Используя метод горнера вычислить значение многочлена. Смотреть что такое "Схема Горнера" в других словарях




Горнер Уильям Джордж () Английский математик. Основные исследования относятся к теории алгебраических уравнений. Разработал способ приближенного решения уравнений любой степени. В 1819 г. ввёл важный для алгебры способ деления многочлена на двучлен (х – а) (схема Горнера).


Вывод формул для схемы Горнера Разделить с остатком многочлен f(x) на двучлен (x-c) значит найти такой многочлен q(x) и такое число r, что f(x)=(x-c)q(x)+r Запишем это равенство подробно: f 0 x n + f 1 x n-1 + f 2 x n-2 + …+f n-1 x + f n = =(x-c) (q 0 x n-1 + q 1 x n-2 + q 2 x n-3 +…+ q n-2 x + q n-1)+r Приравняем коэффициенты при одинаковых степенях: x n: f 0 = q 0 => q 0 = f 0 x n-1: f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0 x n-2: f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1 … X 0: f n = q n - c q n-1 => q n = f n + c q n-1 q 0 = f 0 x n-1: f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0 x n-2: f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1 … X 0: f n = q n - c q n-1 => q n = f n + c q n-1">


Демонстрация работы схемы Горнера С помощью схемы Горнера разделим с остатком многочлен f(x) = x 3 - 5x на двучлен x-2 Записываем коэффициенты исходного многочлена f 0, f 1, f 2, f 3. f0f0 f1f1 f2f2 f3f c 2 Если делим на (x-c), то во второй строке слева пишем с Готовим пустые клетки для остатка r и коэффициентов неполного частного q 0, q 1,q 2 q0q0 q1q1 q2q2 r g 0:=f 0 =1 1 g 1:= с *g 0 + f 1 * + =2 * 1 + (-5)=-3 g 2:= с *g 1 + f 2 =2 * (-3) + 0=-6 * + r:= с *g 2 + f 3 =2 * (-6) + 8= * + -4 Ответ: g(x)=x 2 -3x-6 ; r= -4. f(x)= (x-2)(x 2 -3x-6)-4


Разложение многочлена по степеням двучлена Используя схему Горнера, разложим многочлен f(x)=x 3 +3x 2 -2x+4 по степеням двучлена (x+2) f(x)=x 3 +3x 2 -2x+4 =(x+2)(x 2 +x-4) f(x)=x 3 +3x 2 -2x+4= (x+2)((x-1)(x+2)-2) f(x)=x 3 +3x 2 -2x+4= (((1*(x+2)-3)(x+2)-2)(x+2)) f(x) = x 3 +3x 2 -2x+4 = (x+2)(x 2 +x-4)+12 = (x+2)((x-1)(x+2)-2)+12 = = (((1*(x+2)-3)(x+2)-2)(x+2))+12 = (x+2) 3 -3(x+2) 2 -2(x+2)+12


Домашняя работ а 1. Разделить f(x)=2x 5 -x 4 -3x 3 +x-3 на x-3; 2. Используя схему Горнера, найдите целые корни многочлена f(x)=x 4 -2x 3 +2x 2 -x-6 (*Замечание: целые корни многочлена с целыми коэффициентами нужно искать среди делителей свободного члена ±1;±2;±3;±6)



Существует алгоритм деления многочлена f (x ) на (x – a ), который называется схемой Горнера.

Пусть f (x ) = , deg f (x ) = n , a n 0. Разделим f (x ) на (x – a ), получим: (*) f (x ) = (x – а ) × q (x ) + r , где r Î F , deg q (x ) = n – 1.

