Химические свойства водорода. Значение водорода в природе

Водород. Свойства, получение, применение.

Историческая справка

Водород – первый элемент ПСХЭ Д.И. Менделеева.

Русское название водорода указывает, что он «рождает воду»; латинское «гидрогениум» означает то же самое.

Впервые выделение горючего газа при взаимодействии некоторых металлов с кислотами наблюдали Роберт Бойль и его современники в первой половине XVI века.

Но водород был открыт лишь в 1766 году английским химиком Генри Кавендишем, который установил, что при взаимодействии металлов с разбавленными кислотами выделяется некий «горючий воздух». Наблюдая горение водорода на воздухе, Кавендиш установил, что в результате появляется вода. Это было в 1782 году.

В 1783 году году французский химик Антуан-Лоран Лавуазье выделил водород путем разложения воды раскаленным железом. В 1789 году водород был выделен при разложении воды под действием электрического тока.

Распространенность в природе

Водород – главный элемент космоса. Например, Солнце на 70 % своей массы состоит из водорода. Атомов водорода во Вселенной в несколько десятков тысяч раз больше, чем всех атомов всех металлов, вместе взятых.

В земной атмосфере тоже есть немного водорода в виде простого вещества – газа состава Н 2 . Водород намного легче воздуха, и поэтому его находят в верхних слоях атмосферы.

Но гораздо больше на Земле связанного водорода: ведь он входит в состав воды, самого распространенного на нашей планете сложного вещества. Водород, связанный в молекулы, содержат и нефть, и природный газ, многие минералы и горные породы. Водород входит в состав всех органических веществ.

Характеристика элемента водорода.

Водород имеет двойственную природу, по этой причине в одних случаях водород помещают в подгруппу щелочных металлов, а в других – в подгруппу галогенов.


  • Электронная конфигурация 1s 1 . Атом водорода состоит из одного протона и одного электрона.

  • Атом водорода способен терять электрон и превращаться в катион H + , и в этом он сходен со щелочными металлами.

  • Атом водорода также может присоединять электрон, образуя при этом анион Н - , в этом отношении водород сходен с галогенами.

  • В соединениях всегда одновалентен

  • СО: +1 и -1.

Физические свойства водорода

Водород – это газ, без цвета, вкуса и запаха. В 14,5 раз легче воздуха. Мало растворим в воде. Обладает высокой теплопроводностью. При t= –253 °С – сжижается, при t= –259 °С – затвердевает. Молекулы водорода настолько малы, что способны медленно диффундировать через многие материалы – резину, стекло, металлы, что используется при очистке водорода от других газов.

Известны 3 изотопа водорода: - протий, - дейтерий, - тритий. Основную часть природного водорода составляет протий. Дейтерий входит в состав тяжелой воды, которой обогащены поверхностные воды океана. Тритий – радиоактивный изотоп.

Химические свойства водорода

Водород – неметалл, имеет молекулярное строение. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Энергия связи в молекуле водорода составляет 436 кДж/моль, что объясняет низкую химическую активность молекулярного водорода.


  1. Взаимодействие с галогенами. При обычной температуре водород реагирует лишь со фтором:
H 2 + F 2 = 2HF.

С хлором - только на свету, образуя хлороводород, с бромом реакция протекает менее энергично, с йодом не идет до конца даже при высоких температурах.


  1. Взаимодействие с кислородом – при нагревании, при поджигании реакция протекает со взрывом: 2H 2 + O 2 = 2H 2 O.
Водород горит в кислороде с выделением большого количества тепла. Температура водородно-кислородного пламени 2800 °С.

Смесь из 1 части кислорода и 2 частей водорода – «гремучая смесь», наиболее взрывоопасна.


  1. Взаимодействие с серой – при нагревании H 2 + S = H 2 S.

  2. Взаимодействие с азотом. При нагревании, высоком давлении и в присутствии катализатора:
3H 2 + N 2 = 2NH 3 .

  1. Взаимодействие с оксидом азота (II). Используется в очистительных системах при производстве азотной кислоты: 2NO + 2H 2 = N 2 + 2H 2 O.

