Хромосома строение. Интересные факты о хромосомах человека

Как хромосомы, строение и функции которых изучаются отраслью биологии, называемой цитология.

История открытия

Являющиеся основными компонентами ядра клетки, хромосомы были обнаружены в 19 веке сразу несколькими учеными. Российский биолог И. Д Чистяков изучал их процессе митоза немецкий анатом Вальдейер обнаружил их во время приготовления гистологических препаратов и назвал хромосомами, то есть окрашивающимися тельцами за быструю реакцию этих структур при взаимодействии с органическим красителем фуксином.

Флеминг обобщил научные факты о том, какую функцию выполняют хромосомы в клетках, имеющих оформленное ядро.

Внешнее строение хромосом

Эти микроскопические образования находятся в ядрах — важнейших органеллах клетки, и служат местом хранения и передачи данного организма. Хромосомы содержат особое вещество — хроматин. Оно представляет собой конгломерат из тонких нитей — фибрилл и гранул. С химической точки зрения, это соединение линейных (их около 40 %) со специфическими белками-гистонами.

Комплексы, в состав которых входит 8 молекул пептидов и нити ДНК, закрученные на белковых глобулах, как на катушках, называются нуклеосомами. Участок дезоксирибонуклеиновой кислоты образует 1,75 оборотов вокруг стержневой части и имеет вид эллипсоида приблизительно 10 нанометров в длину и 5—6 в ширину. Присутствие этих структур (хромосом) в ядре служит систематическим признаком клеток эукариотических организмов. Именно в виде нуклеосом хромосомы выполняют функцию сохранения и передачи всех генетических признаков.

Зависимость строения хромосомы от фазы клеточного цикла

Если клетка находится в состоянии интерфазы, которая характеризуется ее ростом и интенсивным обменом веществ, но отсутствием деления, то хромосомы в ядре имеют вид тонких деспирализованных нитей — хромонем. Обычно они переплетены между собой, и визуально разделить их на отдельные структуры невозможно. В момент наступления клеточного деления, которое у соматических клеток называется митозом, а у половых — мейозом, хромосомы начинают спирализоваться и утолщаться, становясь хорошо различимыми в микроскопе.

Уровни организации хромосом

Единицы наследственности — хромосомы, детально изучает наука генетика. Ученые установили, что нуклеосомная нить, содержащая ДНК и белки-гистоны образуют спираль первого порядка. Плотная упаковка хроматина происходит вследствие образования структуры более высокого порядка — соленоида. Он самоорганизуется и уплотняется в еще более сложную суперспираль. Все вышеперечисленные уровни организации хромосомы проходят в период подготовки клетки к делению.

Именно в митотическом цикле структурные единицы наследственности, состоящие из генов, содержащих ДНК, укорачиваются и утолщаются по сравнению с нитевидными хромонемами периода интерфазы приблизительно в 19 тыс. раз. В таком компактном виде хромосомы которых заключаются в передаче наследственных признаков организма, становятся готовыми к делению соматических или половых клеток.

Морфология хромосом

Функции хромосом можно объяснить, изучив их морфологические особенности, которые наилучшим образом прослеживаются в митотическом цикле. Доказано, что еще в синтетической стадии интерфазы масса ДНК в клетке удваивается, так как каждая из дочерних клеток, образовавшихся в результате деления, должна иметь такой же объем наследственной информации, как и исходная материнская. Это достигается в результате процесса редупликации — самоудвоения ДНК, происходящего при участии фермента ДНК-полимеразы.

В цитологических препаратах, приготовленных в момент метафазы митоза, в растительных или животных клетках под микроскопом хорошо заметно, что каждая хромосома состоит из двух частей, называемых хроматидами. В дальнейших фазах митоза — анафазе и, особенно, телофазе — происходит их полное разделение, в результате чего каждая хроматида становится отдельной хромосомой. Она содержит непрерывно уплотненную молекулу ДНК, а также липиды, кислые белки и РНК. Из минеральных веществ в ней присутствуют ионы магния и кальция.