Запишем q (x ) = b n -1 x n -1 + b n -2 x n -2 + … + b 1 x + b 0 . Тогда подставив в равенство (*) вместо f (x ) и q (x ) их выражения, получим:

a n x n + a n-1 x n-1 + … + a 1 x + a 0 = (х – а ) (b n-1 x n-1 + b n-2 x n-2 + … + b 1 x + b 0 ) + r

Так как многочлены равны, то и коэффициенты при соответствующих степенях должны быть равны.

r – ab 0 = a 0 r = a 0 + ab 0

b 0 – ab 1 = a 1 b 0 = a 1 + ab 1

…………… .. ……………

b n -1 = a n a n = a n -1

Вычисление коэффициентов многочлена q (x ) удобнее осуществлять с помощью таблицы (схемы Горнера).

a n a n-1 a 1 a 0
b n -1 = a n b n - 2 = ab n-1 + a n-1 b 0 = ab 1 +a 1 r = a 0 + ab 0

С помощью схемы Горнера можно решать такие типы задач:

1. Найти q(x) и r при делении f (x ) на (х – а );

2. Вычислить значение многочлена f (x ) при x = a ;

3. Выяснить, будет ли х = а корнем многочлена f (x ), а F ;

4. Определить кратность корня;

5. Разложить многочлен по степеням (х – а ).

6. Вычислить значение многочлена f (x ) и всех его производных при х = а .

Пример. Пусть f (x ) = x 5 – 15 x 4 + 76 x 3 – 140x 2 + 75x – 125 и а = 5.

Составим схему Горнера:

-15 -140 -125
-10 -10 0 = с 0
-5 -5 0 = с 1
0 =с 2
5 26 = с 3
10 = с 4
1 = с 5

1. Вычислим неполное частное q (x ) и остаток r при делении f (x ) на (х – 5). Во второй строке таблицы видим, что коэффициенты частного q (x ) равны: 1, – 10, 26, – 10, 25, поэтому q (x ) = 1х 4 – 10х 3 + 26х 2 – 10х + 25, а остаток r равен 0.

2. Вычислим значение многочлена f (x ) при x = 5. Воспользуемся теоремой Безу: f (5) = r = 0.

3. Выясним, будет ли х = 5 корнем многочлена f (x ). По определению а – корень f (x ), если f (а ) = 0. Так как f (5) = r = 0, то 5 – корень f (x ).

4. Из второй, третьей и четвертой строк таблицы мы видим, что f (x ) делится на (х – 5) 3 , но f (x ) не делится на (х – 5) 4 . Следовательно, число корень 5 имеет кратность 3.

5. Разложим многочлен f (x ) по степеням (х – 5), коэффициенты разложения с 0 , с 1 , с 2 , с 3 , с 4 , с 5 получаются в последних клетках второй, третьей, четвертой, пятой, шестой и седьмой строки схемы Горнера:

f (x ) = с 0 + с 1 (х – 5)+ с 2 (х – 5) 2 + с 3 (х – 5) 3 + с 4 (х – 5) 4 + с 5 (х – 5) 5 или

f (x ) = 26 (х – 5) 3 + 10 (х – 5) 4 + (х – 5) 5 .

6. Вычислим значение многочлена f (x ) и всех его производных при х = 5.

с 0 = f (5) = 0, с 1 = f ′ (5) = 0, с 2 = = 0 f ′′(5) = 0,

с 3 = = 26 f ′′′ (5) = 26 ∙ 3! = 156, с 4 = = 10 f ′ v (5) = 10 ∙ 4! = 240,

с 5 = = 1 f v (5) = 1 ∙ 5! = 120.

МЕТОДИКА 15. «Логарифмическая функция».

1. Логико – математический анализ темы.

Данная тема изучается в 10 классе.

Основные понятия:

Функцию, заданную формулой у=log а х, где а>0, а≠0 называют логарифмической функцией с основанием а.

Термин – логарифмическая функция.

Род – функция.

Видовые отличия: 1) а>0, а≠0; 2) функция задана формулой у=log а х.

Основные предложения:

Свойства логарифмической функции.

1°. Область определения логарифмической функции – множество всех положительных чисел R + , т.е. D(log)=R + .