  2. Взаимодействие с оксидами металлов. Водород – хороший восстановитель, он восстанавливает многие металлы из их оксидов: CuO + H 2 = Cu + H 2 O.

  3. Сильным восстановителем является атомарный водород. Он образуется из молекулярного в электрическом разряде в условиях низкого давления. Высокой восстановительной активностью обладает водород в момент выделения , образующийся при восстановлении металла кислотой.

  4. Взаимодействие с активными металлами . При высокой температуре соединяется с щелочными и щелочно-земельными металлам и образуя белые кристаллические вещества – гидриды металлов, проявляя свойства окислителя: 2Na + H 2 = 2NaH;
Ca + H 2 = CaH 2 .

Получение водорода

В лаборатории:


  1. Взаимодействие металла с разбавленными растворами серной и соляной кислот,
Zn + 2HCl = ZnCl 2 + H 2 .

  1. Взаимодействие алюминия или кремния с водными растворами щелочей:
2Al + 2NaOH + 10H 2 O = 2Na + 3H 2 ;

Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2 .

В промышленности:


  1. Электролиз водных растворов хлоридов натрия и калия или электролиз воды при присутствии гидроксидов:
2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH;

2Н 2 О = 2Н 2 + О 2 .


  1. Конверсионный способ. Вначале получают водяной газ, пропуская пары воды через раскаленный кокс при 1000 °С:
С + Н 2 О = СО + Н 2 .

Затем оксид углерода (II) окисляют в оксид углерода (IV), пропуская смесь водяного газа с избытком паров воды над нагретым до 400–450 °С катализатором Fe 2 O 3:

CO +H 2 O = CO 2 + H 2 .

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.


  1. Конверсия метана: CH 4 + H 2 O = CO + 3H 2 .
Реакция протекает в присутствии никелевого катализатора при 800 °С.

  1. Термическое разложение метана при 1200 °С: CH 4 = C + 2H 2 .

  2. Глубокое охлаждение (до -196 °С) коксового газа. При этой температуре конденсируются все газообразные вещества, кроме водорода.
Применение водорода

Применение водорода основано на его физических и химических свойствах:


  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);

  • кислородно-водородное пламя применяется для получения высоких температур при сварки металлов;

  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;

  • для получения аммиака и искусственного жидкого топлива, для гидрогенизации жиров.

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом - выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода - реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 0 = CO 2 + 4Н 2 - 165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который применяется иногда и в промышленности,- разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:

H 2 O + C ⇄ H 2 + CO

3.Из природного газа.

Конверсияс водяным паром: CH 4 + H 2 O ⇄ CO + 3H 2 (1000 °C) Каталитическое окисление кислородом: 2CH 4 + O 2 ⇄ 2CO + 4H 2

4. Крекинг и реформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2 Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e - → H 2 + 2H 2 O

  • Биореактор для производства водорода

Физические свойства

Газообразный водород может существовать в двух формах (модификациях) - в виде орто - и пара-водорода.

В молекуле ортоводорода (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) - противоположно друг другу (антипараллельны).

Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что даёт возможность изучить свойства отдельных аллотропных форм. Молекула водорода двухатомна - Н₂. При обычных условиях - это газ без цвета, запаха и вкуса. Водород - самый лёгкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Химические свойства

Молекулы водорода Н₂ довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия: Н 2 =2Н - 432 кДж Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция: Ca + Н 2 = СаН 2 и с единственным неметаллом - фтором, образуя фтороводород: F 2 +H 2 =2HF С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении. Он может «отнимать» кислород от некоторых оксидов, наприме: CuO + Н 2 = Cu + Н 2 0 Записанное уравнение отражает реакцию восстановления. Реакциями восстановления называются процессы, в результате которых от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются). Далее будет дано и другое определение понятиям «окисление» и «восстановление». А данное определение, исторически первое, сохраняет значение и в настоящее время, особенно в органической химии. Реакция восстановления противоположна реакции окисления. Обе эти реакции всегда протекают одновременно как один процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N 2 + 3H 2 → 2 NH 3

С галогенами образует галогеноводороды :

