Хромосомная теория наследственности. Закон Моргана

Тема 32. Хромосомная теория наследственности. Закон Моргана

Введение
1. Т. Г. Морган - крупнейший генетик XX в.
2. Притяжение и отталкивание
3. Хромосомная теория наследственности
4. Взаимное расположение генов
5. Карты групп сцепления, локализация генов в хромосомах
6. Цитологические карты хромосом
7. Заключение
Список литературы

1. ВВЕДЕНИЕ

Третий закон Менделя - правило независимого наследования признаков - имеет существенные ограничения.
В опытах самого Менделя и в первых опытах, проведенных после вторичного открытия законов Менделя, в изучение были включены гены, расположенные в разных хромосомах, и вследствие этого не было обнаружено никаких расхождений с третьим законом Менделя. Несколько позднее найдены факты, противоречащие этому закону. Постепенное накопление и изучение их привело к установлению четвертого закона наследственности, получившего название закона Моргана (в честь американского генетика Томаса Гента Моргана, который первым сформулировал и обосновал его), или правила сцепления.
В 1911 г. в статье «Свободное расщепление в противоположность притяжению в менделевской наследственности» Морган писал: «Вместо свободного расщепления в менделевском смысле мы нашли «ассоциацию факторов», локализованных в хромосомах близко друг от друга. Цитология дала механизм, требуемый экспериментальными данными.
В этих словах кратко сформулированы основные положения хромосомной теории наследственности, разработанной Т. Г. Морганом.

1. Т. Г. МОРГАН - КРУПНЕЙШИЙ ГЕНЕТИК ХХ в.

Томас Гент Морган родился 25 сентября 1866 г. в штате Кентукки (США). В 1886 г. он окончил университет этого штата. В 1890 г. Т. Морган получил степень доктора философии, а в следующем году стал профессором женского колледжа в Пенсильвании. Главный период его жизни связан с Колумбийским университетом, где он с 1904 г. в течение 25 лет занимал пост заведующего кафедрой экспериментальной зоологии. В 1928 г. его пригласили руководить специально для него построенной биологической лабораторией в Калифорнийском технологическом институте, в городке близ Лос-Анджелеса, где он работал до самой смерти.
Первые исследования Т. Моргана посвящены вопросам экспериментальной эмбриологии.
В 1902 г. молодой американский цитолог Уолтер Сеттон (1877-1916), работавший в лаборатории Э. Вильсона (1856-1939), высказал предположение, что своеобразные явления, характеризующие поведение хромосом при оплодотворении, представляют собой, по всей вероятности, механизм менделевских закономерностей. Т. Морган был хорошо знаком и с самим Э. Вильсоном, и с работами его лаборатории, и поэтому, когда в 1908 г. он установил у самцов филоксеры наличие двух сортов сперматозоидов, один из которых обладал дополнительной хромосомой, сразу же возникло предположение о связи признаков пола с привнесением соответствующих хромосом. Так Т. Морган перешел к проблемам генетики. У него возникло предположение, что не только пол связан с хромосомами, но, быть может, и другие наследственные задатки локализованы в них.
Скромный бюджет университетской лаборатории заставил Т. Моргана заняться поисками более подходящего объекта для опытов по изучению наследственности. От мышей и крыс он переходит к плодовой мушке дрозофиле, выбор которой оказался чрезвычайно удачным. На этом объекте сосредоточилась работа школы Т. Моргана, а затем большинства других генетических научных учреждений. Крупнейшие открытия в генетике 20-30-х гг. ХХ в. связаны с дрозофилой.
В 1910 г. была опубликована первая генетическая работа Т. Моргана «Ограниченная полом наследственность у дрозофилы», посвященная описанию мутации белоглазости. Последующая, поистине гигантская работа Т. Моргана и его сотрудников позволила увязать в единое целое данные цитологии и генетики и завершилась созданием хромосомной теории наследственности. Капитальные труды Т. Моргана «Структурные основы наследственности», «Теория гена», «Экспериментальные основы эволюции» и другие знаменуют собой поступательное развитие генетической науки.
Среди биологов ХХ в. Т. Морган выделяется как блестящий генетик-экспериментатор и как исследователь широкого круга вопросов.
В 1931 г. Т. Морган был избран почетным членом Академии наук СССР, в 1933 г. ему была присуждена Нобелевская премия.

2. ПРИТЯЖЕНИЕ И ОТТАЛКИВАНИЕ

Впервые отклонение от правила независимого наследования признаков было замечено Бэтсоном и Пеннетом в 1906 г. при изучении характера наследования окраски цветков и формы пыльцы у душистого горошка. У душистого горошка фиолетовая окраска цветков (контролируемая геном В) доминирует над красной (зависящей от гена в), а продолговатая форма зрелой пыльцы («длинная пыльца»), связанная с наличием 3 пор, которую контролирует ген L, доминирует над «округлой» пыльцой с 2 порами, образование которой контролирует ген l.
При скрещивании пурпурного душистого горошка с длинной пыльцой и красного с округлой пыльцой все растения первого поколения имеют пурпуровые цветки и длинную пыльцу.
Во втором поколении среди 6952 изученных растений было найдено 4831 растение с пурпуровыми цветками и длинной пыльцой, 390 с пурпуровыми цветками и округлой пыльцой, 393 с красными цветками и длинной пыльцой и 1338 с красными цветками и круглой пыльцой.
Это соотношение хорошо соответствует расщеплению, которое ожидается в том случае, если при образовании гамет первого поколения гены В и L встречаются в 7 раз чаще в тех сочетаниях, в которых они находились у родительских форм (ВL и bl), чем в новых сочетаниях (Вl и bL) (табл. 1).
Создается впечатление, что гены В и L, а также b и l притягиваются друг к другу и только с трудом могут быть отделены один от другого. Такое поведение генов было названо притяжением генов. Предположение о том, что гаметы с генами В и L в таких сочетаниях, в каких они были представлены у родительских форм, встречаются в 7 раз чаще, чем гаметы с новым сочетанием (в данном случае Вl и bL), получило прямое подтверждение в результатах так называемых анализирующих скрещиваний.
При скрещивании гибридов первого поколения (F1) (генотип BbLl) c рецессивным родителем (bbll) было получено расщепление: 50 растений с пурпуровыми цветами и длинной пыльцой, 7 растений с пурпуровыми цветками и округлой пыльцой, 8 растений с красными цветками и длинной пыльцой и 47 растений с красными цветками и округлой пыльцой, что очень хорошо соответствует ожидаемому соотношению: 7 гамет со старыми сочетаниями генов к 1 гамете с новыми сочетаниями.
В тех скрещиваниях, где один из родителей имел генотип BBll, а второй генотип bbLL, расщепление во втором поколении имело совсем другой характер. В одном из таких скрещиваний в F2 было найдено 226 растений с пурпуровыми цветками и длинной пыльцой, 95 с пурпуровыми цветками и округлой пыльцой, 97 с красными цветками и длинной пыльцой и одно растение с красными цветками и округлой пыльцой. В этом случае создается впечатление, что гены B и L отталкиваются друг от друга. Такое поведение наследственных факторов было названо отталкиванием генов.
Поскольку притяжение и отталкивание генов встречалось очень редко, то оно считалось какой-то аномалией и своеобразным генетическим курьезом.
Несколько позднее у душистого горошка было обнаружено еще несколько случаев притяжения и отталкивания (форма цветка и окраска листовой пазухи, окраска цветка и форма паруса цветка и некоторые другие пары признаков), но это не изменило общей оценки явления притяжения и отталкивания как аномалии.
Однако оценка этого явления резко изменилась после того, как в 1910-1911 гг. Т. Морган и его ученики обнаружили многочисленные случаи притяжения и отталкивания у плодовой мушки дрозофилы, очень благоприятного объекта для генетических исследований: культивирование ее стоит дешево и может осуществляться в лабораторных условиях в очень широких масштабах, срок жизни невелик и за один год можно получить несколько десятков поколений, контролируемые скрещивания легко осуществимы, имеется всего 4 пары хромосом, в том числе пара хорошо отличимых друг от друга половых.
Благодаря этому Морган и его сотрудники довольно скоро обнаружили большое количество мутаций наследственных факторов, определяющих хорошо заметные и удобные для изучения признаки, и смогли провести многочисленные скрещивания для изучения характера наследования этих признаков. При этом выяснилось, что многие гены у мушки дрозофилы наследуются не независимо друг от друга, а взаимно притягиваются или отталкиваются, причем гены, показывающие такое взаимодействие, оказалось возможным подразделить на несколько групп, в пределах которых все гены показывали более или менее сильно выраженное взаимное притяжение или отталкивание.
На основании анализа результатов этих исследований Т. Г. Морган высказал предположение, что притяжение имеет место между неаллеломорфными генами, расположенными в одной хромосоме, и сохраняется до тех пор, пока эти гены не будут отделены друг от друга в результате разрыва хромосом во время редукционного деления, а отталкивание имеет место в тех случаях, когда изучаемые гены расположены в разных хромосомах одной и той же пары гомологичных хромосом
Отсюда следует, что притяжение и отталкивание генов - различные стороны одного процесса, материальной основой которого является различное расположение генов в хромосомах. Поэтому Морган предложил отказаться от двух отдельных понятий «притяжение» и «отталкивание» генов и заменить его одним общим понятием «сцепление генов», считая, что оно зависит от их расположения в пределах одной хромосомы в линейном порядке.

3. ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ

При дальнейшем изучении сцепления генов вскоре было установлено, что число групп сцепления у дрозофилы (4 группы) соответствует гаплоидному числу хромосом у этой мухи, и все достаточно подробно изученные гены были распределены по этим 4 группам сцепления. Первоначально взаимное расположение генов в пределах хромосомы оставалось неизвестным, но позднее была разработана методика для определения порядка расположения генов, входящих в одну группу сцепления, основанная на количественном определении силы сцепления между ними.
Количественное определение силы сцепления генов основано на следующих теоретических предпосылках. Если два гена А и В у диплоидного организма расположены в одной хромосоме, а в гомологичной ей другой хромосоме расположены рецессивные аллеломорфы этих генов а и в, то отделиться друг от друга и вступить в новые сочетания со своими рецессивными аллеломорфами гены А и В могут только в том случае, если хромосома, в которой они расположены, будет разорвана на участке между этими генами и в месте разрыва произойдет соединение между участками этой хромосомы и ее гомолога.
Такие разрывы и новые сочетания участков хромосом действительно происходят при конъюгации гомологичных хромосом во время редукционного деления. Но при этом обмены участками обычно происходят не между всеми 4 хроматидами, из которых состоят хромосомы бивалентов, а только между двумя из этих 4 хроматид. Поэтому хромосомы, образующиеся в результате I деления мейоза, при таких обменах состоят из двух неодинаковых хроматид - неизмененной и реконструированной в результате обмена. Во II делении мейоза эти неодинаковые хроматиды расходятся к противоположным полюсам, и благодаря этому гаплоидные клетки, возникающие в результате редукционного деления (споры или гаметы), получают хромосомы, состоящие из одинаковых хроматид, но при этом только половине гаплоидных клеток достаются реконструированные хромосомы, а вторая половина получает неизмененные.
Такой обмен участками хромосом называется кроссинговером. При прочих равных условиях кроссинговер между двумя генами, расположенными в одной хромосоме, происходит тем реже, чем ближе друг к другу они расположены. Частота кроссинговера между генами пропорциональна расстоянию между ними.
Определение частоты кроссинговера обычно производится при помощи так называемых анализирующих скрещиваний (скрещивание гибридов F1 с рецессивным родителем), хотя для этой цели можно использовать и F2, получаемое от самоопыления гибридов F1 или скрещивания гибридов F1 между собой.
Можно рассмотреть такое определение частоты кроссинговера на примере силы сцепления между генами С и S у кукурузы. Ген С определяет образование окрашенного эндосперма (окрашенных семян), а его рецессивный аллель с обусловливает неокрашенный эндосперм. Ген S вызывает образование гладкого эндосперма, а его рецессивный аллель s определяет образование морщинистого эндосперма. Гены С и S расположены в одной хромосоме и довольно сильно сцеплены друг с другом. В одном из опытов, проведенных для количественного определения силы сцепления этих генов, были получены следующие результаты.
Растение с окрашенными гладкими семенами, гомозиготное по генам С и S и имевшее генотип ССSS (доминантный родитель), было скрещено с растением с неокрашенными морщинистыми семенами с генотипом ссss (рецессивный родитель). Гибриды первого поколения F1 были вновь скрещены с рецессивным родителем (анализирующее скрещивание). Таким образом было получено 8368 семян F2, у которых по окраске и морщинистости было обнаружено следующее расщепление: 4032 окрашенных гладких семени; 149 окрашенных морщинистых; 152 неокрашенных гладких; 4035 неокрашенных морщинистых.
Если бы при образовании макро- и микроспор у гибридов F1 гены С и S распределялись независимо друг от друга, то в анализирующем скрещивании все эти четыре группы семян должны быть представлены в одинаковом количестве. Но этого нет, т. к. гены С и S расположены в одной хромосоме, сцеплены друг с другом, и вследствие этого споры с рекомбинированными хромосомами, заключающими гены Сs и сS, образуются только при наличии кроссинговера между генами С и S, что имеет место сравнительно редко.
Процент кроссинговера между генами С и S можно вычислить по формуле:

Х = а + в / n х 100 %,

Где а - количество кроссинговерных зерен одного класса (зерен с генотипом Сscs, происходящих от соединения гамет Сs гибрида F1 с гаметами cs рецессивного родителя); в - количество кроссинговерных зерен второго класса (сScs); n - общее число зерен, полученных в результате анализирующего скрещивания.
Схема, показывающая наследование хромосом, содержащих сцепленные гены у кукурузы (по Гетчинсону). Указано наследственное поведение генов окрашенного (С) и бесцветного (с) алейрона, полного (S) и морщинистого (s) эндосперма, а также несущих эти гены хромосом при скрещивании двух чистых типов между собой и при возвратном скрещивании F1 с двойным рецессивом.
Подставляя количество зерен различных классов, полученное в этом опыте, в формулу, получаем:

Х = а + в / n х 100 % = 149 + 152 / 8368 х 100 % = 3,6 %

Расстояние между генами в группах сцепления обычно выражается в процентах кроссинговера, или в морганидах (морганида - единица, выражающая силу сцепления, названная по предложению А. С. Серебровского в честь Т. Г. Моргана, равна 1 % кроссинговера). В данном случае можно сказать, что ген С находится на расстоянии 3,6 морганиды от гена S.
Теперь можно определить при помощи этой формулы расстояние между В и L у душистого горошка. Подставляя числа, полученные при анализирующем скрещивании и приведенные выше, в формулу, получаем:

Х = а + в / n х 100 % = 7 + 8 / 112 х 100 % = 11,6 %

У душистого горошка гены В и L находятся в одной хромосоме на расстоянии 11,6 морганиды друг от друга.
Таким же путем Т. Г. Морган его ученики определили процент кроссинговера между многими генами, входящими в одну и ту же группу сцепления, для всех четырех групп сцепления дрозофилы. При этом выяснилось, что процент кроссинговера (или расстояние в морганидах) между различными генами, входящими в состав одной группы сцепления, оказался резко различным. Наряду с генами, между которыми кроссинговер происходил очень редко (около 0,1 %), имелись и такие гены, между которыми совсем не было обнаружено сцепления, что говорило о том, что одни гены расположены очень близко друг от друга, а другие - очень далеко.

4. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГЕНОВ

Чтобы выяснить расположение генов, было предположено, что в хромосомах они расположены в линейном порядке и что истинное расстояние между двумя генами пропорционально частоте кроссинговера между ними. Эти предположения открыли возможность для определения взаимного расположения генов в пределах групп сцепления.
Предположим, известны расстояния (% кроссинговера) между тремя генами А, В и С и что они равны 5 % между генами А и В, 3 % между В и С и 8 % между генами А и С.
Допустим, что ген В расположен справа от гена А. В какую сторону от гена В при этом должен быть расположен ген С?
Если предположить, что ген С расположен слева от гена В, то в этом случае расстояние между геном А и С должно быть равно разности расстояний между генами А - В и В - С, т. е. 5 % - 3 % = 2 %. Но в действительности расстояние между генами А и С совсем другое и равно 8 %. Следовательно, предположение неправильно.
Если предположить теперь, что ген С расположен справа от гена В, то в этом случае расстояние между генами А и С должно быть равно сумме расстояний между генами А - В и генами В - С, т. е. 5 % + 3 % = 8 %, что полностью соответствует расстоянию, установленному опытным путем. Следовательно, это предположение правильное, и расположение генов А, В и С в хромосоме схематически можно изобразить следующим образом: А - 5 %, B - 3 %, C - 8 %.
После установления взаимного расположения 3 генов расположение четвертого гена по отношению к этим трем можно определить, зная его расстояние только от 2 из этих генов. Можно предположить, что известно расстояние гена Д от двух генов - В и С из числа 3 выше рассмотренных генов А, В и С и что оно равно 2 % между генами С и Д и 5 % между В и Д. Попытка поместить ген Д слева от гена С оказывается неудачной из-за явного несоответствия разности расстояний между генами В - С и С - Д (3 % - 2 % = 1 %) заданному расстоянию между генами В и Д (5 %). И, напротив, размещение гена Д справа от гена С дает полное соответствие между суммой расстояний между генами В - С и генами С - Д (3 % + 2 % = 5 %) заданному расстоянию между генами В и Д (5 %). Как только расположение гена Д относительно генов В и С нами установлено, без дополнительных опытов можно высчитать и расстояние между генами А и Д, т. к. оно должно быть равно сумме расстояний между генами А - В и В -Д (5 % + 5 % = 10 %).
При изучении сцепления между генами, входящими в одну группу сцепления, неоднократно была проведена опытная проверка расстояний между ними, предварительно вычисленных таким путем, как это сделано выше для генов А и Д, и во всех случаях получено очень хорошее соответствие.
Если известно расположение 4 генов, скажем А, В, С, Д, то «привязать» к ним пятый ген можно, если известны расстояния между геном Е и какими-то двумя из этих 4 генов, причем расстояния между геном Е и двумя остальными генами четверки могут быть вычислены так, как это сделано для генов А и Д в предыдущем примере.