2°. Область значений логарифмической функции – множество всех действительных чисел.

3°. Логарифмическая функция на всей области определения возрастает (при а>1) или убывает (при 0<а<1).

Справедливо следующее утверждение: графики показательной и логарифмической функций, имеющих одинаковое основание, симметричны относительно прямой у=х.

Основные идеи и методы изучения:

Определения понятий явные, через ближайший род и видовые отличия – конструктивные.

Методы доказательства:

Дедуктивные (на основе определения) с использованием математических методов: логарифмирование степени, основные свойства степени, метод от противного.

Например, свойство о том, что при а>1 функция возрастает, доказывается с помощью определения возрастающей функции, при этом применяется метод от противного.

Ранее изученный материал Теоретический материал темы Применение изученного материала
- показательная функция; - показательные уравнения и неравенства; - логарифмы и их свойства; - убывающая и возрастающая функции; - график функции. Область определения функции Множество значений функции График функции Логарифм числа Десятичный и натуральный логарифмы Основные логарифмические тождества Логарифмическая функция Свойства логарифма Логарифмические уравнения Логарифмические неравенства - при решении логарифмических уравнений и неравенств; - в астрономии (оценка яркости звезд); - в физике; - в высшей математике (математическая логика, математический анализ).
  1. Основные типы математических задач по теме

Найти область определения функции;



Построить график функции;

Найти область значения функции;

Найти промежутки знакопостоянства функции;

Исследовать функцию и построить ее график;

Найти наибольшее и наименьшее значение функции;

Найти значение выражения.

Типичные ошибки и затруднения изучения темы

Математические ошибки:

ü вычислительные ошибки: при решении уравнений и неравенств, при нахождении значений функции, при действиях со степенями;

ü логические ошибки: в выполнении тождественных преобразований, в использовании свойств логарифмов, при определении понятий, при выводе формул;

ü графические ошибки: при построении графиков функций (не учитывают свойства функций); неправильно применяют преобразование графиков.

3. методы и приемы работы учащихся с учебником математики в соответствии с возрастными особенностями учащихся.

В 5-6 классах используют следующие методы работы с учебником:

1. чтение правил, определений, формулировок теорем учащимися после объяснения учителя

2. чтение вслух учителя ученикам с выделением главного и существенного

3. работа с формулами и иллюстрациями на обложке учебника

4. чтение учебника учащимися и ответы на вопросы учителя

В 7-8 классах добавляются следующие методы работы с учебником:

1. чтение текстов после их объяснения учителем

2. чтение текста учащимися и разбивка его на смысловые абзацы

3. чтение текста из учебника учащимися и запись основных предложений темы по плану, предложенному учителем

В 9 – 11 классах ко всему предложенному добавляется:

1. разбор примеров учащимися в учебнике, после объяснения темы учителем

2. чтение текста учащимися и запись опорного конспекта по данному тексту

3. чтение текста учебника и самостоятельное составление учащимися плана по данному тексту.

4. чтение текста учебника и ответ учащегося по самостоятельно составленному плану

2. Фрагмент урока изучения новой темы: «Логарифмическая функция».

Цели урока:

Обучающие: обеспечить в ходе урока усвоения понятия логарифмическая функция, формировать умения определять свойства логарифмических функций, формировать умение изображать графики логарифмической функции.

Развивающие: способствовать развитию мышления, восприятия, памяти, воображению, внимания.

Воспитательные: воспитывать устойчивый интерес к математике, воспитывать отдельные качества личности: аккуратность, настойчивость, трудолюбие.