Вспомогательные структурные элементы хромосомы

Чтобы функции хромосом в клетке осуществлялись в полной мере, эти единицы наследственности имеют специальное приспособление — первичную перетяжку (центромеру), которая никогда не спирализуется. Именно она разделяет хромосому на две части, называемые плечами. В зависимости от расположения центромеры, генетики классифицируют хромосомы на равноплечие (метацентричные), неравноплечие (субметацентричные) и акроцентричные. На первичных перетяжках формируются особые образования — кинетохоры, представляющие собой дискообразные белковые глобулы, расположенные по обоим бокам центромеры. Сами кинетохоры состоят из двух участков: внешние контактируют с микрофиламентами (нитями веретена деления), прикрепляясь к ним.

Благодаря сокращению нитей (микрофиламентов), осуществляется строго упорядоченное распределение хроматид, входящих в состав хромосомы, между дочерними клетками. Некоторые хромосомы имеют одну или несколько вторичных перетяжек, которые не участвуют в митозе, так как к ним не могут присоединяться нити веретена деления, но именно эти участки (вторичные перетяжки) обеспечивают контроль над синтезом ядрышек — органелл, которые отвечают за формирование рибосом.

Что такое кариотип

Известные ученые-генетики Морган, Н. Кольцов, Сэттон в начале 20-го столетия скрупулёзно изучили хромосомы, строение и функции их в соматических и половых клетках — гаметах. Ими было установлено, что каждой клетке всех биологических видов свойственно определенное количество хромосом, имеющих специфическую форму и размеры. Было предложено всю совокупность хромосом в ядре соматической клетки назвать кариотипом.

В популярной литературе кариотип часто отождествляют с хромосомным набором. На самом деле это не идентичные понятия. Например, у человека кариотип составляет 46 хромосом в ядрах соматических клеток и обозначается общей формулой 2n. Но такие клетки, как например гепатоциты (клетки печени) имеют несколько ядер, их хромосомный набор обозначается как 2n*2=4n или 2n*4=8n. То есть количество хромосом в таких клетках будет больше чем 46, хотя кариотип гепатоцитов составляет 2n, то есть 46 хромосом.

Число хромосом в половых клетках всегда в два раза меньше, чем в соматических (в клетках тела), такой набор называется гаплоидным и обозначается как n. Все остальные клетки тела имеют набор 2n, который называется диплоидным.

Хромосомная теория наследственности Моргана

Американский генетик Морган открыл закон сцепленного наследования генов, проводя опыты по гибридизации плодовых мушек-дрозофил. Благодаря его исследованиям, были изучены функции хромосом половых клеток. Морган доказал, что гены, расположенные в соседних локусах одной и той же хромосомы, наследуются преимущественно вместе, то есть сцепленно. Если же гены находятся в хромосоме далеко друг от друга, то между сестринскими хромосомами возможен кроссинговер — обмен участками.

Благодаря исследованиям Моргана, были созданы генетические карты, с помощью которых изучают функции хромосом и широко используют их в генетических консультациях для решения вопросов о возможных патологиях хромосом или генов, приводящих к наследственным заболеваниям у человека. Важность выводов, сделанных ученым, сложно переоценить.

В данной статье нами были рассмотрены строение и функции хромосом, которые они выполняют в клетке.

Хромосомы - самовоспроизводящиеся структуры клеточного ядра. Как у прокариотических, так и у эукариотических организмов гены располагаются группами на отдельных молекулах ДНК, которые при участии белков и других макромолекул клеток организуются в хромосомы. Зрелые клетки зародышевой линии (гаметы - яйцеклетки, спермии) многоклеточных организмов содержат по одному (гаплоидному) набору хромосом организма.

После того как к полюсам отойдут полные наборы хроматид, их называют хромосомами . Хромосомы - это структуры в ядре клеток эукариот, которые пространственно и функционально организовывают ДНК в геноме индивидуумов.

Химический состав хромосом. Хромосома представляет собой дезоксирибонуклеопротеид (ДНП), то есть комплекс, образованный из одной непрерывной двухцепочечной молекулы ДНК и белков (гистонов и негистонов). В состав хромосом входят также липиды и минеральные вещества (например, ионы Ca 2+ , Mg 2+).

Каждая хромосома – сложное надмолекулярное образование , сформированное в результате компактизации хроматина.