5. КАРТЫ ГРУПП СЦЕПЛЕНИЯ, ЛОКАЛИЗАЦИЯ ГЕНОВ В ХРОМОСОМАХ

Путем постепенного привязывания все новых и новых генов к исходной тройке или четверке сцепленных генов, для которых ранее установлено их взаимное расположение, были составлены карты групп сцепления.
При составлении карт групп сцепления важно учитывать ряд особенностей. У бивалента может возникнуть не одна, а две, три и даже еще больше хиазм и связанных с хиазмами кроссоверов. Если гены расположены очень близко друг от друга, то вероятность, что на хромосоме между такими генами возникнут две хиазмы и произойдут два обмена нитями (два кроссовера), ничтожна мала. Если гены расположены сравнительно далеко друг от друга, вероятность двойного кроссинговера на участке хромосомы между этими генами у одной и той же пары хроматид значительно увеличивается. А между тем второй кроссовер в той же паре хроматид между изучаемыми генами, по сути дела, аннулирует первый кроссовер и устраняет обмен этими генами между гомологичными хромосомами. Поэтому количество кроссоверных гамет уменьшается и создается впечатление, что эти гены расположены ближе друг к другу, чем это есть на самом деле.
Схема двойного кроссинговера в одной паре хроматид между генами А и В и генами В и С. I - момент кроссинговера; II - рекомбинированные хроматиды АсВ и аСb.
При этом чем дальше расположены друг от друга изучаемые гены, тем чаще между ними происходит двойной кроссинговер и тем больше оказывается искажение истинного расстояния между этими генами, вызываемое двойными кроссинговерами.
Если расстояние между изучаемыми генами превосходит 50 морганид, то обнаружить сцепление между ними путем непосредственного определения количества кроссоверных гамет вообще невозможно. У них, как и у генов в гомологичных хромосомах, не сцепленных друг с другом, при анализирующем скрещивании только 50 % гамет заключают сочетание генов, отличных от тех, которые имелись у гибридов первого поколения.
Поэтому при составлении карт групп сцепления расстояния между далеко расположенными генами определяются не путем непосредственного определения количества кроссоверных гамет в анализирующих скрещиваниях, включающих эти гены, а путем сложения расстояний между многими близко расположенными друг от друга генами, находящимися между ними.
Такой способ составления карт групп сцепления позволяет точнее определить расстояние между сравнительно далеко (не более 50 морганид) расположенными генами и выявить сцепление между ними, если расстояние больше 50 морганид. В этом случае сцепление между далеко расположенными генами было установлено благодаря тому, что они сцеплены с промежуточно расположенными генами, которые, в свою очередь, сцеплены между собой.
Так, для генов, находящихся на противоположных концах II и III хромосом дрозофилы - на расстоянии друг от друга более 100 морганид, установить факт их расположения в одной и той же группе сцепления оказалось возможным благодаря выявлению их сцепления с промежуточными генами и сцепления этих промежуточных генов между собой.
Расстояния между далеко расположенными генами определены путем сложения расстояний между многими промежуточными генами, и только благодаря этому они установлены сравнительно точно.
У организмов, пол которых контролируется половыми хромосомами, кроссинговер происходит только у гомогаметного пола и отсутствует у гетерогаметного. Так, у дрозофилы кроссинговер происходит только у самок и отсутствует (точнее, происходит в тысячу раз реже) у самцов. В связи с этим гены самцов этой мухи, расположенные в одной хромосоме, показывают полное сцепление независимо от их расстояния друг от друга, что облегчает выявление их расположения в одной группе сцепления, но делает невозможным определение расстояния между ними.
У дрозофилы установлены 4 группы сцепления. Одна из этих групп имеет длину около 70 морганид, и гены, входящие в эту группу сцепления, явно связаны с наследованием пола. Поэтому можно считать несомненным, что гены, входящие в эту группу сцепления, расположены в половой Х-хромосоме (в 1 паре хромосом).
Другая группа сцепления очень мала, и длина ее равна всего 3 морганидам. Не вызывает сомнений, что гены, входящие в эту группу сцепления, расположены в микрохромосомах (IХ пара хромосом). Но две остальные группы сцепления имеют примерно одинаковую величину (107,5 морганиды и 106,2 морганиды) и решить, какой из пар аутосом (II и III пары хромосом) каждая из этих групп сцепления соответствует, довольно трудно.
Для решения вопроса о расположении групп сцепления в больших хромосомах пришлось использовать цитогенетическое изучение ряда перестроек хромосом. Таким путем удалось установить, что несколько большая группа сцепления (107,5 морганиды) соответствует II паре хромосом, а несколько меньшая группа сцепления (106,2 морганиды) расположена в III паре хромосом.
Благодаря этому было установлено, каким хромосомам соответствует каждая из групп сцепления у дрозофилы. Но и после этого оставалось неизвестным, каким образом группы сцепления генов располагаются в соответствующих им хромосомах. Располагается ли, например, правый конец первой группы сцепления у дрозофилы вблизи кинетической перетяжки Х-хромосомы или на противоположном конце этой хромосомы? То же относится и ко всем остальным группам сцепления.
Открытым оставался и вопрос о том, в какой мере расстояния между генами, выраженные в морганидах (в % кроссинговера), соответствуют истинным физическим расстояниям между ними в хромосомах.
Чтобы выяснить все это, нужно было, по крайней мере для некоторых генов, установить не только взаимное расположение в группах сцепления, но и их физическое положение в соответствующих хромосомах.
Осуществить это оказалось возможным только после того, как в результате совместных исследований генетика Г. Меллера и цитолога Г. Пайнтера было установлено, что под влиянием Х-лучей у дрозофилы (как и у всех живых организмов) происходит перенос (транслокация) участков одной хромосомы на другую. При переносе определенного участка одной хромосомы на другую все гены, расположенные в этом участке, утрачивают сцепление с генами, расположенными в остальной части хромосомы-донора, и приобретают сцепление с генами в хромосоме-реципиенте. (Позднее было установлено, что при таких перестройках хромосом происходит не просто перенос участка с одной хромосомы на другую, а взаимный перенос участка первой хромосомы на вторую, а с нее на место отделенного участка в первой переносится участок второй хромосомы).
В тех случаях, когда разрыв хромосомы при отделении участка, переносимого на другую хромосому, происходит между двумя генами, расположенными близко друг от друга, место этого разрыва может быть определено довольно точно как на карте группы сцепления, так и на хромосоме. На карте сцепления место разрыва находится на участке между крайними генами, из которых один остается в прежней группе сцепления, а другой включается в новую. На хромосоме место разрыва определяется путем цитологических наблюдений по уменьшению размеров хромосомы-донора и по увеличению - хромосомы-реципиента.
Транслокация участков с хромосомы 2 на хромосому 4 (по Моргану). В верхней части рисунка показаны группы сцепления, на средней - соответствующие этим группам сцепления хромосомы и внизу - метафазные пластинки соматического митоза. Цифры обозначают номера групп сцепления и хромосом. А и Б - «нижняя» часть хромосомы переместилась в хромосому 4; В - «верхняя» часть хромосомы 2 переместилась в хромосому 4. Генетические карты и пластинки хромосом гетерозиготны по транслокациям.
В результате изучения большого количества различных транслокаций, проведенного многими генетиками, были составлены так называемые цитологические карты хромосом. На хромосомы нанесены места расположения всех изученных разрывов, и благодаря этому установлено для каждого разрыва расположение двух соседних генов справа и слева от него.
Цитологические карты хромосом прежде всего позволили установить, каким концам хромосом соответствуют «правый» и «левый» концы соответствующих групп сцепления.
Сопоставление «цитологических» карт хромосом с «генетическими» (группами сцепления) дает существенный материал и для выяснения отношения расстояний между соседними генами, выраженными в морганидах, и физическими расстояниями между теми же генами в хромосомах при изучении этих хромосом под микроскопом.
Сравнение «генетических карт» I, II и III хромосом Drosophila melanogaster с «цитологическими картами» этих хромосом в метафазе на основе данных по транслокациям (по Левитскому). Sp - место прикрепления нитей веретена. Остальными обозначены различные гены.
Несколько позднее было выполнено тройное сопоставление расположения генов на «генетических картах» сцепления, «цитологических картах» обычных соматических хромосом и «цитологических картах» гигантских слюнных желез.
Кроме дрозофилы, довольно подробные «генетические карты» групп сцепления были составлены и для некоторых других видов рода Дрозофила. При этом оказалось, что у всех достаточно подробно изученных видов число групп сцепления равно гаплоидному числу хромосом. Так, у дрозофилы, имеющей три пары хромосом, обнаружено 3 группы сцепления, у дрозофилы с пятью парами хромосом - 5, а у дрозофилы с шестью парами хромосом - 6 групп сцепления.
Среди позвоночных животных лучше других изучена домовая мышь, у которой уже установлено 18 групп сцепления, в то время как пар хромосом 20. У человека, имеющего 23 пары хромосом, известно 10 групп сцепления. У курицы с 39 парами хромосом всего 8 групп сцепления. Несомненно, что при дальнейшем генетическом изучении этих объектов число выявленных групп сцепления у них увеличится и, вероятно, будет соответствовать числу пар хромосом.
Среди высших растений генетически наиболее хорошо изучена кукуруза. У нее 10 пар хромосом и обнаружено 10 довольно больших групп сцепления. При помощи экспериментально полученных транслокаций и некоторых других хромосомных перестроек все эти группы сцепления приурочены к строго определенным хромосомам.
У некоторых высших растений, изученных достаточно подробно, также было установлено полное соответствие между числом групп сцепления и числом пар хромосом. Так, ячмень имеет 7 пар хромосом и 7 групп сцепления, томат - 12 пар хромосом и 12 групп сцепления, львиный зев - гаплоидное число хромосом 8 и установлено 8 групп сцепления.
Среди низших растений генетически наиболее подробно изучен сумчатый гриб. У него гаплоидное число хромосом равно 7 и установлено 7 групп сцепления.
В настоящее время считается общепризнанным, что число групп сцепления у всех организмов равно их гаплоидному числу хромосом, и если у многих животных и растений число известных групп сцепления меньше, чем их гаплоидное число хромосом, то это зависит только от того, что они генетически изучены еще недостаточно и, вследствие этого, у них выявлена только часть имеющихся групп сцепления.

ЗАКЛЮЧЕНИЕ

Как итог можно привести отрывки из трудов Т. Моргана:
»...Поскольку сцепление имеет место, оказывается, что разделение наследственного вещества является до некоторой степени ограниченным. Например, у плодовой мухи дрозофилы известно около 400 новых типов мутантов, особенности которых составляют всего лишь четыре группы сцепления...
...Члены группы сцепления могут иногда оказаться не так полно сцепленными друг с другом, ...некоторые из рецессивных признаков одной серии могут оказаться замененными признаками дикого типа из другой серии. Однако даже и в этом случае они все-таки считаются сцепленными, потому что соединенными вместе они остаются чаще, чем наблюдается такой обмен между сериями. Этот обмен называется перекрестом (CROSS-ING-OVER) - кроссинговером. Термин этот обозначает, что между двумя соответственными сериями сцепления может происходить правильный обмен их частями, в котором участвует большое число генов...
Теория гена устанавливает, что признаки или свойства особи являются функцией соединенных в пары элементов (генов), заложенных в наследственном веществе в виде определенного числа групп сцепления; она устанавливает затем, что члены каждой пары генов, когда половые клетки созревают, разделяются в соответствии с первым законом Менделя и, следовательно, каждая зрелая половая клетка содержит только один ассортимент их; она устанавливает также, что члены, принадлежащие к различным группам сцепления, распределяются при наследовании независимо, соответственно второму закону Менделя; равным образом она устанавливает, что иногда имеет место закономерный взаимообмен-перекрест - между соответственными друг другу элементами двух групп сцепления; наконец, она устанавливает, что частота перекреста доставляет данные, доказывающие линейное расположение элементов по отношению друг к другу...»

СПИСОК ЛИТЕРАТУРЫ

1. Общая генетика. М.: Высшая школа, 1985.
2. Хрестоматия по генетике. Изд-во Казанского ун-та, 1988.
3. Петров Д. Ф. Генетика с основами селекции, М.: Высшая школа, 1971.
4. Биология. М.: Мир, 1974.

Создателем хромосомной теории (ХТ) является учёный Томас Морган. ХТ является результатом изучения наследственности на клеточном уровне.

Суть хромосомной теории :

Материальными носителями наследственности являются хромосомы.

Основными доказательством этому является:

    Цитогенетический параллелизм

    Хромосомное определение пола

    Сцепленное с полом наследование

    Сцепление генов и кроссинговер

Основные положения хросомной теории:

    Наследственные задатки (гены) локализованы в хромосомах.

    Гены расположены в хромосоме в линейном порядке.

    Каждый ген занимает определенный участок (локус). Аллельные гены занимают аналогичные локусы в гомологичных хромосомах.

    Гены, локализованные в одной хромосоме, наследуются совместно, сцеплено (Закон Моргана) и образуют группу сцепления. Число групп сцепления равно гаплоидному числу хромосом (n).

    Между гомологичными хромосомами возможен обмен участками, или рекомбинация.

    Расстояние между генами измеряются в процентах кроссинговера – морганидах.

    Частота кроссинговера обратно пропорциональна расстоянию между генами, а сила сцепления между генами обратно пропорциональна расстоянию между ними.

    Цитогенетический параллелизм

Дипломником Моргана Сюттоном было замечено что поведение генов по Менделю, совпадает с поведение хромосом: (ТАБЛИЦА – цитогенетический паралелизм)

Каждый организм несёт 2-а наследственных задатка, в гамету входит только 1- ин наследственный задаток из пары. При оплодотворении в зиготе и далее в организме опять 2-а наследственных задатка по каждому признаку.

Точно так же ведут себя и хромосомы, что можно предположить что гены лежат в хромосомах и наследуются вместе с ними.

    Хромосомное определение пола

В 1917 году Алленом было показано что мужские и женские особи у мхов отличаются по набору хромосом. В клетках диплоидной ткани мужского организма половые хромосомы XиY, в женскомXиX. Таким образом Хромосомы определяют такой признак как пол, а следовательно могут быть материальными носителями наследственности. Позже хромосомное определение пола было показано и для других организмов, в том числе и для человека.(ТАБЛИЦА)

    Сцепленное с полом наследование

Поскольку половые хромосомы различны у мужских и женских организмов, признаки, гены которых, расположены в Х или Yхромосомах, будут наследовать по-разному. Такие признаки называютсясцепленными с полом признаками .

Особенности наследования сцепленных с полом признаков

    Не соблюдается 1 закон Менделя

    Реципрокные скрещивания дают разный результат

    Имеет место крисс-кросс (или наследование крест-накрест).

Впервые наследование связанное с признаком было обнаружено Морганом у дрозофилы.

W + -красные глаза

(C) X W+ X W+ * X w Y

(C) X w X w * X W+ Y

w – белые глаза

(CЖ)X W + X w – Красные глаза

X w X W + - Красные глаза

(CМ)X W + Y– Красные глаза

X w Y– Белые глаза

Таким образом наследование выявленной Морганом мутация – “белые глаза” - white, характеризовалась перечисленными выше особенностями:

    Закон единообразия несоблюдался

    В 2-ух реципрокных скрещиваниях получено разное потомство

    Во втором скрещивании сыновья получают признак матери (белые глаза), дочери – признак отца (красные глаза).

Такое наследование и называется «наследование крисс-кросс»

(ТАБЛИЦА сцепленное с полом наследование )

Сцепленное с полом наследование объясняется отсутствием в Yхромосоме генов, аллельных генамXхромосоме.Yхромосома намного меньше Х хромосомы, в ней, в настоящее время, локализовано 78(?) генов, в то время как вXхромосоме их более 1098.

Примеры сцепленных с полом наследований:

Гемофилия, дистрофия Дюшенна, синдром Данкана, синдром Альпорта, и др.

Есть гены, которые наоборот содержатся в Yхромосоме и отсутствуют вXхромосоме, они, следовательно, встречаются только в мужских организмах, и никогда в женских (голандрическое наследование) и передаются только сыновьям от отца.

    Сцепление генов и кроссинговер

В генетике было известно такое явления как «притяжение генов»: некоторые неаллельные признаки наследовались не независимо, как должны по IIIзакону Менделя, а наследовались вместе, не давали новых комбинаций. Морган объяснил это тем, что эти гены находятся в одной хромосоме, поэтому они расходятся в дочерние клетки вместе одной группой, как бы сцеплено. Он назвал это явление –сцепленным наследованием .

Закон сцепления Моргана:

Гены расположенные в одной хромосоме наследуются совместно, сцеплено.

Гены расположенные в одной хромосоме образуют группу сцепления. Число групп сцепления равно «n» - гаплоидному числу хромосом.

Скрещивали гомозиготные линии мух с серым цветом тела и длинными крыльями и мух, имеющих чёрное тело и короткие крылья. Гены цвета тела и длинны крыльев – сцеплены, т.е. лежат в одной хромосоме.