Тип урока: изучение нового материала

Структура урока:

1.организационный момент; 2. постановка целей урока; 3.проверка домашнего задания; 4. подготовка к изучению нового материала; 5. изучение нового материала; 6.первичное закрепление и осмысление нового материала; 7.постановка домашнего задания; 8.подведение итогов урока.;

Действия учителя Действия учеников
ответьте на вопрос 1. что называется функцией? 2. какие функции вы узнали в этом году? 3. какие свойства функций вы знаете? 4. что называется графиком функции? Сегодня мы изучим новую функцию логарифмическую. Когда мы изучали показательную функцию, мы оформляли ее свойства в таблицу. Сейчас я предлагаю открыть вам страницу 98 в ваших учебниках прочитать параграф 18 и записать в тетрадях опорный конспект по плану предложенному на доске. Опорный конспект вы будите оформлять так же, как оформляли при изучении показательной функции. План опорного конспекта. 3. определение логарифмической функции 4. свойства логарифмической функции оформите в таблицу.

А теперь к доске я приглашаю одного человека который оформит правильно конспект на доске.

5. Числовой функцией с областью определении D называется соответствие, при котором каждому числу х из множества D сопоставляется по некоторому правилу число у, зависящее от х. 6. степенная, показательная. 7. Область определения, область значений, непрерывность, возрастание, убывание функции. 8. Графиком функции f называют множество всех точек (х; у) координатной плоскости, где y=f(x), а х «пробегает» всю область определения функции f. Ответы: Функцию, заданную формулой у=log а х, где а>0, а≠0 называют логарифмической функцией с основанием а.

Многочлен вида
a n x n + a n-1 x n-1 + a n-2 x n-2 + ... + a 1 x + a 0
можно разложить на множители по схеме Горнера, если известен хотя бы 1 его корень.

Разберем деление по схеме Горнера на примере:

2x 4 + 9x 3 - 10x 2 - 27x - 10

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа -10 являются ±1, ±2, ±5, ±10. Начнем их подставлять по-очереди:

1: 2 + 9 - 10 - 27 - 10 = -36 ⇒ число 1

-1: 2 - 9 - 10 + 27 - 10 = 0 ⇒ число -1 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является -1, а значит исходный многочлен должен делиться на x + 1 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

2 9 -10 -27 -10
-1

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень -1. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

2 9 -10 -27 -10
-1 2
Во вторую ячейку второй строки запишем число 2, просто перенеся его из соответствующей ячейки первой строки.
2 9 -10 -27 -10
-1 2 7
-1 ∙ 2 + 9 = 7
2 9 -10 -27 -10
-1 2 7 -17
-1 ∙ 7 - 10 = -17
2 9 -10 -27 -10
-1 2 7 -17 -10
-1 ∙ (-17) - 27 = -10
2 9 -10 -27 -10
-1 2 7 -17 -10 0
-1 ∙ (-10) - 10 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(2x 3 + 7x 2 - 17x - 10)

Но это еще не конец. Можно попробовать разложить таким же способом многочлен 2x 3 + 7x 2 - 17x - 10.

Опять ищем корень среди делителей свободного члена. Как мы уже выяснили, делителями числа -10 являются ±1, ±2, ±5, ±10.

1: 2 + 7 - 17 - 10 = -18 ⇒ число 1 не является корнем многочлена

-1: -2 + 7 + 17 - 10 = 12 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 8 + 7 ∙ 4 - 17 ∙ 2 - 10 = 0 ⇒ число 2 является корнем многочлена

Напишем найденный корень в нашу схему Горнера и начнем заполнять пустые ячейки:

2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2
Во вторую ячейку третьей строки запишем число 2, просто перенеся его из соответствующей ячейки второй строки.
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11
2 ∙ 2 + 7 = 11
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5
2 ∙ 11 - 17 = 5
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
2 ∙ 5 - 10 = 0

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(x - 2)(2x 2 + 11x + 5)

Многочлен 2x 2 + 11x + 5 тоже можно разложить на множители. Для этого можно решить квадратное уравнение через дискриминант , а можно поискать корень среди делителей числа 5. Так или иначе, мы придем к выводу, что корнем этого многочлена является число -5