F 2 + H 2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl 2 + H 2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

Водород образует с активными металлами гидриды :

Na + H 2 → 2 NaH Ca + H 2 → CaH 2 Mg + H 2 → MgH 2

Гидриды - солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O Fe 2 O 3 + 3H 2 → 2 Fe + 3H 2 O WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

При действии водорода на ненасыщенные углеводороды в присутствии никелевого катализатора и повышенной температуре происходит реакция гидрирования :

CH 2 =CH 2 + H 2 → CH 3 -CH 3

Водород восстанавливает альдегиды до спиртов:

CH 3 CHO + H 2 → C 2 H 5 OH.

Геохимия водорода

Водород - основной строительный материал вселенной. Это самый распространённый элемент, и все элементы образуются из него в результате термоядерных и ядерных реакций.

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Он мигрирует в верхние слои атмосферы и улетучивается в космос.

Применение

  • Водородная энергетика

Атомарный водород используется для атомно-водородной сварки.

В пищевой промышленности водород зарегистрирован в качестве пищевой добавки E949 , как упаковочный газ.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь - так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21%. Также водород пожароопасен. Жидкий водород при попадении на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4% до 96 % объёмных. При смеси с воздухом от 4% до 75(74) % объёмных.

Использование водорода

В химической промышленности водород используют при производстве аммиака, мыла и пластмасс. В пищевой промышленности с помощью водорода из жидких растительных масел делают маргарин. Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько ужасных катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют газом гелием. Водород используют также в качестве ракетного топлива. Когда-нибудь водород, возможно, будут широко применять как топливо для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар (правда, само получение водорода приводит к некоторому загрязнению окружающей среды). Наше Солнце в основном состоит из водорода. Солнечное тепло и свет - это результат выделения ядерной энергии при слиянии ядер водорода.

Использование водорода в качестве топлива (экономическая эффективность)

Важнейшей характеристикой веществ, используемых в качестве топлива, является их теплота сгорания. Из курса общей химии известно, что реакция взаимодействия водорода с кислородом происходит с выделением тепла. Если взять 1 моль H 2 (2 г) и 0,5 моль O 2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

Н 2 + 0,5 О 2 = Н 2 О

после завершения реакции образуется 1 моль H 2 O (18 г) с выделением энергии 285,8 кДж/моль (для сравнения: теплота сгорания ацетилена составляет 1300 кДж/моль, пропана - 2200 кДж/моль). 1 м³ водорода весит 89,8 г (44,9 моль). Поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии. С учётом того, что 1 кВт·ч = 3600 кДж, получим 3,56 кВт·ч электроэнергии. Зная тариф на 1 кВт·ч электричества и стоимость 1 м³ газа, можно делать вывод о целесообразности перехода на водородное топливо.

Например, экспериментальная модель Honda FCX 3 поколения с баком водорода 156 л (содержит 3,12 кг водорода под давлением 25 МПа) проезжает 355 км. Соответственно из 3,12 кг H2 получается 123,8 кВт·ч. На 100 км расход энергии составит 36,97 кВт·ч. Зная стоимость электроэнергии, стоимость газа или бензина, их расход для автомобиля на 100 км легко подсчитать отрицательный экономический эффект перехода автомобилей на водородное топливо. Скажем (Россия 2008), 10 центов за кВт·ч электроэнергии приводят к тому, что 1 м³ водорода приводят к цене 35,6 цента, а с учётом КПД разложения воды 40-45 центов, такое же количество кВт·ч от сжигания бензина стоит 12832,4кДж/42000кДж/0,7кг/л*80центов/л=34 цента по розничным ценам, тогда как для водорода мы высчитывали идеальный вариант, без учёта транспортировки, амортизации оборудования и т. д. Для метана с энергией сгорания около 39 МДж на м³ результат будет ниже в два-четыре раза из-за разницы в цене (1м³ для Украины стоит 179$, а для Европы 350$). То есть эквивалентное количество метана будет стоить 10-20 центов.

Однако не следует забывать того, что при сжигании водорода мы получаем чистую воду, из которой его и добыли. То есть имеем возобновляемый запасатель энергии без вреда для окружающей среды, в отличие от газа или бензина, которые являются первичными источниками энергии.

