень-очень большим.

Однако на переднем крае математики просто мнение стоит немного. Интуиция зачастую очень помогает ученым, но известно немало случаев, когда это замечательное чувство ошибалось. Житейский здравый смысл может лгать, оставаясь при этом и общепризнанным, и здравым. Литтлвуд, один из лучших знатоков комплексного анализа, выразился вполне однозначно: в 1962 году он сказал, что уверен в ошибочности гипотезы Римана, и добавил, что нет никаких мыслимых причин, по которым она была бы верна. Кто прав? Поживем, увидим.

Иэн Стюарт
Emeritus Professor of Mathematics at the University of Warwick, England

5 декабря 2014 в 18:54

Задачи тысячелетия. Просто о сложном

  • Занимательные задачки ,
  • Математика

Привет, хабралюди!

Сегодня я бы хотел затронуть такую тему как «задачи тысячелетия», которые вот уже десятки, а некоторые и сотни лет волнуют лучшие умы нашей планеты.

После доказательства гипотезы (теперь уже теоремы) Пуанкаре Григорием Перельманом, основным вопросом, который заинтересовал многих, был: «А что же он собственно доказал, объясните на пальцах? » Пользуясь возможностью, попробую объяснить на пальцах и остальные задачи тысячелетия, или по крайней мере подойти в ним с другой более близкой к реальности стороны.

Равенство классов P и NP

Все мы помним из школы квадратные уравнения, которые решаются через дискриминант. Решение этой задачи относится к классу P (P olynomial time) - для нее существует быстрый (здесь и далее под словом «быстрый» подразумевается как выполняющийся за полиномиальное время) алгоритм решения, который и заучивается.

Также существуют NP -задачи (N on-deterministic P olynomial time) , найденное решение которых можно быстро проверить по определенному алгоритму. Для примера проверка методом перебора компьютером. Если вернуться к решению квадратного уравнения, то мы увидим, что в данном примере существующий алгоритм решения проверяется так же легко и быстро как и решается. Из этого напрашивается логичный вывод, что данная задача относится как к одному классу так и ко второму.

Таких задач много, но основным вопросом является, все или не все задачи которые можно легко и быстро проверить можно также легко и быстро решить? Сейчас для некоторых задач не найдено быстрого алгоритма решения, и неизвестно существует ли такой вообще.

На просторах интернета также встретил такую интересную и прозрачную формулировку:

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей.

В данном случае вопрос стоит все тот же, есть ли такой алгоритм действий, благодаря которому даже не имея информации о том, где находится человек, найти его так же быстро, как будто зная где он находится.

Данная проблема имеет большое значение для самых различных областей знаний, но решить ее не могут уже более 40 лет.

Гипотеза Ходжа

В реальности существуют множество как простых так и куда более сложных геометрических объектов. Очевидно, что чем сложнее объект тем более трудоемким становится его изучение. Сейчас учеными придуман и вовсю применяется подход, основная идея которого заключается в том, чтобы вместо самого изучаемого объекта использовать простые «кирпичики» с уже известными свойствами, которые склеиваются между собой и образуют его подобие, да-да, знакомый всем с детства конструктор. Зная свойства «кирпичиков», становится возможным подступиться и к свойствам самого объекта.

Гипотеза Ходжа в данном случае связана с некоторыми свойствами как «кирпичиков» так и объектов.

Гипотеза Римана

Всем нам еще со школы известны простые числа которые делятся только на себя и на единицу (2,3,5,7,11...) . С давних времен люди пытаются найти закономерность в их размещении, но удача до сих пор так никому и не улыбнулась. В результате ученые применили свои усилия к функции распределения простых чисел, которая показывает количество простых чисел меньше или равных определенного числа. Например для 4 - 2 простых числа, для 10 - уже 4 числа. Гипотеза Римана как раз устанавливает свойства данной функции распределения.

Многие утверждения о вычислительной сложности некоторых целочисленных алгоритмов, доказаны в предположении верности этой гипотезы.

Теория Янга - Миллса

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения, объединяющие теории электромагнитного, слабого и сильного взаимодействий. Одно время теория Янга-Миллса рассматривалась лишь как математический изыск, не имеющий отношения к реальности. Однако, позже теория начала получать экспериментальные подтверждения, но в общем виде она все еще остается не решенной.

На основе теории Янга-Миллса построена стандартная модель физики элементарных частиц в рамках которой был предсказан и не так давно обнаружен нашумевший бозон Хиггса.

Существование и гладкость решений уравнений Навье - Стокса

Течение жидкостей, воздушные потоки, турбулентность. Эти, а также множество других явлений описываются уравнениями, известными как уравнения Навье - Стокса . Для некоторых частных случаев уже найдены решения, в которых как правило части уравнений отбрасываются как не влияющие на конечный результат, но в общем виде решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать.

Гипотеза Бёрча - Свиннертон-Дайера

Для уравнения x 2 + y 2 = z 2 в свое время еще Эвклид дал полное описание решений, но для более сложных уравнений поиск решений становится чрезвычайно трудным, достаточно вспомнить историю доказательства знаменитой теоремы Ферма, чтобы убедиться в этом.

Данная гипотеза связана с описанием алгебраических уравнений 3 степени - так называемых эллиптических кривых и по сути является единственным относительно простым общим способом вычисления ранга, одного из важнейших свойств эллиптических кривых.

В доказательстве теоремы Ферма эллиптические кривые заняли одно из важнейших мест. А в криптографии они образуют целый раздел имени себя, и на них основаны некоторые российские стандарты цифровой подписи.

Гипотеза Пуанкаре

Думаю если не все, то большинство точно о ней слышали. Чаще всего встречается, в том числе и на центральных СМИ, такая расшифровка как «резиновую ленту натянутую на сферу можно плавно стянуть в точку, а натянутую на бублик - нельзя ». На самом деле эта формулировка справедлива для гипотезы Тёрстона, которая обобщает гипотезу Пуанкаре, и которую в действительности и доказал Перельман.

Частный случай гипотезы Пуанкаре говорит нам о том, что любое трехмерное многообразие без края (вселенная, например) подобно трехмерной сфере. А общий случай переводит это утверждение на объекты любой мерности. Стоит заметить, что бублик, точно так же как вселенная подобна сфере, подобен обычной кофейной кружке.

Заключение

В настоящее время математика ассоциируется с учеными, имеющими странный вид и говорящие о не менее странных вещах. Многие говорят о ее оторванности от реального мира. Многие люди как младшего, так и вполне сознательного возраста говорят, что математика ненужная наука, что после школы/института, она нигде не пригодилась в жизни.

Но на самом деле это не так - математика создавалась как механизм с помощью которого можно описать наш мир, и в частности многие наблюдаемые вещи. Она повсюду, в каждом доме. Как сказал В.О. Ключевский: «Не цветы виноваты, что слепой их не видит».

Наш мир далеко не так прост, как кажется, и математика в соответствии с этим тоже усложняется, совершенствуется, предоставляя все более твердую почву для более глубокого понимания существующей реальности.



Понравилась статья? Поделитесь с друзьями!