Исследование функций на монотонность и экстремумы.

I. Цели и задачи занятия

1. Выработать навыки исследования функций на монотонность и экстремумы с помощью первой производной.

2. Показать обучающимся важность данной темы в курсе изучаемой дисциплины.

3. Воспитывать у обучающихся настойчивость в достижении поставленной цели.

II. План проведения и расчет учебного времени

III. Учебно-материальное обеспечение

Классная доска, раздаточный материал, планшет, видеопроектор, экран.

IV. Методические материалы

К проведению практического занятия

Во вводной части занятия (5 мин.) после объявления темы и целей практического занятия целесообразно изложить последовательность обсуждения учебных вопросов.

Первый учебный вопрос (10 мин).

Монотонность и экстремумы.

При изложении первого учебного вопроса следует напомнить обучающимся понятие монотонной функции, необходимое и достаточное условия существования экстремума в точке.

Функция называется возрастающей в некотором интервале, если большему значению аргумента соответствует большее значение функции, т.е. если => (если => – неубывающая).

Функция называется убывающей в некотором интервале, если большему значению аргумента соответствует меньшее значение функции, т.е. если => (если => – невозрастающая).

Возрастающие и убывающие функции называются монотонными (строго монотонными). Интервалы, в которых функция монотонна, называются интервалами монотонности.

Признаки монотонности: Если дифференцируемая на интервале функция возрастает (убывает), то () для .

Геометрическое утверждение означает, что касательные к графику возрастающей функции образуют острые углы с (т.к. => – острый).

Точками экстремума функции являются точки максимума и минимума.

Необходимое условие экстремума: Если дифференцируемая функция имеет экстремум в точке , то ее производная в этой точке равна нулю: .

Достаточные условия возрастания и убывания функции: Если функция дифференцируема на интервале и () для , то эта функция возрастает (убывает) на интервале .

Точки, в которых производная равна нулю или не существует, называются критическими точками (т.е. подозрительными на экстремум, в них возможен экстремум, но может и не быть).

Первое достаточное условие существование экстремума: Если непрерывная функция дифференцируема в некоторой окрестности критической точки и при переходе через нее (слева направо) производная меняет знак с «+» на «–», то – точка максимума, с «–» на «+», то – точка минимума (если знак не меняется – экстремума нет).

Схема исследования функции на монотонность и экстремумы:

1. Найти производную функции .

2. Найти все критические точки из области определения функции, для этого:

а) – найти корни, которые являются внутренними точками области определения;

б) найти значения аргумента, при которых производная не существует.

3. Установить знаки производной функции при переходе через критические точки и выписать точки экстремума.

4. Вычислить значения функции в точках экстремума.

Второе достаточное условие существование экстремума: Если в точке первая производная функции равна нулю (), а вторая производная в точке существует и отлична от нуля (), то при в точке функция имеет максимум и минимум – при .

Производная помогает также при исследовании функции на возрастание и убывание. Напомним вначале соответствующее определение.

Определение. Пусть функция определена на промежутке . Говорят, что она возрастает (убывает) на промежутке , если таких, что .

Теорема. Если функция дифференцируема на интервале и , то возрастает (убывает) на интервале .

Пусть производная функции непрерывна на промежутке . Для исследования ее на возрастание и убывание обычно придерживаются следующего плана:

1) Найти точки из , где . Эти точки называются стационарными.

2) Во всех промежутках, на которые разбивают стационарные точки, определить знак . Для этого достаточно определить знак в одной точке каждого промежутка (знак внутри каждого промежутка не меняется, поскольку в противном случае внутри этого промежутка по теореме Больцано-Коши должен быть нуль производной, что невозможно). Если внутри промежутка , то здесь согласно теореме возрастает. Если , то убывает.

Определение. Точки, в которых производная функции равна нулю, называются стационарными. Точки, в которых производная функции равна нулю или не существует, называются критическими.

Пример . Исследовать на возрастание и убывание функцию

Данная функция дифференцируема на всей числовой прямой.

1) . Найдем стационарные точки: . Корнями уравнения являются числа , .

2) Точки , разбивают числовую прямую на три интервала: , , .

На первом интервале возьмем .

Следовательно, на промежутке возрастает. На промежутке возьмем , . Поэтому убывает. На интервале возьмем , . Поэтому на интервале возрастает.