Строение хромосом. В большинстве случаев хромосомы хорошо видны лишь в делящихся клетках начиная со стадии метафазы, когда их можно видеть даже в световой микроскоп. В этот период удается определить количество хромосом в ядре, их размеры, форму и строение. Именно такие хромосомы называют метафазными. Интерфазные хромосомы часто называют просто хроматином .

Число хромосом обычно постоянно для всех клеток особи любого вида растений, животных и человека. Но у разных видов количество хромосом неодинаково (от двух до нескольких сотен). Наименьшее число хромосом имеет лошадиная аскарида, наибольшее встречается у простейших и папоротников, для которых характерны высокие уровни полиплоидии. Обычно диплоидные наборы содержат от одного до нескольких десятков хромосом.

Количество хромосом в ядре не связано с уровнем эволюционного развития живых организмов. У многих примитивных форм оно велико, например, в ядрах некоторых видов простейших содержатся сотни хромосом, тогда как у шимпанзе их всего только 48.

Каждая хромосома, образованная одной молекулой ДНК, представляет собой удлиненную палочковидную структуру – хроматиду , имеющую два «плеча», разделенных первичной перетяжкой, или центромерой. Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНК, уложенную в виде спирали.

Центромера – это небольшое фибриллярное тельце, осуществляющее первичную перетяжку хромосомы. Она является важнейшей частью хромосомы, так как определяет ее движение. Центромеру, к которой прикрепляются нити веретена во время деления (при митозе и мейозе), называют кинетохором (от греч. kinetos – подвижный и choros – место). Он контролирует движение расходящихся хромосом при делении клетки. Хромосома, лишенная центромеры, не способна совершать упорядоченное движение и может потеряться.

Обычно центромера хромосомы занимает определенное место, и это является одним из видовых признаков, по которому различают хромосомы. Изменение положения центромеры в той или иной хромосоме служит показателем хромосомных перестроек. Плечи хромосом оканчиваются участками, не способными соединяться с другими хромосомами или их фрагментами. Эти концевые участки хромосом называют теломерами . Теломеры предохраняют концы хромосом от слипания и тем самым обеспечивают сохранение их целостности. За открытие механизма защиты хромосом теломерами и ферментом теломеразой американские ученые Э. Блекберн, К. Грейдер и Д. Шостак в 2009 году были удостоены Нобелевской премии в области медицины и физиологии. Концы хромосом нередко обогащены гетерохроматином.


В зависимости от расположения центромеры определяют три основных вида хромосом: равноплечие (плечи равной длины), неравноплечие (с плечами разной длины) и палочковидные (с одним, очень длинным и другим, очень коротким, едва заметным плечом). Некоторые хромосомы имеют не только одну центромеру, но еще и вторичную перетяжку, не связанную с прикреплением нити веретена при делении. Этот участок – ядрышковый организатор , выполняющий функцию синтеза ядрышка в ядре.

Репликация хромосом

Важным свойством хромосом является их способность к удвоению (самовоспроизведению). Обычно удвоение хромосом предшествует делению клетки. В основе удвоения хромосом лежит процесс репликации (от лат. replicatio – повторение) макромолекул ДНК, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению. Удвоение хромосом – это сложный процесс, включающий в себя не только репликацию гигантских молекул ДНК, но также синтез связанных с ДНК хромосомных белков. Конечным этапом является упаковка ДНК и белков в особые комплексы, образующие хромосому. В результате репликации вместо одной материнской хромосомы появляются две идентичные ей дочерние хромосомы.

Функция хромосом заключается:

  • в хранении наследственной информации. Хромосомы являются носителями генетической информации;
  • передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК;
  • реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК и, соответственно, того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.

Таким образом, хромосомы с заключенными в них генами обусловливают непрерывный ряд воспроизведения.

Хромосомы осуществляют сложную координацию и регуляцию процессов в клетке вследствие заключенной в них генетической информации, обеспечивающей синтез первичной структуры белков-ферментов.

У каждого вида в клетках находится определенное количество хромосом. Они являются носителями генов, определяющих наследственные свойства клеток и организмов вида. Ген – это участок молекулы ДНК хромосомы, на котором синтезируются различные молекулы РНК (трансляторы генетической информации).