Php on line 377 Warning: require(http://www..php): failed to open stream: no suitable wrapper could be found in /hsphere/local/home/winexins/сайт/tab/vodorod.php on line 377 Fatal error: require(): Failed opening required "http://www..php" (include_path="..php on line 377

Химические свойства водорода

При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами.

Водород вступает в реакции с простыми и сложными веществами:

- Взаимодействие водорода с металлами приводит к образованию сложных веществ - гидридов, в химических формулах которых атом металла всегда стоит на первом месте:


При высокой температуре Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя белые кристаллические вещества - гидриды металлов (Li Н, Na Н, КН, СаН 2 и др.):

Н 2 + 2Li = 2LiH

Гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:

СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

- При взаимодействии водорода с неметаллами образуются летучие водородные соединения. В химической формуле летучего водородного соединения, атом водорода может стоять как на первом так и на втором месте, в зависимости от местонахождения в ПСХЭ (см. табличку в слайде):

1). С кислородом Водород образует воду:

Видео "Горение водорода"

2Н 2 + О 2 = 2Н 2 О + Q

При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом ) .

Видео "Взрыв гремучего газа"

Видео "Приготовление и взрыв гремучей смеси"

2). С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

3). С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях.

4). При нагревании Водород энергично реагирует с серой :

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром.

5). С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан)


- Водород вступает в реакцию замещения с оксидами металлов , при этом образуются в продуктах вода и восстанавливается металл. Водород - проявляет свойства восстановителя:


Водород используется для восстановления многих металлов , так как отнимает кислород у их оксидов:

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

Применение водорода

Видео "Применение водорода"

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

ТРЕНАЖЕРЫ

№2. Водород

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Составьте уравнения реакций взаимодействия водорода со следующими веществами: F 2 , Ca, Al 2 O 3 , оксидом ртути (II), оксидом вольфрама (VI). Назовите продукты реакции, укажите типы реакций.

Задание №2
Осуществите превращения по схеме:
H 2 O -> H 2 -> H 2 S -> SO 2

Задание №3.
Вычислите массу воды, которую можно получить при сжигании 8 г водорода?

Наиболее известным и наиболее изученным соединением кислорода является его оксид H 2 O – вода. Чистая вода представляет собой бесцветную прозрачную жидкость без запаха и вкуса. В толстом слое имеет голубовато-зеленоватый цвет.

Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

Из всех жидких и твердых веществ вода обладает наибольшей удельной теплоемкостью. Благодаря этому факту вода является аккумулятором теплоты в различных организмах.

При нормальном давлении температура плавления льда 0 0 С (273 0 К), температура кипения воды +100 0 С (373 0 К). Это аномально высокие значения. При Т 0 +4 0 С вода имеет небольшую плотность, равную 1 г/мл. Выше или ниже этой температуры плотность воды меньше 1 г/мл. Эта особенность отличает воду от всех других веществ, плотность которых с понижением t 0 увеличивается. При переходе воды их жидкого состояния в твердое состояние происходит увеличение объема: из каждых 92 объемов жидкой воды образуется 100 объемов льда. С увеличением объема плотность уменьшается, поэтому, будучи легче воды, лед всегда всплывает на поверхность.

Исследования строения воды показали, что молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород. Валентный угол равен 104, 27. Молекула воды полярна – электронная плотность смещена к атому кислорода. Такая полярная молекула может взаимодействовать с другой молекулой с образованием более сложных агрегатов как за счет взаимодействия диполей, так и путем образования водородных связей. Это явление получило название ассоциации воды. Ассоциация молекул воды в основном определяется образованием между ними водородных связей. Молекулярная масса воды в состоянии пара равна 18 и отвечает ее простейшей формуле – Н 2 О. В остальных случаях молекулярная масса воды в кратное число раз больше восемнадцати (18).

Полярность и малые размеры молекулы приводят к тому, что она обладает сильными гидратирующими свойствами.