А- серое тело

а- чёрное тело

B- нормальные крылья (длинные)

b- зачаточные крылья

(С Ж) AABBxaabb(CМ)

Серые длиннокрылые

Чёрные короткокрылые

Запись в хромосомном выражении

Серое тело

Длинные крылья

Чёрное тело

Короткое тело

Все мухи имеют серое тело и длинные крылья

Т.е. в этом случае закон единообразия гибридов Iпоколения соблюдается. Однако вF 2 вместо ожидаемого расщепления 9:3:3:1 получилось отношение на 3 серых длиннокрылых на 1 часть чёрных короткокрылых, т.е. новых сочетаний признаков не появлялось. Морган предположил что дегетерозиготыF 2 - ()продуцируют (дают) гаметы не 4, а только 2 типов -и. Проведенные анализирующие скрещивания это подтвердило:

Серое тело

Длинные крылья

Чёрное тело

Короткое тело

F a

Серое тело

Длинные крылья

Чёрное тело

Короткие крылья

В результате в F 2 расщепление идёт как при моногибридном скрещивании 3:1.

Серое тело

Длинные крылья

Серое тело

Длинные крылья

Серое тело

Длинные крылья

Чёрное тело

Короткие крылья

Кроссинговер.

В небольшом проценте случаев в F 2 в опытах Моргана появлялись мухи с новыми сочетаниями признаков: крылья длинные, тело черное; крылья короткие, а тело серое. Т.е. признаки «расцепились». Морган объяснил это тем, что хромосомы во время конъюгации в мейозе обмениваются генами. В результате получаются особи с новыми сочетаниями признаков, т.е. как и положено по третьему закону Менделя. Морган назвал этот обмен генами рекомбинацией.

Позже цитологи действительно подтвердили гипотезу Моргана, обнаружив обмен участками хромосом у кукурузы и у саламандры. Они назвали этот процесс кроссинговер.

Кроссинговер увеличивает разнообразие потомства в популяции.

Тема 32. Хромосомная теория наследственности. Закон Моргана

Введение
1. Т. Г. Морган - крупнейший генетик XX в.
2. Притяжение и отталкивание
3. Хромосомная теория наследственности
4. Взаимное расположение генов
5. Карты групп сцепления, локализация генов в хромосомах
6. Цитологические карты хромосом
7. Заключение
Список литературы

1. ВВЕДЕНИЕ

Третий закон Менделя - правило независимого наследования признаков - имеет существенные ограничения.
В опытах самого Менделя и в первых опытах, проведенных после вторичного открытия законов Менделя, в изучение были включены гены, расположенные в разных хромосомах, и вследствие этого не было обнаружено никаких расхождений с третьим законом Менделя. Несколько позднее найдены факты, противоречащие этому закону. Постепенное накопление и изучение их привело к установлению четвертого закона наследственности, получившего название закона Моргана (в честь американского генетика Томаса Гента Моргана, который первым сформулировал и обосновал его), или правила сцепления.
В 1911 г. в статье «Свободное расщепление в противоположность притяжению в менделевской наследственности» Морган писал: «Вместо свободного расщепления в менделевском смысле мы нашли «ассоциацию факторов», локализованных в хромосомах близко друг от друга. Цитология дала механизм, требуемый экспериментальными данными.
В этих словах кратко сформулированы основные положения хромосомной теории наследственности, разработанной Т. Г. Морганом.

1. Т. Г. МОРГАН - КРУПНЕЙШИЙ ГЕНЕТИК ХХ в.

Томас Гент Морган родился 25 сентября 1866 г. в штате Кентукки (США). В 1886 г. он окончил университет этого штата. В 1890 г. Т. Морган получил степень доктора философии, а в следующем году стал профессором женского колледжа в Пенсильвании. Главный период его жизни связан с Колумбийским университетом, где он с 1904 г. в течение 25 лет занимал пост заведующего кафедрой экспериментальной зоологии. В 1928 г. его пригласили руководить специально для него построенной биологической лабораторией в Калифорнийском технологическом институте, в городке близ Лос-Анджелеса, где он работал до самой смерти.
Первые исследования Т. Моргана посвящены вопросам экспериментальной эмбриологии.
В 1902 г. молодой американский цитолог Уолтер Сеттон (1877-1916), работавший в лаборатории Э. Вильсона (1856-1939), высказал предположение, что своеобразные явления, характеризующие поведение хромосом при оплодотворении, представляют собой, по всей вероятности, механизм менделевских закономерностей. Т. Морган был хорошо знаком и с самим Э. Вильсоном, и с работами его лаборатории, и поэтому, когда в 1908 г. он установил у самцов филоксеры наличие двух сортов сперматозоидов, один из которых обладал дополнительной хромосомой, сразу же возникло предположение о связи признаков пола с привнесением соответствующих хромосом. Так Т. Морган перешел к проблемам генетики. У него возникло предположение, что не только пол связан с хромосомами, но, быть может, и другие наследственные задатки локализованы в них.
Скромный бюджет университетской лаборатории заставил Т. Моргана заняться поисками более подходящего объекта для опытов по изучению наследственности. От мышей и крыс он переходит к плодовой мушке дрозофиле, выбор которой оказался чрезвычайно удачным. На этом объекте сосредоточилась работа школы Т. Моргана, а затем большинства других генетических научных учреждений. Крупнейшие открытия в генетике 20-30-х гг. ХХ в. связаны с дрозофилой.
В 1910 г. была опубликована первая генетическая работа Т. Моргана «Ограниченная полом наследственность у дрозофилы», посвященная описанию мутации белоглазости. Последующая, поистине гигантская работа Т. Моргана и его сотрудников позволила увязать в единое целое данные цитологии и генетики и завершилась созданием хромосомной теории наследственности. Капитальные труды Т. Моргана «Структурные основы наследственности», «Теория гена», «Экспериментальные основы эволюции» и другие знаменуют собой поступательное развитие генетической науки.
Среди биологов ХХ в. Т. Морган выделяется как блестящий генетик-экспериментатор и как исследователь широкого круга вопросов.
В 1931 г. Т. Морган был избран почетным членом Академии наук СССР, в 1933 г. ему была присуждена Нобелевская премия.

2. ПРИТЯЖЕНИЕ И ОТТАЛКИВАНИЕ

Впервые отклонение от правила независимого наследования признаков было замечено Бэтсоном и Пеннетом в 1906 г. при изучении характера наследования окраски цветков и формы пыльцы у душистого горошка. У душистого горошка фиолетовая окраска цветков (контролируемая геном В) доминирует над красной (зависящей от гена в), а продолговатая форма зрелой пыльцы («длинная пыльца»), связанная с наличием 3 пор, которую контролирует ген L, доминирует над «округлой» пыльцой с 2 порами, образование которой контролирует ген l.
При скрещивании пурпурного душистого горошка с длинной пыльцой и красного с округлой пыльцой все растения первого поколения имеют пурпуровые цветки и длинную пыльцу.
Во втором поколении среди 6952 изученных растений было найдено 4831 растение с пурпуровыми цветками и длинной пыльцой, 390 с пурпуровыми цветками и округлой пыльцой, 393 с красными цветками и длинной пыльцой и 1338 с красными цветками и круглой пыльцой.
Это соотношение хорошо соответствует расщеплению, которое ожидается в том случае, если при образовании гамет первого поколения гены В и L встречаются в 7 раз чаще в тех сочетаниях, в которых они находились у родительских форм (ВL и bl), чем в новых сочетаниях (Вl и bL) (табл. 1).
Создается впечатление, что гены В и L, а также b и l притягиваются друг к другу и только с трудом могут быть отделены один от другого. Такое поведение генов было названо притяжением генов. Предположение о том, что гаметы с генами В и L в таких сочетаниях, в каких они были представлены у родительских форм, встречаются в 7 раз чаще, чем гаметы с новым сочетанием (в данном случае Вl и bL), получило прямое подтверждение в результатах так называемых анализирующих скрещиваний.
При скрещивании гибридов первого поколения (F1) (генотип BbLl) c рецессивным родителем (bbll) было получено расщепление: 50 растений с пурпуровыми цветами и длинной пыльцой, 7 растений с пурпуровыми цветками и округлой пыльцой, 8 растений с красными цветками и длинной пыльцой и 47 растений с красными цветками и округлой пыльцой, что очень хорошо соответствует ожидаемому соотношению: 7 гамет со старыми сочетаниями генов к 1 гамете с новыми сочетаниями.
В тех скрещиваниях, где один из родителей имел генотип BBll, а второй генотип bbLL, расщепление во втором поколении имело совсем другой характер. В одном из таких скрещиваний в F2 было найдено 226 растений с пурпуровыми цветками и длинной пыльцой, 95 с пурпуровыми цветками и округлой пыльцой, 97 с красными цветками и длинной пыльцой и одно растение с красными цветками и округлой пыльцой. В этом случае создается впечатление, что гены B и L отталкиваются друг от друга. Такое поведение наследственных факторов было названо отталкиванием генов.
Поскольку притяжение и отталкивание генов встречалось очень редко, то оно считалось какой-то аномалией и своеобразным генетическим курьезом.
Несколько позднее у душистого горошка было обнаружено еще несколько случаев притяжения и отталкивания (форма цветка и окраска листовой пазухи, окраска цветка и форма паруса цветка и некоторые другие пары признаков), но это не изменило общей оценки явления притяжения и отталкивания как аномалии.
Однако оценка этого явления резко изменилась после того, как в 1910-1911 гг. Т. Морган и его ученики обнаружили многочисленные случаи притяжения и отталкивания у плодовой мушки дрозофилы, очень благоприятного объекта для генетических исследований: культивирование ее стоит дешево и может осуществляться в лабораторных условиях в очень широких масштабах, срок жизни невелик и за один год можно получить несколько десятков поколений, контролируемые скрещивания легко осуществимы, имеется всего 4 пары хромосом, в том числе пара хорошо отличимых друг от друга половых.
Благодаря этому Морган и его сотрудники довольно скоро обнаружили большое количество мутаций наследственных факторов, определяющих хорошо заметные и удобные для изучения признаки, и смогли провести многочисленные скрещивания для изучения характера наследования этих признаков. При этом выяснилось, что многие гены у мушки дрозофилы наследуются не независимо друг от друга, а взаимно притягиваются или отталкиваются, причем гены, показывающие такое взаимодействие, оказалось возможным подразделить на несколько групп, в пределах которых все гены показывали более или менее сильно выраженное взаимное притяжение или отталкивание.
На основании анализа результатов этих исследований Т. Г. Морган высказал предположение, что притяжение имеет место между неаллеломорфными генами, расположенными в одной хромосоме, и сохраняется до тех пор, пока эти гены не будут отделены друг от друга в результате разрыва хромосом во время редукционного деления, а отталкивание имеет место в тех случаях, когда изучаемые гены расположены в разных хромосомах одной и той же пары гомологичных хромосом
Отсюда следует, что притяжение и отталкивание генов - различные стороны одного процесса, материальной основой которого является различное расположение генов в хромосомах. Поэтому Морган предложил отказаться от двух отдельных понятий «притяжение» и «отталкивание» генов и заменить его одним общим понятием «сцепление генов», считая, что оно зависит от их расположения в пределах одной хромосомы в линейном порядке.

3. ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ

При дальнейшем изучении сцепления генов вскоре было установлено, что число групп сцепления у дрозофилы (4 группы) соответствует гаплоидному числу хромосом у этой мухи, и все достаточно подробно изученные гены были распределены по этим 4 группам сцепления. Первоначально взаимное расположение генов в пределах хромосомы оставалось неизвестным, но позднее была разработана методика для определения порядка расположения генов, входящих в одну группу сцепления, основанная на количественном определении силы сцепления между ними.
Количественное определение силы сцепления генов основано на следующих теоретических предпосылках. Если два гена А и В у диплоидного организма расположены в одной хромосоме, а в гомологичной ей другой хромосоме расположены рецессивные аллеломорфы этих генов а и в, то отделиться друг от друга и вступить в новые сочетания со своими рецессивными аллеломорфами гены А и В могут только в том случае, если хромосома, в которой они расположены, будет разорвана на участке между этими генами и в месте разрыва произойдет соединение между участками этой хромосомы и ее гомолога.
Такие разрывы и новые сочетания участков хромосом действительно происходят при конъюгации гомологичных хромосом во время редукционного деления. Но при этом обмены участками обычно происходят не между всеми 4 хроматидами, из которых состоят хромосомы бивалентов, а только между двумя из этих 4 хроматид. Поэтому хромосомы, образующиеся в результате I деления мейоза, при таких обменах состоят из двух неодинаковых хроматид - неизмененной и реконструированной в результате обмена. Во II делении мейоза эти неодинаковые хроматиды расходятся к противоположным полюсам, и благодаря этому гаплоидные клетки, возникающие в результате редукционного деления (споры или гаметы), получают хромосомы, состоящие из одинаковых хроматид, но при этом только половине гаплоидных клеток достаются реконструированные хромосомы, а вторая половина получает неизмененные.
Такой обмен участками хромосом называется кроссинговером. При прочих равных условиях кроссинговер между двумя генами, расположенными в одной хромосоме, происходит тем реже, чем ближе друг к другу они расположены. Частота кроссинговера между генами пропорциональна расстоянию между ними.
Определение частоты кроссинговера обычно производится при помощи так называемых анализирующих скрещиваний (скрещивание гибридов F1 с рецессивным родителем), хотя для этой цели можно использовать и F2, получаемое от самоопыления гибридов F1 или скрещивания гибридов F1 между собой.
Можно рассмотреть такое определение частоты кроссинговера на примере силы сцепления между генами С и S у кукурузы. Ген С определяет образование окрашенного эндосперма (окрашенных семян), а его рецессивный аллель с обусловливает неокрашенный эндосперм. Ген S вызывает образование гладкого эндосперма, а его рецессивный аллель s определяет образование морщинистого эндосперма. Гены С и S расположены в одной хромосоме и довольно сильно сцеплены друг с другом. В одном из опытов, проведенных для количественного определения силы сцепления этих генов, были получены следующие результаты.
Растение с окрашенными гладкими семенами, гомозиготное по генам С и S и имевшее генотип ССSS (доминантный родитель), было скрещено с растением с неокрашенными морщинистыми семенами с генотипом ссss (рецессивный родитель). Гибриды первого поколения F1 были вновь скрещены с рецессивным родителем (анализирующее скрещивание). Таким образом было получено 8368 семян F2, у которых по окраске и морщинистости было обнаружено следующее расщепление: 4032 окрашенных гладких семени; 149 окрашенных морщинистых; 152 неокрашенных гладких; 4035 неокрашенных морщинистых.
Если бы при образовании макро- и микроспор у гибридов F1 гены С и S распределялись независимо друг от друга, то в анализирующем скрещивании все эти четыре группы семян должны быть представлены в одинаковом количестве. Но этого нет, т. к. гены С и S расположены в одной хромосоме, сцеплены друг с другом, и вследствие этого споры с рекомбинированными хромосомами, заключающими гены Сs и сS, образуются только при наличии кроссинговера между генами С и S, что имеет место сравнительно редко.
Процент кроссинговера между генами С и S можно вычислить по формуле:

Х = а + в / n х 100 %,

Где а - количество кроссинговерных зерен одного класса (зерен с генотипом Сscs, происходящих от соединения гамет Сs гибрида F1 с гаметами cs рецессивного родителя); в - количество кроссинговерных зерен второго класса (сScs); n - общее число зерен, полученных в результате анализирующего скрещивания.
Схема, показывающая наследование хромосом, содержащих сцепленные гены у кукурузы (по Гетчинсону). Указано наследственное поведение генов окрашенного (С) и бесцветного (с) алейрона, полного (S) и морщинистого (s) эндосперма, а также несущих эти гены хромосом при скрещивании двух чистых типов между собой и при возвратном скрещивании F1 с двойным рецессивом.
Подставляя количество зерен различных классов, полученное в этом опыте, в формулу, получаем:

Х = а + в / n х 100 % = 149 + 152 / 8368 х 100 % = 3,6 %

Расстояние между генами в группах сцепления обычно выражается в процентах кроссинговера, или в морганидах (морганида - единица, выражающая силу сцепления, названная по предложению А. С. Серебровского в честь Т. Г. Моргана, равна 1 % кроссинговера). В данном случае можно сказать, что ген С находится на расстоянии 3,6 морганиды от гена S.
Теперь можно определить при помощи этой формулы расстояние между В и L у душистого горошка. Подставляя числа, полученные при анализирующем скрещивании и приведенные выше, в формулу, получаем:

Х = а + в / n х 100 % = 7 + 8 / 112 х 100 % = 11,6 %

У душистого горошка гены В и L находятся в одной хромосоме на расстоянии 11,6 морганиды друг от друга.
Таким же путем Т. Г. Морган его ученики определили процент кроссинговера между многими генами, входящими в одну и ту же группу сцепления, для всех четырех групп сцепления дрозофилы. При этом выяснилось, что процент кроссинговера (или расстояние в морганидах) между различными генами, входящими в состав одной группы сцепления, оказался резко различным. Наряду с генами, между которыми кроссинговер происходил очень редко (около 0,1 %), имелись и такие гены, между которыми совсем не было обнаружено сцепления, что говорило о том, что одни гены расположены очень близко друг от друга, а другие - очень далеко.

4. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГЕНОВ

Чтобы выяснить расположение генов, было предположено, что в хромосомах они расположены в линейном порядке и что истинное расстояние между двумя генами пропорционально частоте кроссинговера между ними. Эти предположения открыли возможность для определения взаимного расположения генов в пределах групп сцепления.
Предположим, известны расстояния (% кроссинговера) между тремя генами А, В и С и что они равны 5 % между генами А и В, 3 % между В и С и 8 % между генами А и С.
Допустим, что ген В расположен справа от гена А. В какую сторону от гена В при этом должен быть расположен ген С?
Если предположить, что ген С расположен слева от гена В, то в этом случае расстояние между геном А и С должно быть равно разности расстояний между генами А - В и В - С, т. е. 5 % - 3 % = 2 %. Но в действительности расстояние между генами А и С совсем другое и равно 8 %. Следовательно, предположение неправильно.
Если предположить теперь, что ген С расположен справа от гена В, то в этом случае расстояние между генами А и С должно быть равно сумме расстояний между генами А - В и генами В - С, т. е. 5 % + 3 % = 8 %, что полностью соответствует расстоянию, установленному опытным путем. Следовательно, это предположение правильное, и расположение генов А, В и С в хромосоме схематически можно изобразить следующим образом: А - 5 %, B - 3 %, C - 8 %.
После установления взаимного расположения 3 генов расположение четвертого гена по отношению к этим трем можно определить, зная его расстояние только от 2 из этих генов. Можно предположить, что известно расстояние гена Д от двух генов - В и С из числа 3 выше рассмотренных генов А, В и С и что оно равно 2 % между генами С и Д и 5 % между В и Д. Попытка поместить ген Д слева от гена С оказывается неудачной из-за явного несоответствия разности расстояний между генами В - С и С - Д (3 % - 2 % = 1 %) заданному расстоянию между генами В и Д (5 %). И, напротив, размещение гена Д справа от гена С дает полное соответствие между суммой расстояний между генами В - С и генами С - Д (3 % + 2 % = 5 %) заданному расстоянию между генами В и Д (5 %). Как только расположение гена Д относительно генов В и С нами установлено, без дополнительных опытов можно высчитать и расстояние между генами А и Д, т. к. оно должно быть равно сумме расстояний между генами А - В и В -Д (5 % + 5 % = 10 %).
При изучении сцепления между генами, входящими в одну группу сцепления, неоднократно была проведена опытная проверка расстояний между ними, предварительно вычисленных таким путем, как это сделано выше для генов А и Д, и во всех случаях получено очень хорошее соответствие.
Если известно расположение 4 генов, скажем А, В, С, Д, то «привязать» к ним пятый ген можно, если известны расстояния между геном Е и какими-то двумя из этих 4 генов, причем расстояния между геном Е и двумя остальными генами четверки могут быть вычислены так, как это сделано для генов А и Д в предыдущем примере.

5. КАРТЫ ГРУПП СЦЕПЛЕНИЯ, ЛОКАЛИЗАЦИЯ ГЕНОВ В ХРОМОСОМАХ

Путем постепенного привязывания все новых и новых генов к исходной тройке или четверке сцепленных генов, для которых ранее установлено их взаимное расположение, были составлены карты групп сцепления.
При составлении карт групп сцепления важно учитывать ряд особенностей. У бивалента может возникнуть не одна, а две, три и даже еще больше хиазм и связанных с хиазмами кроссоверов. Если гены расположены очень близко друг от друга, то вероятность, что на хромосоме между такими генами возникнут две хиазмы и произойдут два обмена нитями (два кроссовера), ничтожна мала. Если гены расположены сравнительно далеко друг от друга, вероятность двойного кроссинговера на участке хромосомы между этими генами у одной и той же пары хроматид значительно увеличивается. А между тем второй кроссовер в той же паре хроматид между изучаемыми генами, по сути дела, аннулирует первый кроссовер и устраняет обмен этими генами между гомологичными хромосомами. Поэтому количество кроссоверных гамет уменьшается и создается впечатление, что эти гены расположены ближе друг к другу, чем это есть на самом деле.