В соматических, то есть телесных, клетках обычно содержится двойной, или диплоидный, набор хромосом. Он состоит из пар (2n) практически одинаковых по форме и размеру хромосом. Такие парные, похожие друг на друга хромосомные наборы называют гомологичными (от греч. homos – равный, одинаковый, общий). Они происходят от двух организмов; один набор от материнского, а другой – от отцовского. В таком парном наборе хромосом заключена вся генетическая информация клетки и организма (особи). Гомологичные хромосомы одинаковы по форме, длине, строению, расположению центромеры и несут одни и те же гены, имеющие одинаковую локализацию. Они содержат одинаковый набор генов, хотя и могут различаться их аллелями. Таким образом, гомологичные хромосомы содержат очень близкую, но не идентичную наследственную информацию.

Совокупность признаков хромосом (их число, размеры, форма и детали микроскопического строения) в клетках тела организма того или иного вида называют кариотипом. Форма хромосом, их число, размеры, расположение центромеры, наличие вторичных перетяжек всегда специфичны для каждого вида, по ним можно сопоставлять родство организмов и устанавливать их принадлежность к тому или иному виду.

Постоянство кариотипа, свойственное каждому виду, выработалось в процессе его эволюции и обусловлено закономерностями митоза и мейоза. Однако в процессе существования вида в его кариотипе вследствие мутаций могут произойти изменения хромосом. Некоторые мутации существенно изменяют наследственные качества клетки и организма в целом.

Постоянные характеристики хромосомного набора – количество и морфологические особенности хромосом, определяемые главным образом расположением центромер, наличием вторичных перетяжек, чередованием эухроматиновых и гетерохроматиновых участков и пр., позволяют идентифицировать виды. Поэтому кариотип называют «паспортом» вида .

Хромосома представляет собой вытянутую, структурированную совокупность генов, которая несет информацию о наследственности и образована из конденсированного . Хроматин состоит из ДНК и белков, которые плотно упакованы вместе для образования волокон хроматина. Конденсированные волокна хроматина образуют хромосомы. Хромосомы расположены в наших . Наборы хромосом соединяются вместе (один от матери и один от отца) и известны как .

Схема строения хромосомы на этапе метафазы

Недублированные хромосомы являются одноцепочечными и состоят из области , которая соединяет плечи хромосомы. Короткое плече обозначают буквой p , а длинное буквой q . Конечные области хромосом называются теломерами, которые состоят из повторяющихся некодирующих последовательностей ДНК, укорачивающихся во время деления клетки.

Дублирование хромосом

Хромосомное дублирование происходит до процессов деления посредством или . Процессы репликации ДНК позволяют сохранить правильное число хромосом после деления родительской клетки. Дуплицированная хромосома состоит из двух идентичных хромосом, называемых , которые связаны в области центромера. Сестринские остаются вместе до конца процесса деления, где они разделяются волокнами веретена и заключаются в . Как только парные хроматиды отделены друг от друга, каждая из них становится .

Хромосомы и деление клеток

Одним из наиболее важных элементов успешного деления клеток является правильное распределение хромосом. В митозе это означает, что хромосомы должны распределяться между двумя дочерними клетками. В мейозе хромосомы распределяются между четырьмя дочерними клетками. Веретено деления отвечает за перемещение хромосом во время деления клеток.

Такой тип движения клеток связан с взаимодействием между микротрубочками веретена и моторными белками, работающими вместе для разделения хромосом. Жизненно важно, чтобы в дочерних клетках сохранялось правильное количество хромосом. Ошибки, возникающие при делении клеток, способны приводить к неуравновешенными хромосомным числами, имеющим слишком много или недостаточно хромосом. Это отклонение известено как анеуплоидия и может происходит в аутосомных хромосомах во время митоза или в половых хромосомах во время мейоза. Аномалии в хромосомных числах могут приводить к врожденным дефектам, нарушениям развития и смерти.

Хромосомы и производство белков

Производство белка является жизненно важным клеточным процессом, который зависит от ДНК и хромосом. ДНК содержит сегменты, называемые генами, кодирующими белки. Во время производства белка ДНК разматывается, а его кодирующие сегменты транскрибируются в транскрипт РНК. Затем транскрипт РНК транслируется с образованием белка.