Определение. Пусть функция определена в . Точка называется точкой локального максимума (минимума), если cуществует такая, что

Если неравенства (1) строгие при , то точка называется точкой строгого локального максимума (минимума). Точки локального максимума и минимума называются точками экстремума.

Теорема (необходимое условие экстремума). Если функция дифференцируема в точке и является точкой экстремума, то



Доказательство теоремы не сложно получить из определения производной.

Замечание. Из теоремы следует, что точки экстремума функции нужно искать среди стационарных точек и точек, где производная не существует. Одно из достаточных условий экстремума непосредственно вытекает из следующей теоремы.

Замечание. Необходимое условие не является достаточным. Например, для функции имеем , но точка не является экстремумом, поскольку функция возрастает на всей числовой прямой.

Теорема (достаточное условие экстремума). Пусть функция непрерывна в точке и дифференцируема в . Тогда:

а) если производная при переходе через точку меняет знак с плюса на минус, то точка является точкой локального максимума;

б) если производная при переходе через точку меняет знак с минуса на плюс, то точка является точкой локального минимума функции .

Заметим, что из теоремы следует, что в предыдущем примере точка является точкой локального максимума, а точка является точкой локального минимума функции .

Часто при решении различных задач приходится находить наибольшее и наименьшее значения функции на некотором множестве .

Рассмотрим как решается эта задача сначала для случая, когда это отрезок . Пусть функция непрерывна на отрезке и дифферецируема на интервале за исключением, быть может, конечного числа точек. Тогда, согласно теореме Вейерштрасса функция достигает на отрезке наибольшее и наименьшее значения.

Из приведенных теорем вытекает следующий план отыскания наибольшего и наименьшего значений функции .

1) Найти производную и нули производной из .

2) Найти значения

а) в нулях производной из ;

б) на концах отрезка ;

в) в точках, где производная не существует.

3) Из полученных чисел выбрать наибольшее и наименьшее.

Замечание 1. Заметим, что находить промежутки возрастания и убывания здесь совсем не обязательно.

Замечание 2. Если является интервалом, полуинтервалом или бесконечным промежутком, то выше приведенным планом пользоваться нельзя. В этом случае для решения задачи о наибольшем и наименьшем значении нужно найти промежутки возрастания и убывания функции, пределы в граничных точках и с помощью не сложного анализа получить ответ.

Пример 3. Найти наибольшее и наименьшее значения функции на промежутке .

Найдем промежутки возрастания и убывания. Для этого найдем производную:

Точка разбивает промежуток на два интервала: и . Найдем в этих интервалах знак производной. Для этого вычислим

Таким образом, на полуинтервале функция убывает, а на промежутке возрастает. Поэтому Наибольшего значения не существует, так как . В этом случае пишут: .

Монотонная функция – это функция, меняющаяся в одном и том же направлении.

Функция возрастает , если большему значению аргумента соответствует большее значение функции. Говоря иначе, если при возрастании значения x значение y тоже возрастает, то это возрастающая функция.

Функция убывает , если большему значению аргумента соответствует меньшее значение функции. Говоря иначе, если при возрастании значения x значение y убывает, то это убывающая функция.

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Функция постоянна (немонотонна) , если она не убывает и не возрастает.

Теорема (необходимый признак монотонности):

1. Если дифференцируемая функция f(x) в некотором интервале возрастает, то ее производная на этом интервале неотрицательна, т.е .

2. Если дифференцируемая функция f(x) в некотором интервале убывает, то ее производная на этом интервале неположительна, .

3. Если функция не изменяется, то ее производная равна нулю, т.е. .

Теорема (достаточный признак монотонности):

Пусть f(x) непрерывна на интервале (a;b) и имеет производную во всех точках, тогда:

1. Если внутри (a;b) положительна, то f(x) возрастает.

2. Если внутри (a;b) отрицательна, то f(x) убывает.

3. Если , то f(x) постоянна.

Исследование функции на экстремумы.

Экстремум - максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум называется точкой экстремума. Соответственно, если достигается минимум - точка экстремума называется точкой минимума, а если максимум - точкой максимума.

1. Найдите область определения функции и интервалы, на которых функция непрерывна.

2. Найдите производную .

3. Найдите критические точки, т.е. точки в которых производная функции равна нулю или не существует.

4. В каждом из интервалов на которые область определения разбивается критическими точками, определить знак производной и характер изменения функции.

5. Относительно каждой критической точки определить, является ли она точной максимума, минимума или не является точкой экстремума.