2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2
Во вторую ячейку четвертой строки запишем число 2, просто перенеся его из соответствующей ячейки третьей строки.
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2 1
-5 ∙ 2 + 11 = 1
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2 1 0
-5 ∙ 1 + 5 = 0

Таким образом мы исходный многочлен разложили на линейные множители:

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(x - 2)(x + 5)(2x - 1)

Алгоритмы , Математика

Вычисление значения многочлена в точке является одной из простейших классических задач программирования.
При проведении различного рода вычислений часто приходится определять значения многочленов при заданных значениях аргументов. Часто приближенное вычисление функций сводится к вычислению аппроксимирующих многочленов.
Рядового читателя Хабрахабр нельзя назвать неискушенным в применении всяческих извращений. Каждый второй скажет, что многочлен надо вычислять по правилу Горнера . Но всегда есть маленькое «но», всегда ли схема Горнера является самой эффективной?



Я не ставлю цель точно описать алгоритмы для вычисления многочленов, а лишь показать, что в некоторых случаях можно (нужно) применять схемы отличные правила Горнера. Для тех, кого заинтересует материал, в конце статьи приведен список литературы, с которой можно ознакомиться для более детального изучения вопроса.
Кроме того, иногда становиться обидно, что фамилии наших русских математиков остаются малоизвестными. К тому же мне просто приятно рассказать о работах наших математиков.

Схема Горнера

При вычислении значений многочленов очень широкое применение получило правило Горнера. Метод назван в честь британского математика Уильяма Джорджа Горнера.
В соответствии с этим правилом многочлен n-й степени:

представляется в виде

Вычисление значения многочлена производится в порядке, определяемом скобками. Что имеем? Чтобы вычислить многочлен по схеме Горнера, надо выполнить n умножений и n-k сложений (здесь k – число коэффициентов многочлена, равных 0). Если , то умножений будет n-1.
Можно показать, что для вычисления многочленов, общего вида нельзя построить схему более экономичную по числу операций, чем схема Горнера.
Самая большая привлекательность схемы Горнера состоит в простоте алгоритма для вычисления значения многочлена.

Исключения

При вычислении многочленов специального вида может потребоваться меньшее число операций, чем при применении универсальной схемы Горнера. Например, вычисление степени по схеме Горнера означает последовательное перемножение n множителей и требует n-1 умножение. Однако каждый первый читатель скажет, что для вычисления, например, нужно последовательно вычислить , , , т.е. выполнить всего 3 умножения вместо 7.

А есть что-то еще, ведь схема Горнера самая экономичная?

На самом деле все решают объемы вычислений. Если надо вычислить одно значение многочлена, то лучше схемы Горнера ничего не придумано. Но если значения многочлена вычисляются во многих точках, то появляется возможность сэкономить большое число операций умножения за счет предварительных вычислений, выполняемых ровно один раз. Это может значительно ускорить работу программы.

В некоторых случаях для получения значений полиномов целесообразно использовать двухэтапные схемы. На первом этапе выполняются действия только над коэффициентами многочлена, он преобразуется к специальному виду. На втором же этапе вычисляют уже значение самого многочлена при заданных значениях аргумента. При этом может оказаться, что количество операций, выполняемых на втором этапе будет меньше, чем при вычислениях по схеме Горнера.

Снова замечу, что такие методы вычислений целесообразны при вычислении значений многочлена для большого числа значений x. Выигрыш получается, за счет того, что первый этап для многочлена выполняется лишь один раз. Примером может послужить вычисление элементарных функций, где приближающий многочлен готовиться заранее.

В дальнейших рассуждениях, говоря о количестве операций для вычисления , я буду иметь в виду сложность второго этапа вычислений.

Схема Дж.Тодта для многочленов 6 степени

Имеем следующий многочлен:
Для вычислений используем следующие вспомогательные многочлены:

Коэффициенты определяются методом неопределенных коэффициентов исходя из условия . Из последнего условия составляем систему уравнений, приравнивая коэффициенты при равных степенях многочленов.