Мутация хромосом

Мутации хромосом - это изменения, которые происходят в хромосомах и обычно являются результатом ошибок, происходящих во время мейоза или при воздействии мутагенов, таких как химические вещества или радиация.

Поломка и дублирование хромосом может привести к нескольким типам структурных изменений хромосомы, которые обычно вредны для человека. Эти типы мутаций приводят к хромосомам с дополнительными генами, находящимися в неправильной последовательности. Мутации также могут продуцировать клетки с неправильным числом хромосом. Аномальные числа хромосом обычно возникают в результате нерасхождения или нарушения гомологичных хромосом во время мейоза.

Лекция №3

Тема: Организация потока генетической информации

План лекции

1. Структура и функции клеточного ядра.

2. Хромосомы: структура и классификация.

3. Клеточный и митотический циклы.

4. Митоз, мейоз: цитологическая и цитогенетическая характеристика, значение.

Структура и функции клеточного ядра

Основная генетическая информация заключена в ядре клеток.

Клеточное ядро (лат. – nucleus ; греч. – karyon ) было описано в 1831г. Робертом Броуном. Форма ядра зависит от формы и функций клетки. Размеры ядер изменяются в зависимости от метаболической активности клеток.

Оболочка интерфазного ядра (кариолемма ) состоит из наружной и внутренней элементарных мембран. Между ними находится перинуклеарное пространство . В мембранах имеются отверстия – поры. Между краями ядерной поры располагаются белковые молекулы, которые образуют поровые комплексы. Отверстие пор закрыто тонкой пленкой. При активных процессах обмена веществ в клетке большинство пор открыто. Через них идет поток веществ – из цитоплазмы в ядро и обратно. Количество пор у одного ядра

Рис. Схема строения клеточного ядра

1 и 2 – наружная и внутренняя мембраны ядерной оболочки, 3

– ядерная пора, 4 – ядрышко, 5 – хроматин, 6 – ядерный сок

достигает 3-4 тысяч. Наружная ядерная мембрана соединяется с каналами эндоплазматической сети. На ней обычно располагаются рибосомы . Белки внутренней поверхности ядерной оболочки формируют ядерную пластинку . Она поддерживает постоянной форму ядра, к ней прикрепляются хромосомы.

Ядерный сок – кариолимфа , коллоидный раствор в состоянии геля, который содержит белки, липиды, углеводы, РНК, нуклеотиды, ферменты. Ядрышко – непостоянный компонент ядра. Оно исчезает в начале клеточного деления и восстанавливается в конце его. Химический состав ядрышек: белок (~90%), РНК (~6%), липиды, ферменты. Ядрышки образуются в области вторичных перетяжек спутничных хромосом. Функция ядрышек: сборка субъединиц рибосом.

Хроматин ядра – это интерфазные хромосомы. Они содержат ДНК, белки-гистоны и РНК в соотношении 1:1,3:0,2. ДНК в соединении с белком образует дезоксирибонуклеопротеин (ДНП). При митотическом делении ядра ДНП спирализуется и образует хромосомы.

Функции клеточного ядра:

1) хранит наследственную информацию клетки;

2) участвует в делении (размножении) клетки;

3) регулирует процессы обмена веществ в клетке.

Хромосомы: структура и классификация

Хромосомы (греч. – chromo – цвет, soma – тело) – это спирализованный хроматин. Их длина 0,2 – 5,0 мкм, диаметр 0,2 – 2 мкм.

Рис. Типы хромосом

Метафазная хромосома состоит из двух хроматид , которые соединяются центромерой (первичной перетяжкой ). Она делит хромосому на два плеча . Отдельные хромосомы имеют вторичные перетяжки . Участок, который они отделяют, называется спутником , а такие хромосомы – спутничными. Концевые участки хромосом называются теломеры . В каждую хроматиду входит одна непрерывная молекула ДНК в соединении с белками-гистонами. Интенсивно окрашивающиеся участки хромосом – это участки сильной спирализации (гетерохроматин ). Более светлые участки – участки слабой спирализации (эухроматин ).