Схема двойного кроссинговера в одной паре хроматид между генами А и В и генами В и С. I - момент кроссинговера; II - рекомбинированные хроматиды АсВ и аСb.
При этом чем дальше расположены друг от друга изучаемые гены, тем чаще между ними происходит двойной кроссинговер и тем больше оказывается искажение истинного расстояния между этими генами, вызываемое двойными кроссинговерами.
Если расстояние между изучаемыми генами превосходит 50 морганид, то обнаружить сцепление между ними путем непосредственного определения количества кроссоверных гамет вообще невозможно. У них, как и у генов в гомологичных хромосомах, не сцепленных друг с другом, при анализирующем скрещивании только 50 % гамет заключают сочетание генов, отличных от тех, которые имелись у гибридов первого поколения.
Поэтому при составлении карт групп сцепления расстояния между далеко расположенными генами определяются не путем непосредственного определения количества кроссоверных гамет в анализирующих скрещиваниях, включающих эти гены, а путем сложения расстояний между многими близко расположенными друг от друга генами, находящимися между ними.
Такой способ составления карт групп сцепления позволяет точнее определить расстояние между сравнительно далеко (не более 50 морганид) расположенными генами и выявить сцепление между ними, если расстояние больше 50 морганид. В этом случае сцепление между далеко расположенными генами было установлено благодаря тому, что они сцеплены с промежуточно расположенными генами, которые, в свою очередь, сцеплены между собой.
Так, для генов, находящихся на противоположных концах II и III хромосом дрозофилы - на расстоянии друг от друга более 100 морганид, установить факт их расположения в одной и той же группе сцепления оказалось возможным благодаря выявлению их сцепления с промежуточными генами и сцепления этих промежуточных генов между собой.
Расстояния между далеко расположенными генами определены путем сложения расстояний между многими промежуточными генами, и только благодаря этому они установлены сравнительно точно.
У организмов, пол которых контролируется половыми хромосомами, кроссинговер происходит только у гомогаметного пола и отсутствует у гетерогаметного. Так, у дрозофилы кроссинговер происходит только у самок и отсутствует (точнее, происходит в тысячу раз реже) у самцов. В связи с этим гены самцов этой мухи, расположенные в одной хромосоме, показывают полное сцепление независимо от их расстояния друг от друга, что облегчает выявление их расположения в одной группе сцепления, но делает невозможным определение расстояния между ними.
У дрозофилы установлены 4 группы сцепления. Одна из этих групп имеет длину около 70 морганид, и гены, входящие в эту группу сцепления, явно связаны с наследованием пола. Поэтому можно считать несомненным, что гены, входящие в эту группу сцепления, расположены в половой Х-хромосоме (в 1 паре хромосом).
Другая группа сцепления очень мала, и длина ее равна всего 3 морганидам. Не вызывает сомнений, что гены, входящие в эту группу сцепления, расположены в микрохромосомах (IХ пара хромосом). Но две остальные группы сцепления имеют примерно одинаковую величину (107,5 морганиды и 106,2 морганиды) и решить, какой из пар аутосом (II и III пары хромосом) каждая из этих групп сцепления соответствует, довольно трудно.
Для решения вопроса о расположении групп сцепления в больших хромосомах пришлось использовать цитогенетическое изучение ряда перестроек хромосом. Таким путем удалось установить, что несколько большая группа сцепления (107,5 морганиды) соответствует II паре хромосом, а несколько меньшая группа сцепления (106,2 морганиды) расположена в III паре хромосом.
Благодаря этому было установлено, каким хромосомам соответствует каждая из групп сцепления у дрозофилы. Но и после этого оставалось неизвестным, каким образом группы сцепления генов располагаются в соответствующих им хромосомах. Располагается ли, например, правый конец первой группы сцепления у дрозофилы вблизи кинетической перетяжки Х-хромосомы или на противоположном конце этой хромосомы? То же относится и ко всем остальным группам сцепления.
Открытым оставался и вопрос о том, в какой мере расстояния между генами, выраженные в морганидах (в % кроссинговера), соответствуют истинным физическим расстояниям между ними в хромосомах.
Чтобы выяснить все это, нужно было, по крайней мере для некоторых генов, установить не только взаимное расположение в группах сцепления, но и их физическое положение в соответствующих хромосомах.
Осуществить это оказалось возможным только после того, как в результате совместных исследований генетика Г. Меллера и цитолога Г. Пайнтера было установлено, что под влиянием Х-лучей у дрозофилы (как и у всех живых организмов) происходит перенос (транслокация) участков одной хромосомы на другую. При переносе определенного участка одной хромосомы на другую все гены, расположенные в этом участке, утрачивают сцепление с генами, расположенными в остальной части хромосомы-донора, и приобретают сцепление с генами в хромосоме-реципиенте. (Позднее было установлено, что при таких перестройках хромосом происходит не просто перенос участка с одной хромосомы на другую, а взаимный перенос участка первой хромосомы на вторую, а с нее на место отделенного участка в первой переносится участок второй хромосомы).
В тех случаях, когда разрыв хромосомы при отделении участка, переносимого на другую хромосому, происходит между двумя генами, расположенными близко друг от друга, место этого разрыва может быть определено довольно точно как на карте группы сцепления, так и на хромосоме. На карте сцепления место разрыва находится на участке между крайними генами, из которых один остается в прежней группе сцепления, а другой включается в новую. На хромосоме место разрыва определяется путем цитологических наблюдений по уменьшению размеров хромосомы-донора и по увеличению - хромосомы-реципиента.
Транслокация участков с хромосомы 2 на хромосому 4 (по Моргану). В верхней части рисунка показаны группы сцепления, на средней - соответствующие этим группам сцепления хромосомы и внизу - метафазные пластинки соматического митоза. Цифры обозначают номера групп сцепления и хромосом. А и Б - «нижняя» часть хромосомы переместилась в хромосому 4; В - «верхняя» часть хромосомы 2 переместилась в хромосому 4. Генетические карты и пластинки хромосом гетерозиготны по транслокациям.
В результате изучения большого количества различных транслокаций, проведенного многими генетиками, были составлены так называемые цитологические карты хромосом. На хромосомы нанесены места расположения всех изученных разрывов, и благодаря этому установлено для каждого разрыва расположение двух соседних генов справа и слева от него.
Цитологические карты хромосом прежде всего позволили установить, каким концам хромосом соответствуют «правый» и «левый» концы соответствующих групп сцепления.
Сопоставление «цитологических» карт хромосом с «генетическими» (группами сцепления) дает существенный материал и для выяснения отношения расстояний между соседними генами, выраженными в морганидах, и физическими расстояниями между теми же генами в хромосомах при изучении этих хромосом под микроскопом.
Сравнение «генетических карт» I, II и III хромосом Drosophila melanogaster с «цитологическими картами» этих хромосом в метафазе на основе данных по транслокациям (по Левитскому). Sp - место прикрепления нитей веретена. Остальными обозначены различные гены.
Несколько позднее было выполнено тройное сопоставление расположения генов на «генетических картах» сцепления, «цитологических картах» обычных соматических хромосом и «цитологических картах» гигантских слюнных желез.
Кроме дрозофилы, довольно подробные «генетические карты» групп сцепления были составлены и для некоторых других видов рода Дрозофила. При этом оказалось, что у всех достаточно подробно изученных видов число групп сцепления равно гаплоидному числу хромосом. Так, у дрозофилы, имеющей три пары хромосом, обнаружено 3 группы сцепления, у дрозофилы с пятью парами хромосом - 5, а у дрозофилы с шестью парами хромосом - 6 групп сцепления.
Среди позвоночных животных лучше других изучена домовая мышь, у которой уже установлено 18 групп сцепления, в то время как пар хромосом 20. У человека, имеющего 23 пары хромосом, известно 10 групп сцепления. У курицы с 39 парами хромосом всего 8 групп сцепления. Несомненно, что при дальнейшем генетическом изучении этих объектов число выявленных групп сцепления у них увеличится и, вероятно, будет соответствовать числу пар хромосом.
Среди высших растений генетически наиболее хорошо изучена кукуруза. У нее 10 пар хромосом и обнаружено 10 довольно больших групп сцепления. При помощи экспериментально полученных транслокаций и некоторых других хромосомных перестроек все эти группы сцепления приурочены к строго определенным хромосомам.
У некоторых высших растений, изученных достаточно подробно, также было установлено полное соответствие между числом групп сцепления и числом пар хромосом. Так, ячмень имеет 7 пар хромосом и 7 групп сцепления, томат - 12 пар хромосом и 12 групп сцепления, львиный зев - гаплоидное число хромосом 8 и установлено 8 групп сцепления.
Среди низших растений генетически наиболее подробно изучен сумчатый гриб. У него гаплоидное число хромосом равно 7 и установлено 7 групп сцепления.
В настоящее время считается общепризнанным, что число групп сцепления у всех организмов равно их гаплоидному числу хромосом, и если у многих животных и растений число известных групп сцепления меньше, чем их гаплоидное число хромосом, то это зависит только от того, что они генетически изучены еще недостаточно и, вследствие этого, у них выявлена только часть имеющихся групп сцепления.

ЗАКЛЮЧЕНИЕ

Как итог можно привести отрывки из трудов Т. Моргана:
»...Поскольку сцепление имеет место, оказывается, что разделение наследственного вещества является до некоторой степени ограниченным. Например, у плодовой мухи дрозофилы известно около 400 новых типов мутантов, особенности которых составляют всего лишь четыре группы сцепления...
...Члены группы сцепления могут иногда оказаться не так полно сцепленными друг с другом, ...некоторые из рецессивных признаков одной серии могут оказаться замененными признаками дикого типа из другой серии. Однако даже и в этом случае они все-таки считаются сцепленными, потому что соединенными вместе они остаются чаще, чем наблюдается такой обмен между сериями. Этот обмен называется перекрестом (CROSS-ING-OVER) - кроссинговером. Термин этот обозначает, что между двумя соответственными сериями сцепления может происходить правильный обмен их частями, в котором участвует большое число генов...
Теория гена устанавливает, что признаки или свойства особи являются функцией соединенных в пары элементов (генов), заложенных в наследственном веществе в виде определенного числа групп сцепления; она устанавливает затем, что члены каждой пары генов, когда половые клетки созревают, разделяются в соответствии с первым законом Менделя и, следовательно, каждая зрелая половая клетка содержит только один ассортимент их; она устанавливает также, что члены, принадлежащие к различным группам сцепления, распределяются при наследовании независимо, соответственно второму закону Менделя; равным образом она устанавливает, что иногда имеет место закономерный взаимообмен-перекрест - между соответственными друг другу элементами двух групп сцепления; наконец, она устанавливает, что частота перекреста доставляет данные, доказывающие линейное расположение элементов по отношению друг к другу...»

СПИСОК ЛИТЕРАТУРЫ

1. Общая генетика. М.: Высшая школа, 1985.
2. Хрестоматия по генетике. Изд-во Казанского ун-та, 1988.
3. Петров Д. Ф. Генетика с основами селекции, М.: Высшая школа, 1971.
4. Биология. М.: Мир, 1974.

Хромосомная теория наследственности – это учение о локализации наследственных факторов (генов) в хромосомах, которое утверждает, что преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом.

Связь между наследственными факторами – генами и структурными компонентами клетки – хромосомами была замечена в начале ХХ столетия. В это время были установлены правила видового постоянства числа хромосом, их парности и индивидуальности. В период 1908-1918 гг. американскими генетиками во главе с Т.Г. Морганом было сделано ряд научных открытий, доказавших роль хромосом в передаче наследственной информации: 1) генетическое определение пола, 2) наследование, сцепленное с полом, 3) группы сцепления генов и дp.

Наследование пола и хромосомы. Пол – это совокупность морфологических и физиологических признаков, обеспечивающих его половое размножение и передачу наследственной информации за счет образования гамет.

Особи мужского и женского пола отличаются хромосомным набором. Например, у самок многих животных (дрозофила, млекопитающие, в том числе человек) все пары хромосом гомологичны, а у самцов – две хромосомы непарные, причем одна из них такая же, как у самки. Хромосомы, по которым различаются особи мужского и женского пола, назвали половыми хромосомами: парная хромосома обозначается буквой Х, непарная – Y. Хромосомы, одинаковые у самцов и самок, назвали аутосомами (А). Например, у человека 23 пары хромосом, из них – 22 пары аутосом и одна пара – половые хромосомы. Хромосомный набор женщины можно записать так: 44А+ХХ, а мужчины – 44А+ХY. У дрозофилы хромосомный набор самки – 6А+ХХ, самца – 6А+ХY. Особи женского пола образуют один тип гамет (АХ) и называются гомогаметными , а особи мужского пола продуцируют два типа гамет (АХ, АY) и называются гетерогаметными. При оплодотворении я йцеклеток, несущих Х – хромосому, сперматозоидом с Х – хромосомой, образуется зигота (ХХ), из которой развивается особь женского пола. При слиянии яйцеклетки и сперматозоида, несущего Y – хромосому, развивается особь мужского пола. Математически такое наследование пола можно выразить следующим образом:

Р ААХХ х ААХY

Позднее выяснилось, что есть виды, у которых гетерогаметными являются самки, а самцы – гомогаметны (птицы, бабочки, жабы). В таких случаях женские половые хромосомы принято обозначать буквой WZ, а мужские ZZ. Наследование пола схемой можно записать так:

У некотоpых насекомых (кузнечиков) выявлен еще один тип хpомосомного опpеделения пола. У них самки несут диплоидный набоp хpомосом по всем паpам (ААХХ), а самцы – диплоидный набоp аутосом и гаплоидный набоp половых хpомосом (ААХО). Схематично такое наследование пола можно изобpазить так:

Р ААХХ х ААХО

G АХ АХ, АО

F1ААХХ, ААХО

Совершенно иной тип детерминации пола имеется у перепончатокрылых, в частности, у пчел. У них самки развиваются из оплодотворенных яйцеклеток и клетки их тела имеют диплоидный набор хромосом, а самцы развиваются партеногенетически (из неоплодотворенных яйцеклеток) и имеют гаплоидные клетки тела. Хромосомная теория наследования пола дает основание утверждать, что у большинства видов pастений и животных гены, детерминирующие развитие пола, локализованы в половых хромосомах. Например, у человека, гены, обуславливающие развитие женского пола, находятся в Х – хромосоме, а гены, определяющие развитие мужского пола – в Y – хромосоме. При этом гены, находящиеся в Y – хромосоме, являются доминантными. Поэтому генотип ХY детерминирует развитие мужской особи, а генотип ХХ – женской.