Записать результат исследования функции промежутки монотонности и экстремума.

Наибольшее и наименьшее значение функции.

Схема нахождения наибольшего и наименьшего значений функции, непрерывной на отрезке.

1. Найти производную .

2. Найти на данном отрезке критические точки.

3. Вычислить значение функции в критических точках и на концах отрезка.

4. Из вычисленных значений выбрать наименьшее и наибольшее.

Выпуклость и вогнутость функции.

Дуга называется выпуклой, если она пересекается с любой своей секущей не более, чем в двух точках.

Линии, образуемые выпуклостью вверх, называются выпуклыми, а образуемые выпуклостью вниз - вогнутыми.

Геометрически ясно, что выпуклая дуга лежит под любой своей касательной, а вогнутая дуга – над касательной.

Точки перегиба функции.

Точкой перегиба называется такая точка линии, которая отделяет выпуклую дугу от вогнутой.

В точке перегиба касательная пересекает линию, в окрестности этой точки линия лежит по обе стороны от касательной.

Интервалу убывания первой производной соответствует участок выпуклости графика функции, а интервалу возрастания – участок вогнутости.

Теорема (о точках перегиба):

Если вторая производная всюду в интервале отрицательна, то дуга линии y = f(x), соответствующая этому интервалу, выпуклая. Если вторая производная всюду в интервале положительна, то дуга линии y = f(x), соответствующая этому интервалу, вогнутая.

Необходимый признак точки перегиба:

Если – абсцисса точки перегиба, то либо , либо не существует.

Достаточный признак точки перегиба:

Точка есть точка перегиба линии y = f(x), если , а ;

При слева от нее лежит участок выпуклости, справа – участок вогнутости, а при слева лежит участок вогнутости, а справа – выпуклости.

Асимптоты.

Определение.

Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

Виды асимптот:

1. Прямая называется вертикальной асимптотой графика функции y=f(x), если хотя бы одна из прямых значений или равно или .



№ 44.20. Определите промежутки монотонности функции

 критических точек нет


№ 44.21. Определите промежутки монотонности функции

Найдем стационарные точки, решив уравнение


Найдем стационарные точки, решив уравнение


№ 44.22. Определите промежутки монотонности функции

Найдем стационарные точки, решив уравнение


№ 44.23. Определите промежутки монотонности функции

 критических точек нет

Найдем стационарные точки, решив уравнение


 критических точек нет

Найдем стационарные точки, решив уравнение


№ 44.24. Определите промежутки монотонности функции

Найдем стационарные точки, решив уравнение


№ 44.25. Определите промежутки монотонности функции

Найдем стационарные точки, решив уравнение


№ 44.48. Найдите точки экстремума заданной функции и определите их характер

 критических точек нет

Найдем стационарные точки, решив уравнение


№ 44.49. Найдите точки экстремума заданной функции и определите их характер

 критических точек нет

Найдем стационарные точки, решив уравнение


 критических точек нет

Найдем стационарные точки, решив уравнение


№ 44.50. Найдите точки экстремума заданной функции и определите их характер

 критических точек нет

Найдем стационарные точки, решив уравнение


№ 44.51. Найдите точки экстремума заданной функции и определите их характер

Найдем стационарные точки, решив уравнение


Найдем стационарные точки, решив уравнение


№ 44.52. Найдите точки экстремума заданной функции и определите их характер

Найдем стационарные точки, решив уравнение


№ 44.53. Найдите точки экстремума заданной функции и определите их характер

Найдем стационарные точки, решив уравнение


 критических точек нет

Найдем стационарные точки, решив уравнение


№ 44.54. Найдите точки экстремума заданной функции и определите их характер

Найдем стационарные точки, решив уравнение


Найдем стационарные точки, решив уравнение


№ 44.61. Найдите точки экстремума заданной функции и определите их характер

Найдем стационарные точки, решив уравнение




Общая схема исследования функции

  • Найти область определения функции. Выяснить характер поведения функции в граничных точках области определения.
  • Выяснить обладает ли функция особенностями: четность, нечетность, периодичность.
  • Найти точки пересечения графика функции с осями координат.
  • Выяснить, имеет ли кривая вертикальные и наклонные асимптоты.
  • Найти интервалы возрастания и убывания функции. Исследовать функцию на экстремум.
  • Найти промежутки выпуклости и вогнутости функции. Найти точки перегиба.
  • Построить график.



Понравилась статья? Поделитесь с друзьями!