Саму систему, здесь приводить не буду. Но она легко решается методом подстановок, при этом приходится решать квадратные уравнения. Коэффициенты могут получиться комплексными, но если коэффициенты оказываются действительными, то вычисления требуют трех умножений и семи сложений вместо пяти умножений и шести сложений по схеме Горнера.

Говорить об универсальности данной схемы не приходится, но зато читатель наглядно может оценить уменьшение числа операций по сравнению со схемой Горнера.

Схема Ю.Л. Кеткова

Наконец-то, добрался и до наших математиков.

Ю.Л. Кетков дал общее представление многочлена n-й степени для n>5, всегда приводящее к действительным выражениям и требующее для вычисления многочлене n-й степени выполнения [(n+1)/2]+ умножений и n+1 сложений.

Например, при n=2k схема Кеткова сводится к нахождению многочленов:






где , при k –четном, и , , если k нечетное (k>2).

Все неизвестные коэффициенты находятся из равенства . В работах Кеткова для решения получающихся систем дается метод, дающий всегда действительные коэффициенты .

Схемы В.Я. Пана

Э. Белага в своих работах дал строгое доказательство невозможности построения схемы вычисления произвольных многочленов n-й степени, использующей на втором этапе меньше, чем [(n+1)/2]+1 умножений и n сложений.

В.Я. Пан занимался вопросами оптимального вычисления многочленов. В частности, им предложено несколько схем для вычисления действительных многочленов, которые весьма близко подобрались к оценкам Э. Белаги. Приведу некоторые схемы Пана для действительных многочленов.
1. Схема для вычисления многочленов четвертой степени.
Рассматривается многочлен .

Представим в виде:



где

2. Схема для вычисления , .
Строим вспомогательные многочлены , , :
, s=1,2,…,k.

Для вычисления значения многочлена используем выражения:

Эта схема на втором этапе требует умножения и сложения.

Особенностью данной схемы является то, что коэффициенты всегда существуют при и действительных коэффициентах исходного многочлена.

У В.Я. Пана существуют и другие схемы для вычисления многочленов, в том числе и для комплексных.

Заключение

Резюмируя сказанное, замечу, что вычисление одного или нескольких значений полинома бесспорно нужно проводить с использованием схемы Горнера.

Однако, если число значений полинома, которые потребуется вычислить велико, а производительность очень важна, то имеет смысл рассмотреть применение специальных методов вычисления многочленов.

Некоторые читатели скажут, что возиться с применением схем, отличных от схемы Горнера, сложно, муторно и не стоит с этим связываться. Однако в реальной жизни встречаются задачи, в которых требуется вычислять просто огромное число значений многочленов с большими степенями (например, на их вычисление могут уходить месяцы), и уменьшение числа умножений в два раза даст существенный выигрыш во времени, даже если вам придется потратить пару дней на реализацию конкретной схемы для вычисления многочленов.

Литература

  1. Кетков Ю.Л. Об одном способе вычисления полиномов на математических машинах. // Известия ВУЗ"ов. Радиофизика, т.1., № 4, 1958
  2. В. Я. Пан, “Вычисление многочленов по схемам с предварительной обработкой коэффициентов и программа автоматического нахождения параметров”, Ж. вычисл. матем. и матем. физ., 2:1 (1962), 133–140
  3. В. Я. Пан, “О способах вычисления значений многочленов”, УМН, 21:1(127) (1966), 103–134
  4. В. Я. Пан, “О вычислении многочленов пятой и седьмой степени с вещественными коэффициентами”, Ж. вычисл. матем. и матем. физ., 5:1 (1965), 116–118
  5. Пан В. Я. Некоторые схемы для вычисления значений полиномов с вещественными коэффициентами. Проблемы кибернетики. Вып. 5. М.: Наука, 1961, 17–29.
  6. Белага Э. Г. О вычислении значений многочлена от одного переменного с предварительной обработкой коэффициентов. Проблемы кибернетики. Вып. 5. М.: Физматгиз, 1961, 7–15.