Наследование, сцепленное с полом . Половые хромосомы, помимо генов определяющих пол, несут гены, детерминируюшие другие признаки. Признаки, наследуемые через половые хромосомы, получили название сцепленных с полом. У человека признаки, наследуемые через Y – хромосому, могут проявляться лишь у мужчин, а признаки, наследуемые через Х – хромосому, – у лиц и мужского, и женского пола. Особь женского пола по генам Х – хромосомы может быть как гомо-, так и гетерозиготной. Рецессивные аллели проявляются у нее только в гомозиготном состоянии. У особей мужского пола гены Х – хромосомы могут проявляться и в рецессивном состоянии.

При записи схемы передачи признаков, сцепленных с полом, в генетических формулах, наряду с символами генов, контролирующих признаки, записывают и половые хромосомы, в которых эти гены локализованы.

Hапpимеp, ген окpаски глаз у дpозофилы локализован в Х – хpомосоме. Это можно записать так: ХW– ген кpасного цвета глаз и Хw– ген белого цвета глаз. Или ген ихтиоза (заболевание кожи) локализован у человека в Y – хpомосоме – YJ. У человека чеpез половые хромосомы наследуются многие физиологические и патологические признаки. Например, через Х – хромосому передается дальтонизм (цветовая слепота), гемофилия (несвертываемость крови), темная эмаль зубов и др.

Изучение сцепленного с полом наследования стимулировало исследование сцепления генов в аутосомах.

Группы сцепления генов. По третьему закону Г. Менделя, независимое комбинирование признаков может быть при условии, если гены, контролируюшие эти признаки, находятся в разных парах хромосом. Следовательно, у каждого организма число парных признаков, которые могут наследоваться независимо, ограничено числом пар хромосом. Однако в одном организме число признаков, контролируемых генами, значительно больше числа пар хромосом, имеющихся в его кариотипе. Следовательно, в каждой хромосоме имеется не один ген, а много. Если это так, то третий закон Менделя касается лишь свободного комбинирования хромосом, а не генов. Анализ проявления третьего закона Менделя показал, что в некоторых случаях новые комбинации генов у гибридов совсем отсутствовали, т. е. наблюдалось полное сцепление между генами родительских форм, и тогда в фенотипе происходило расщепление в соотношении 1: 1. Иногда при независимом наследовании комбинации признаков совершаются с меньшей, чем это должно было быть, частотой.

Т.Г. Морган назвал совместное наследование генов, расположенных в одной хромосоме, сцеплением генов. Гены, локализованные в одной хромосоме, располагаются последовательно друг за другом (линейно) и образуют группу сцепления . У каждого вида число их равно гаплоидному набору хромосом. Установлено, что в гомологичной паре хромосом регулярно происходит обмен аллельными генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют кроссинговером. Кроссинговер происходит в профазу I мейоза и обеспечивает новые сочетания генов в гомологичных хромосомах. Частота кроссинговера зависит от расстояния между генами, ее принято обозначать в процентах. Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными , а с не претерпевшими – некроссоверными . После оплодотвоpения таких гамет из них pазвиваются особи соответственно кpоссовеpные и некpоссовеpные.

Если во вpемя гаметогенеза пpоисходит кpоссинговеp, то говоpят о неполном сцеплении генов. Моpган пpедложил фоpмулу, по котоpой можно математически вычислить пpоцент кpоссинговеpа (pасстояние между генами), зная общее число гибpидов пеpвого поколения и число кpоссовеpных фоpм:

где Х – пpоцент кpоссинговеpа, а – число кpоссовеpных фоpм пеpвой гpуппы, в – число кpоссовеpных фоpм втоpой гpуппы, n – общее число потомков.

Используя эту фоpмулу, он вместе со своими учениками составил генетические каpты для всех четыpех гpупп сцепления у дpозофил.

Каpта хpомосомы – схема линейного pасположения генов в хpомосоме. Если эта каpта составлена математически (по фоpмуле Моpгана), то ее называют генетической , а если положение генов в хpомосоме опpеделено под микpоскопом, то такую каpту называют цитологической .

В целом можно выделить следующие основные положения хромосомной теории наследственности:

1) материальными носителями наследственной информации являются хромосомы, а в них – гены;

2) гены занимают в хромосоме определенное место (локус) и располагаются линейно;

3) гены одной хромосомы составляют группу их сцепления, число групп сцепления равно гаплоидному набору хромосом;

4) сцепление генов в хромосоме не абсолютно, оно нарушается при кроссинговере;

5) процент кроссинговера прямо пропорционален расстоянию между генами.

За единицу расстояния принят 1% кроссинговера и эту единицу назвали морганидой.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

КАФЕДРА САДОВОДСТВА, СЕЛЕКЦИИ И ЗАЩИТЫ РАСТЕНИЙ

Тема: Хромосомная теория наследственности

Выполнила: Руденко Ю.Е.

Студентка 2 курса ФАЭ группа 1312

Направление: Садоводство

Благовещенск 2014 г

ВВЕДЕНИЕ

ФОРМИРОВАНИЕ ХРОМОСОМНОЙ ТЕОРИИ

ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ

СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ

НЕПОЛНОЕ СЦЕПЛЕНИЕ ГЕНОВ. КРОССИНГОВЕР

НАСЛЕДОВАНИЕ, СЦЕПЛЕННОЕ С ПОЛОМ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Современная биология - комплексная система знаний, включающая в себя большое количество самостоятельных биологических наук. Познание жизни на различных уровнях ее организации, изучение различных свойств организмов и объектов живого, а также разнообразие используемых методов исследования позволяют выделить большое количество биологических дисциплин.

Однако лишь в XX в. ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе "задатки" того огромного множества признаков, из которых слагается каждый отдельный организм.

Наследственность заключается в способности организмов передавать особенности строения, функции, развития своему потомству. Наследственность обеспечивает преемственность между поколениями и обуславливает существование видов. Кроме того, выделяют понятие наследования, подразумевая конкретный способ передачи наследственной информации в ряду поколений, который может быть различен в зависимости от форм размножения, локализации генов в хромосомах и т.п. В основе наследственности лежат структурные и функциональные возможности генетической информации клеток.

Хромосомная теория наследственности, теория, согласно которой хромосомы, заключенные в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности.

1. ФОРМИРОВАНИЕ ХРОМОСОМНОЙ ТЕОРИИ

Вступление в XX в. ознаменовалось в биологии бурным развитием генетики. Важнейшим исходным событием явилось новое открытие законов Менделя. В 1900 г. законы Менделя были переоткрыты независимо сразу тремя учеными -- Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. Далее последовала лавина эмпирических открытий и построение различных теоретических моделей. За относительно короткий срок (20--30 лет) в учении о наследственности был накоплен колоссальный эмпирический и теоретический материал. Начало XX в. принято считать началом экспериментальной генетики, принесшей множество новых эмпирических данных о наследственности и изменчивости. К такого рода данным можно отнести: открытие дискретного характера наследственности; обоснование представления о гене и хромосомах как носителях генов; представление о линейном расположении генов; доказательство существования мутаций и возможность вызывать их искусственно; установление принципа чистоты гамет, законов доминирования, расщепления и сцепления признаков; разработка методов гибридологического анализа, чистых линий и инцухта, кроссинговера (нарушение сцепления генов в результате обмена участками между хромосомами) и др. Важно, что все эти и другие открытия были экспериментально подтверждены, строго обоснованы.

В первой четверти XX в. интенсивно развивались и теоретические аспекты генетики. Особенно большую роль сыграла хромосомная теория наследственности, разработанная в 1910--1915 гг. в трудах А. Вейсмана, Т. Моргана, А. Стертеванта, Г.Дж. Меллера и др. Она строилась на следующих исходных абстракциях: хромосома состоит из генов; гены расположены на хромосоме в линейном порядке; ген -- неделимая корпускула наследственности, квант; в мутациях ген изменяется как целое. Эта теория была первой обстоятельной попыткой теоретической конкретизации идей, заложенных в законах Менделя. Первые 30 лет XX в. прошли под знаком борьбы представителей различных концепций наследственности. Так, против хромосомной теории наследственности выступал У. Бэтсон, считавший, что эволюция состоит не в изменениях генов под влиянием внешней среды, а лишь в выпадении генов, в накоплении генетических утрат. Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.

2. ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ

При дальнейшем изучении сцепления генов вскоре было установлено, что число групп сцепления у дрозофилы (4 группы) соответствует гаплоидному числу хромосом у этой мухи, и все достаточно подробно изученные гены были распределены по этим 4 группам сцепления. Первоначально взаимное расположение генов в пределах хромосомы оставалось неизвестным, но позднее была разработана методика для определения порядка расположения генов, входящих в одну группу сцепления, основанная на количественном определении силы сцепления между ними.

Количественное определение силы сцепления генов основано на следующих теоретических предпосылках. Если два гена А и В у диплоидного организма расположены в одной хромосоме, а в гомологичной ей другой хромосоме расположены рецессивные аллеломорфы этих генов а и в, то отделиться друг от друга и вступить в новые сочетания со своими рецессивными аллеломорфами гены А и В могут только в том случае, если хромосома, в которой они расположены, будет разорвана на участке между этими генами и в месте разрыва произойдет соединение между участками этой хромосомы и ее гомолога.

Такие разрывы и новые сочетания участков хромосом действительно происходят при конъюгации гомологичных хромосом во время редукционного деления. Но при этом обмены участками обычно происходят не между всеми 4 хроматидами, из которых состоят хромосомы бивалентов, а только между двумя из этих 4 хроматид. Поэтому хромосомы, образующиеся в результате I деления мейоза, при таких обменах состоят из двух неодинаковых хроматид - неизмененной и реконструированной в результате обмена. Во II делении мейоза эти неодинаковые хроматиды расходятся к противоположным полюсам, и благодаря этому гаплоидные клетки, возникающие в результате редукционного деления (споры или гаметы), получают хромосомы, состоящие из одинаковых хроматид, но при этом только половине гаплоидных клеток достаются реконструированные хромосомы, а вторая половина получает неизмененные.

Такой обмен участками хромосом называется кроссинговером. При прочих равных условиях кроссинговер между двумя генами, расположенными в одной хромосоме, происходит тем реже, чем ближе друг к другу они расположены. Частота кроссинговера между генами пропорциональна расстоянию между ними.

Определение частоты кроссинговера обычно производится при помощи так называемых анализирующих скрещиваний (скрещивание гибридов F1 с рецессивным родителем), хотя для этой цели можно использовать и F2, получаемое от самоопыления гибридов F1 или скрещивания гибридов F1 между собой.

Можно рассмотреть такое определение частоты кроссинговера на примере силы сцепления между генами С и S у кукурузы. Ген С определяет образование окрашенного эндосперма (окрашенных семян), а его рецессивный аллель с обусловливает неокрашенный эндосперм. Ген S вызывает образование гладкого эндосперма, а его рецессивный аллель s определяет образование морщинистого эндосперма. Гены С и S расположены в одной хромосоме и довольно сильно сцеплены друг с другом. В одном из опытов, проведенных для количественного определения силы сцепления этих генов, были получены следующие результаты.