Типы хромосом выделяют по расположению центромеры (рис.).

1. Метацентрические хромосомы – центромера расположена посередине, и плечи имеют одинаковую длину. Участок плеча около центромеры называется проксимальным, противоположный – дистальным.

2. Субметацентрические хромосомы – центромера смещена от центра и плечи имеют разную длину.

3. Акроцентрические хромосомы – центромера сильно смещена от центра и одно плечо очень короткое, второе плечо очень длинное.

В клетках слюнных желез насекомых (мух дрозофил) встречаются гигантские, политенные хромосомы (многонитчатые хромосомы).

Для хромосом всех организмов существует 4 правила:

1. Правило постоянства числа хромосом . В норме организмы определенных видов имеют постоянное, характерное для вида число хромосом. Например: у человека 46, у собаки 78, у мухи дрозофилы 8.

2. Парность хромосом . В диплоидном наборе в норме каждая хромосома имеет парную хромосому – одинаковую по форме и по величине.

3. Индивидуальность хромосом . Хромосомы разных пар отличаются по форме, строению и величине.

4. Непрерывность хромосом . При удвоении генетического материала хромосома образуется от хромосомы.

Набор хромосом соматической клетки, характерный для организма данного вида, называется кариотипом .

Классификацию хромосом проводят по разным признакам.

1. Хромосомы, одинаковые в клетках мужского и женского организмов,называются аутосомами . У человека в кариотипе 22 пары аутосом. Хромосомы, различные в клетках мужского и женского организмов, называются гетерохромосомами, или половыми хромосомами . У мужчины это Х и Y хромосомы, у женщины – Х и Х.

2. Расположение хромосом по убывающей величине называется идиограммой . Это систематизированный кариотип. Хромосомы располагаются парами (гомологичные хромосомы). Первая пара – самые большие, 22-я пара – маленькие и 23-я пара – половые хромосомы.

3. В 1960г. была предложена Денверская классификация хромосом. Она строится на основании их формы, размеров, положения центромеры, наличия вторичных перетяжек и спутников. Важным показателем в этой классификации является центромерный индекс (ЦИ). Это отношение длины короткого плеча хромосомы ко всей ее длине, выраженное в процентах. Все хромосомы разделены на 7 групп. Группы обозначаются латинскими буквами от А до G.

Группа А включает 1 – 3 пары хромосом. Это большие метацентрические и субметацентрические хромосомы. Их ЦИ 38-49%.

Группа В . 4-я и 5-я пары – большие метацентрические хромосомы. ЦИ 24-30%.

Группа С . Пары хромосом 6 – 12: средней величины, субметацентрические. ЦИ 27-35%. В эту группу входит и Х-хромосома.

Группа D . 13 – 15-я пары хромосом. Хромосомы акроцентрические. ЦИ около 15%.

Группа Е . Пары хромосом 16 – 18. Сравнительно короткие, метацентрические или субметацентрические. ЦИ 26-40%.

Группа F . 19 – 20-я пары. Короткие, субметацентрические хромосомы. ЦИ 36-46%.

Группа G . 21-22-я пары. Маленькие, акроцентрические хромосомы. ЦИ 13-33%. К этой группе относится и Y-хромосома.

4. Парижская классификация хромосом человека создана в 1971 году. С помощью этой классификации можно определять локализацию генов в определенной паре хромосом. Используя специальные методы окраски, в каждой хромосоме выявляют характерный порядок чередования темных и светлых полос (сегментов). Сегменты обозначают по названию методов, которые их выявляют: Q – сегменты – после окрашивания акрихин-ипритом; G – сегменты – окрашивание красителем Гимза; R – сегменты – окрашивание после тепловой денатурации и другие. Короткое плечо хромосомы обозначают буквой p, длинное – буквой q. Каждое плечо хромосомы делят на районы и обозначают цифрами от центромеры к теломеру. Полосы внутри районов нумеруют по порядку от центромеры. Например, расположение гена эстеразы D – 13p14 – четвертая полоса первого района короткого плеча 13-й хромосомы.

Функция хромосом: хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.


Похожая информация.




Понравилась статья? Поделитесь с друзьями!