Вы можете помочь и перевести немного средств на развитие сайта

Схема Горнера - способ деления многочлена

$$P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$$

на бином $x-a$. Работать придётся с таблицей, первая строка которой содержит коэффициенты заданного многочлена. Первым элементом второй строки будет число $a$, взятое из бинома $x-a$:

После деления многочлена n-ой степени на бином $x-a$, получим многочлен, степень которого на единицу меньше исходного, т.е. равна $n-1$. Непосредственное применение схемы Горнера проще всего показать на примерах.

Пример №1

Разделить $5x^4+5x^3+x^2-11$ на $x-1$, используя схему Горнера.

Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена $5x^4+5x^3+x^2-11$, расположенные по убыванию степеней переменной $x$. Заметьте, что данный многочлен не содержит $x$ в первой степени, т.е. коэффициент перед $x$ в первой степени равен 0. Так как мы делим на $x-1$, то во второй строке запишем единицу:

Начнем заполнять пустые ячейки во второй строке. Во вторую ячейку второй строки запишем число $5$, просто перенеся его из соответствующей ячейки первой строки:

Следующую ячейку заполним по такому принципу: $1\cdot 5+5=10$:

Аналогично заполним и четвертую ячейку второй строки: $1\cdot 10+1=11$:

Для пятой ячейки получим: $1\cdot 11+0=11$:

И, наконец, для последней, шестой ячейки, имеем: $1\cdot 11+(-11)=0$:

Задача решена, осталось только записать ответ:

Как видите, числа, расположенные во второй строке (между единицей и нулём), есть коэффициенты многочлена, полученного после деления $5x^4+5x^3+x^2-11$ на $x-1$. Естественно, что так как степень исходного многочлена $5x^4+5x^3+x^2-11$ равнялась четырём, то степень полученного многочлена $5x^3+10x^2+11x+11$ на единицу меньше, т.е. равна трём. Последнее число во второй строке (ноль) означает остаток от деления многочлена $5x^4+5x^3+x^2-11$ на $x-1$. В нашем случае остаток равен нулю, т.е. многочлены делятся нацело. Этот результат ещё можно охарактеризовать так: значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю.

Можно сформулировать вывод и в такой форме: так как значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю, то единица является корнем многочлена $5x^4+5x^3+x^2-11$.

Пример №2

Разделить многочлен $x^4+3x^3+4x^2-5x-47$ на $x+3$ по схеме Горнера.

Сразу оговорим, что выражение $x+3$ нужно представить в форме $x-(-3)$. В схеме Горнера будет учавствовать именно $-3$. Так как степень исходного многочлена $x^4+3x^3+4x^2-5x-47$ равна четырём, то в результате деления получим многочлен третьей степени:

Полученный результат означает, что

$$x^4+3x^3+4x^2-5x-47=(x+3)(x^3+0\cdot x^2 +4x-17)+4=(x+3)(x^3+4x-17)+4$$

В этой ситуации остаток от деления $x^4+3x^3+4x^2-5x-47$ на $x+3$ равна $4$. Или, что то самое, значение многочлена $x^4+3x^3+4x^2-5x-47$ при $x=-3$ равно $4$. Кстати, это несложно перепроверить непосредственной подстановкой $x=-3$ в заданный многочлен:

$$x^4+3x^3+4x^2-5x-47=(-3)^4+3 \cdot (-3)^3-5 \cdot (-3)-47=4.$$

Т.е. схему Горнера можно использовать, если необходимо найти значение многочлена при заданном значении переменной. Если наша цель - найти все корни многочлена, то схему Горнера можно применять несколько раз подряд, - до тех пор, пока мы не исчерпаем все корни, как рассмотрено в примере №3.