Растение с окрашенными гладкими семенами, гомозиготное по генам С и S и имевшее генотип ССSS (доминантный родитель), было скрещено с растением с неокрашенными морщинистыми семенами с генотипом ссss (рецессивный родитель). Гибриды первого поколения F1 были вновь скрещены с рецессивным родителем (анализирующее скрещивание). Таким образом было получено 8368 семян F2, у которых по окраске и морщинистости было обнаружено следующее расщепление: 4032 окрашенных гладких семени; 149 окрашенных морщинистых; 152 неокрашенных гладких; 4035 неокрашенных морщинистых.

Если бы при образовании макро- и микроспор у гибридов F1 гены С и S распределялись независимо друг от друга, то в анализирующем скрещивании все эти четыре группы семян должны быть представлены в одинаковом количестве. Но этого нет, т. к. гены С и S расположены в одной хромосоме, сцеплены друг с другом, и вследствие этого споры с рекомбинированными хромосомами, заключающими гены Сs и сS, образуются только при наличии кроссинговера между генами С и S, что имеет место сравнительно редко.

Процент кроссинговера между генами С и S можно вычислить по формуле:

Х = а + в / n х 100 %,

где а - количество кроссинговерных зерен одного класса (зерен с генотипом Сscs, происходящих от соединения гамет Сs гибрида F1 с гаметами cs рецессивного родителя); в - количество кроссинговерных зерен второго класса (сScs); n - общее число зерен, полученных в результате анализирующего скрещивания.

Схема, показывающая наследование хромосом, содержащих сцепленные гены у кукурузы (по Гетчинсону). Указано наследственное поведение генов окрашенного (С) и бесцветного (с) алейрона, полного (S) и морщинистого (s) эндосперма, а также несущих эти гены хромосом при скрещивании двух чистых типов между собой и при возвратном скрещивании F1 с двойным рецессивом.

Подставляя количество зерен различных классов, полученное в этом опыте, в формулу, получаем:


Расстояние между генами в группах сцепления обычно выражается в процентах кроссинговера, или в морганидах (морганида - единица, выражающая силу сцепления, названная по предложению А. С. Серебровского в честь Т. Г. Моргана, равна 1 % кроссинговера). В данном случае можно сказать, что ген С находится на расстоянии 3,6 морганиды от гена S.

Теперь можно определить при помощи этой формулы расстояние между В и L у душистого горошка. Подставляя числа, полученные при анализирующем скрещивании и приведенные выше, в формулу, получаем:

Х = а + в / n х 100 % = 7 + 8 / 112 х 100 % = 11,6 %

У душистого горошка гены В и L находятся в одной хромосоме на расстоянии 11,6 морганиды друг от друга.

Таким же путем Т. Г. Морган его ученики определили процент кроссинговера между многими генами, входящими в одну и ту же группу сцепления, для всех четырех групп сцепления дрозофилы. При этом выяснилось, что процент кроссинговера (или расстояние в морганидах) между различными генами, входящими в состав одной группы сцепления, оказался резко различным. Наряду с генами, между которыми кроссинговер происходил очень редко (около 0,1 %), имелись и такие гены, между которыми совсем не было обнаружено сцепления, что говорило о том, что одни гены расположены очень близко друг от друга, а другие - очень далеко.

3. СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом.

Например, у кукурузы изучено более 500 генов, у мухи дрозофилы - более 1 тыс., а у человека - около 2 тыс. генов, тогда как хромосом у них 10,4 и 23 пары соответственно. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе. Число групп сцепления соответствует гаплоидному набору хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены.

Закономерности сцепленного наследования генов были изучены Т.Х. Морганом и его учениками в начале 20-х годов XX века. Объектом для исследований являлась плодовая мушка дрозофила. У дрозофилы гены, контролирующие окраску тела и длину крыла, представлены следующими парами аллелей: серое тело - черное тело, длинные крылья - зачаточные (короткие). Серое тело и длинные крылья доминируют. Ожидаемое отношение фенотипов в F2 от скрещивания между гомозиготной с серым телом и длинными крыльями и гомозиготной с черным телом и зачаточными крыльями должно составить 9:3:3:1. Это указывало на обычное менделеевское наследование при дигибридном скрещивании, обусловленное случайным распределением генов, находящихся в разных, негомологичных хромосомах. Однако вместо этого в F2 были получены в основном родительские фенотипы в отношении примерно 3:1. Это можно объяснить, предположив, что, гены окраски тела и длины крыла локализованы в одной и той же хромосоме, т.е. сцеплены.

Практически, однако, соотношение 3:1 никогда не наблюдается, а возникают все четыре фенотипа. Это объясняется тем, что полное сцепление встречается редко. В большинстве экспериментов по скрещиванию при наличии сцепления помимо мух с родительскими фенотипами обнаруживаются особи с новыми сочетаниями признаков.

Эти новые фенотипы называют рекомбинантными. Все это позволяет дать следующее определение сцепления: два или более генов называют сцепленными, если потомки с новыми генными комбинациями (рекомбинантны) встречаются реже, чем родительские фенотипы.

4. НЕПОЛНОЕ СЦЕПЛЕНИЕ ГЕНОВ. КРОССИНГОВЕР

В 1909 г. бельгийский цитолог Янссенс наблюдал образование хиазм во время профазы I мейоза. Генетическое значение этого процесса разъяснил Морган, высказавший мнение, что кроссинговер (обмен аллелями) происходит в результате разрыва и рекомбинации гомологичных хромосом во время образования хиазм. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Аллели, входящие в группы сцепления у родительских особей, разделяются и образуются новые сочетания, которые попадают в гаметы, - процесс, называемый генетической рекомбинацией. Потомков, которые получаются из таких гамет с "новыми" сочетаниями аллелей, называют рекомбинантными.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Гибриды первого поколения (самки) были скрещены с чернотелыми зачаточнокрылыми самцами. В F2 кроме родительских комбинаций признаков, появились новые - мухи с черным телом и зачаточными крыльями, а также с серым телом и нормальными крыльями. Правда, количество рекомбинантных потомков невелико и составляет 17%, а родительских - 83%. Причиной появления небольшого количества мух с новыми сочетаниями признаков является кроссинговер, который приводит к новому рекомбинантному сочетанию аллелей генов b+ и vg в гомологичных хромосомах. Эти обмены происходят с вероятностью 17% и в итоге дают два класса рекомбинантов с равной вероятностью - по 8,5%.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды.

5. НАСЛЕДОВАНИЕ, СЦЕПЛЕННОЕ С ПОЛОМ

Принадлежность к определенному полу - важная особенность фенотипа особи. При изучении строения хромосом половых и соматических клеток животных и человека было установлено, что организмы разных полов различаются по набору хромосом. В соматических клетках обычно находятся две половые хромосомы. В женском кариотипе половые хромосомы представлены крупными парными (гомологичными) хромосомами (ХХ). В мужском кариотипе пара половых хромосом включает одну Х-хромосому и небольшую палочковидную У-хромосому. Таким образом, хромосомный набор человека содержит 22 пары аутосом, одинаковых у мужского и у женского организмов, и одну пару половых хромосом, по которой различаются оба пола.

В том случае, когда гены, контролирующие формирование того или иного признака, локализованы в аутосомах, наследование осуществляется независимо от того, кто из родителей (мать или отец) является носителем изучаемого признака. Если же гены находятся в половых хромосомах, характер наследования признаков резко изменяется. Например, у дрозофилы гены, локализованные в Х-хромосоме, как правило, не имеют аллелей в У-хромосоме. По этой причине рецессивные гены в Х-хромосоме гетерогаметного пола практически всегда проявляются, будучи в единственном числе.

Признаки, гены которых локализованы в половых хромосомах, называются признаками, сцепленными с полом. Явление наследования, сцепленного с полом, было открыто Т. Морганом у дрозофилы.

Помимо гомологичных участков, Х- и У-хромосомы имеют негомологичные участки. Негомологичный участок У-хромосомы, кроме генов, определяющих мужской пол, содержит гены перепонок между пальцами ног и волосатых ушей у человека.

Патологические признаки, сцепленные с негомологичным участком У-хромосомы, передаются всем сыновьям, поскольку они получают от отца У-хромосому.

Негомологичный участок Х-хромосомы содержит в своем составе ряд важных для жизнедеятельности организмов генов. Поскольку у гетерогаметного пола (ХУ) Х-хромосома представлена в единственном числе, то признаки, определяемые генами негомологичного участка Х-хромосомы, будут проявляться даже в том случае, если они рецессивны. Такое состояние генов называется гемизиготным. Примером такого рода Х-сцепленных рецессивных признаков у человека являются гемофилия, мышечная дистрофия Дюшена, атрофия зрительного нерва, дальтонизм (цветовая слепота) и др.

Гемофилия - это наследственная болезнь, при которой кровь теряет способность свертываться. Ранение, даже царапина или ушиб, могут вызвать обильные наружные или внутренние кровотечения, которые нередко заканчиваются смертью. Поэтому больных гемофилией следует тщательно оберегать от всякого рода травм. В некоторых странах для таких детей созданы специальные школы. Это заболевание встречается, за редким исключением, только у мужчин. Было установлено, что гемофилия обусловлена рецессивным геном, локализованным в Х-хромосоме, поэтому гетерозиготные по данному гену женщины обладают нормальной свертываемостью крови.

Рассмотрим наследование гемофилии у человека:- ген гемофилии (кровоточивости);

Н - ген нормальной свертываемости крови.

Учитывая, что в генотипе женщины имеется две Х-хромосомы, а у мужчин - одна Х-хромосома и одна Y-хромосома потомки данного брака проявляют расщепление признака: половина дочерей (ХHХh) являются носительницами гена гемофилии, а половина сыновей (XhУ) - гемофиликами; вторая половина - дочери (ХHХH) и сыновья (ХHУ) - окажутся здоровыми. Таким образом, гемофилия, передаваемая через женщин, проявляется у половины их сыновей.

Фенотипическое проявление гемофилии у девочек будет наблюдаться в том случае, если мать девочки является носительницей гена гемофилии, а отец - гемофиликом. Подобная закономерность наследования характерна и для других рецессивных, сцепленных с полом признаков.

Генеалогическим методом можно выявить сцепленные с полом заболевания (дальтонизм, гемофилию и т.д.), аутосомно-доминантные болезни (полидактилию), а также аутосомно-рецессивные болезни (фенилкетонурию).

хромосомный наследственность ген сцепленный

ЗАКЛЮЧЕНИЕ

Теория гена устанавливает, что признаки или свойства особи являются функцией соединенных в пары элементов (генов), заложенных в наследственном веществе в виде определенного числа групп сцепления; она устанавливает затем, что члены каждой пары генов, когда половые клетки созревают, разделяются в соответствии с первым законом Менделя и, следовательно, каждая зрелая половая клетка содержит только один ассортимент их; она устанавливает также, что члены, принадлежащие к различным группам сцепления, распределяются при наследовании независимо, соответственно второму закону Менделя; равным образом она устанавливает, что иногда имеет место закономерный взаимообмен-перекрест - между соответственными друг другу элементами двух групп сцепления; наконец, она устанавливает, что частота перекреста доставляет данные, доказывающие линейное расположение элементов по отношению друг к другу...»

СПИСОК ЛИТЕРАТУРЫ

1. Общая генетика. М.: Высшая школа, 1985.

Хрестоматия по генетике. Изд-во Казанского ун-та, 1988.

Петров Д.Ф. Генетика с основами селекции, М.: Высшая школа, 1971.

Бочков Н.П. Медицинская генетика - М.: Мастерство, 2001 г.

5. Иванов В.И. Генетика. М.: ИКЦ Академкнига, 2006 г



Понравилась статья? Поделитесь с друзьями!