Диэлектрическая проницаемость воды настолько велика (81), что она оказывает мощное ионизирующее действие на растворенные в ней вещества, вызывая диссоциацию кислот, солей и оснований.

Молекула воды способна присоединиться к различным ионам, образуя гидраты. Эти соединения характеризуются специфическим стрением, напоминая комплексные соединения.

Одним из важнейших продуктов присоединения является ион гидроксония – Н 3 О, который образуется вследствие присоединения иона Н + к неподеленной паре электронов атома кислорода.

Вследствие этого присоединения образующийся ион гидроксония приобретает заряд +1.

Н + + Н 2 О Н 3 О +

Такой процесс возможен в системах, где содержатся вещества, отщепляющие ион водорода.

Вода, как на холоде, так и при нагревании активно взаимодействует со многими металлами, стоящими в ряду активности до водорода. В этих реакциях образуются соответствующие им оксиды или гидроксиды и вытесняется водород.:

2 Fe + 3 HOH = Fe 2 O 3 + 3 H 2

2 Na + 2 HOH = 2 NaOH + H 2

Ca + 2 HOH = Ca (OH) 2 + H

Вода довольно активно присоединяется к основным и кислотным оксидам, образуя соответствующие гидроксиды:

CaO + H 2 O = Ca (OH) 2 – основание

P 2 O 5 + 3 H 2 O = 2 H 3 PO 4 – кислота

Вода, которая присоединена в этих случаях, называется конституционной (в отличие от кристаллизационной в кристаллогидратах).

Вода реагирует с галогенами, в этом случае образуется смесь кислот:

H 2 + HOH HCl + HClO

Наиболее важным свойством воды является ее растворяющая способность.

Вода – самый распространенный растворитель в природе и технике. Большинство химических реакций проводится в воде. Но, пожалуй, наибольшее значение имеют биологические и биохимические процессы, происходящие в растительном и животном организмах с участием белков, жиров, углеводов и других веществ в водной среде организма.

Второе соединение водорода с кислородом – пероксид водорода H 2 O 2 .

Структурная формула Н – О – О – Н, молекулярный вес – 34.

Латинское название Hydrogenii peroxydum.

Это вещество было открыто в 1818 году французским ученым Луи-Жаком Тенаром, который изучал действие различных минеральных кислот на бария пероксид (BaO 2). В природе пероксид водорода образуется в процессе окисления. Наиболее удобным и современным способом получения H 2 O 2 является электролитический способ, который и используется в промышленности. В качестве исходных веществ используют серную кислоту или аммония сульфат.

Современными физико-химическими методами установлено, что оба атома кислорода в пероксиде водорода связаны непосредственно друг с другом неполярной ковалентной связью. связи же между атомами водорода и кислорода (вследствие смещения общих электронов в сторону кислорода) полярны. Поэтому молекула H 2 O 2 также полярна. Между молекулами H 2 O 2 возникает водородная связь, что приводит к их ассоциации с энергией связи О – О, равной 210 кДж, это значительно меньше энергии связи Н – О (470 кДж).

Раствор перекиси водорода – прозрачная бесцветная жидкость, без запаха или со слабым своеобразным запахом, слабокислой реакции. Быстро разлагается под действием света, при нагревании, при соприкосновении с щелочью, окисляющими и восстанавливающими веществами, выделяя кислород. Происходит реакция: H 2 O 2 = H 2 O + O

Малая устойчивость молекул H 2 O 2 обусловлена непрочностью связи О – О.

Хранят его в посуде из темного стекла и в прохладном месте. При действии на кожу концентрированных растворов перекиси водорода образуются ожоги, причем обожженное место болит.

ПРИМЕНЕНИЕ: в медицине применяют 3 % раствор перекиси водорода как кровоостанавливающее средство, дезинфицирующее и дезодорирующее средство для промываний и полосканий при стоматите, ангине, гинекологических заболеваниях и др.

При соприкосновении с ферментом каталазой (из крови, гноя, тканей) действует атомарный кислород в момент выделения. Действие H 2 O 2 кратковременное. Ценность препарата заключается в том, что продукты его разложения безвредны для тканей.