Пример №3

Найти все целочисленные корни многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$, используя схему Горнера.

Коэффициенты рассматриваемого многочлена есть целые числа, а коэффициент перед старшей степенью переменной (т.е. перед $x^6$) равен единице. В этом случае целочисленные корни многочлена нужно искать среди делителей свободного члена, т.е. среди делителей числа 45. Для заданного многочлена такими корнями могут быть числа $45; \; 15; \; 9; \; 5; \; 3; \; 1$ и $-45; \; -15; \; -9; \; -5; \; -3; \; -1$. Проверим, к примеру, число $1$:

Как видите, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=1$ равно $192$ (последнее число в второй строке), а не $0$, посему единица не является корнем данного многочлена. Так как проверка для единицы окончилась неудачей, проверим значение $x=-1$. Новую таблицу для этого составлять не будем, а продолжим использование табл. №1, дописав в нее новую (третью) строку. Вторую строку, в которой проверялось значение $1$, выделим красным цветом и в дальнейших рассуждениях использовать её не будем.

Можно, конечно, просто переписать таблицу заново, но при заполнении вручную это займет немало времени. Тем более, что чисел, проверка которых окончится неудачей, может быть несколько, и каждый раз записывать новую таблицу затруднительно. При вычислении «на бумаге» красные строки можно просто вычёркивать.

Итак, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=-1$ равно нулю, т.е. число $-1$ есть корень этого многочлена. После деления многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ на бином $x-(-1)=x+1$ получим многочлен $x^5+x^4-22x^3+2x^2+69x+45$, коэффициенты которого взяты из третьей строки табл. №2 (см. пример №1). Результат вычислений можно также представить в такой форме:

\begin{equation}x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)(x^5+x^4-22x^3+2x^2+69x+45) \end{equation}

Продолжим поиск целочисленных корней. Теперь уже нужно искать корни многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Опять-таки, целочисленные корни этого многочлена ищут среди делителей его свободного члена, - числа $45$. Попробуем ещё раз проверить число $-1$. Новую таблицу составлять не будем, а продолжим использование предыдущей табл. №2, т.е. допишем в нее еще одну строку:

Итак, число $-1$ является корнем многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Этот результат можно записать так:

\begin{equation}x^5+x^4-22x^3+2x^2+69x+45=(x+1)(x^4-22x^2+24x+45) \end{equation}

Учитывая равенство (2), равенство (1) можно переписать в такой форме:

\begin{equation}\begin{aligned} & x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)(x^5+x^4-22x^2+2x^2+69x+45)=\\ & =(x+1)(x+1)(x^4-22x^2+24x+45)=(x+1)^2(x^4-22x^2+24x+45)\end{aligned}\end{equation}

Теперь уже нужно искать корни многочлена $x^4-22x^2+24x+45$, - естественно, среди делителей его свободного члена (числа $45$). Проверим еще раз число $-1$:

Число $-1$ является корнем многочлена $x^4-22x^2+24x+45$. Этот результат можно записать так:

\begin{equation}x^4-22x^2+24x+45=(x+1)(x^3-x^2-21x+45) \end{equation}

С учетом равенства (4), равенство (3) перепишем в такой форме:

\begin{equation}\begin{aligned} & x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)^2(x^4-22x^3+24x+45)= \\ & =(x+1)^2(x+1)(x^3-x^2-21x+45)=(x+1)^3(x^3-x^2-21x+45)\end{aligned}\end{equation}

Теперь ищем корни многочлена $x^3-x^2-21x+45$. Проверим еще раз число $-1$:

Проверка окончилась неудачей. Выделим шестую строку красным цветом и попробуем проверить иное число, например, число $3$:

В остатке ноль, посему число $3$ - корень рассматриваемого многочлена. Итак, $x^3-x^2-21x+45=(x-3)(x^2+2x-15)$. Теперь равенство (5) можно переписать так.



Понравилась статья? Поделитесь с друзьями!