ГИДРОПЕРИТ – комплексное соединение перекиси водорода с мочевиной. Содержание перекиси водорода составляет около 35 %. Применяют как антисептическое средство вместо перекиси водорода.

Одним из основных химических свойств H 2 O 2 является его окислительно-восстановительные свойства. Степень окисления кислорода в H 2 O 2 равна -1, т.е. имеет промежуточное значение между степенью окисления кислорода в воде (-2) и в молекулярном кислороде (0). Поэтому перекись водорода обладает свойствами как окислителя, так и восстановителя, т.е. проявляет окислительно-восстановительную двойственность. Следует отметить, что окислительные свойства H 2 O 2 выражены гораздо сильнее, чем восстановительные и проявляются они в кислой, щелочной и нейтральной средах. Например:

2 KI + H 2 SO 4 + H 2 O 2 = I 2 + K 2 SO 4 + 2 H 2 O

2 I - - 2ē → I 2 0 1 – в-ль

H 2 O 2 + 2 H + + 2ē → 2 H 2 O 1 – ок-ль

2 I - + H 2 O 2 + 2 H + → I 2 + 2 H 2 O

Под действием сильных окислителей H 2 O 2 проявляет восстановительные свойства:

2 KMnO 4 + 5 H 2 O 2 + 3 H 2 SO 4 = 2 MnSO 4 + 5 O 2 + K 2 SO 4 + 8 H 2 O

MnO 4 - + 8H + + 5ē → Mn +2 + 4 H 2 O 2 – ок-ль

H 2 O 2 - 2ē → O 2 + 2 H + 5 – в-ль

2 MnO 4 - + 5 H 2 O 2 + 16 H + → 2 Mn +2 + 8 H 2 O + 5 O 2 + 10 H +

Выводы:

1. Кислород -самый распространенный элементна Земле.

В природе кислород встречается в двух аллотропных видоизменениях: O 2 – дикислород или «обычный кислород» и О 3 – трикислород (озон).

2.Аллотропия – образование разных простых веществ одним элементом.

3.Аллотропные видоизменения кислорода: кислород и озон.

4.Соединения кислорода с водородом -вода и пероксид водорода .

5.Вода существует в трех агрегатных состояниях: в твердом – лед, жидком и газообразном – водяной пар.

6.При Т 0 +4 0 С вода имеет плотность, равную 1 г/мл.

7.Молекула воды построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований – водород.

8.Валентный угол равен 104, 27

9.Молекула воды полярна – электронная плотность смещена к атому кислорода.

12.Сера. Характеристика серы, исходя из ее положения в периодической системе, с точки зрения теории строения атома, возможные степени окисления, физические свойства, распространение в природе,биологическая роль, способы получения, химические свойства. . Применение серы и её соединений в медицине и народном хозяйстве.

СЕРА:

А) нахождение в природе

Б) биологическая роль

В) применение в медицине

Сера широко распространена в природе и встречается как в свободном состоянии (самородная сера), так и в виде соединений – FeSe (пирит), CuS, Ag 2 S, PbS, CaSO 4 и др. Входит в состав различных соединений, содержащихся в природных углях, нефтях и природных газах.

Сера принадлежит к числу элементов, имеющих важное значение для жизненных процессов, т.к. она входит в состав белковых веществ. Содержание серы в организме человека составляет 0, 25 %. Входит в состав аминокислот: цистеина, глютатиона, метионина и др.

Особенно много серы в белках волос, рогов, шерсти. Кроме того, сера является составной частью биологически активных веществ организма: витаминов и гормонов (н-р, инсулина).

В виде соединений сера обнаружена в нервной ткани, в хрящах, костях и в желчи. Она участвует в окислительно-восстановительных процессах организма.

При недостатке серы в организме наблюдается хрупкость и ломкость костей, выпадение волос.

Сера содержится в крыжовнике, винограде, яблоках, капусте, луке репчатом, ржи, горохе, ячмене, гречихе, пшенице.

Рекордсмены: горох 190, соя 244 %.

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:




Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:




Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром и йод вытесняют серу из растворов сульфидов и или сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.



Понравилась статья? Поделитесь с друзьями!