История квадратных уравнений открытия и исследования. История зарождения

Главная > Доклад

МОУ СОШ имени Героев Советского Союза
Сотникова А.Т. и Шепелёва Н. Г. с.Урицкое

Доклад на тему:

«История возникновения

квадратных уравнений»

Подготовили: Изотова Юлия,
Амплеева Елена,
Шепелёв Николай,

Дяченко Юрий.

О математика. В веках овеяна ты славой,

Светило всех земных светил.

Тебя царицей величавой

Недаром Гаусс окрестил.

Строга, логична, величава,

Стройна в полете, как стрела,

Твоя немеркнущая слава

В веках бессмертье обрела.

Мы славим разум человека,

Дела его волшебных рук,

Надежду нынешнего века,

Царицу всех земных наук.

Поведать мы сегодня вам хотим

Историю возникновения

Того, что каждый школьник должен знать –

Историю квадратных уравнений.

Евклид, в III век до н. э. отвел геометрической алгебре в своих «Началах» всю вторую книгу, где собран весь необходимый материал для решения квадратных уравнений.

Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике

Ведения о Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III веке до н. э. Евклид – первый математик александрийской школы. Его главная работа «Начала» (в латинизированной форме – «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвел итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики. Герон – греческий математик и инженер впервые в Греции в I век н.э. дает чисто алгебраический способ решения квадратного уравнения.

Герон Александрийский; Heron, I в. н. э., греческий механик и математик. Время его жизни неопределенно, известно только, что он цитировал Архимеда (который умер в 212 г. до н. э.), его же самого цитировал Папп (ок. 300 г. н. э.). В настоящее время преобладает мнение, что он жил в I в. н. э. Занимался геометрией, механикой, гидростатикой, оптикой; изобрел прототип паровой машины и точные нивелировочные инструменты. Наибольшей популярностью пользовались такие автоматы Г., как автоматизированный театр, фонтаны и др. Г. описал теодолит, опираясь на законы статики и кинетики, привел описание рычага, блока, винта, военных машин. В оптике сформулировал законы отражения света, в математике - способы измерения важнейших геометрических фигур. Основные произведения Г. - это Иетрика, Пневматика, Автоматопоэтика, Механика (фр.; произведение сохранилось целиком по-арабски), Катоптика (наука о зеркалах; сохранилась только в латинском переводе) и др. Г. использовал достижения своих предшественников: Евклида, Архимеда, Стратона из Лампсака. Его стиль простой и ясный, хотя порой бывает чересчур лаконичен или нестроен. Интерес к сочинениям Г. возник в III в. н. э. Греческие, а затем византийские и арабские ученики комментировали и переводили его произведения.

Диофант – греческий ученый в III век н.э., не прибегая к геометрии, чисто алгебраическим путем решал некоторые квадратные уравнения, причем само уравнение и его решение записывал в символической форме

«Я расскажу вам, как составлял и решал квадратные уравнения греческий математик Диофант. Вот, к примеру, одна из его задач: «Найти два числа, зная, что их сумма равна 20, а их произведение 96».

1. Из условия задачи вытекает, что искомые числа не равны, т.к. если бы они были равны, то их произведение равнялось бы не 96, а 100.

2. Т.о. одно из них будет больше половины их суммы, т.е. 10 + x, другое же меньше, т.е. 10 – х.

3. Разность между ними 2х.

4. Отсюда уравнение (10 + x) * (10 – x) = 96

100 – х 2 = 96 х 2 – 4 = 0

5. Ответ x = 2 . Одно из искомых чисел равно 12,
другое - 8. Решение x = - 2 для Диофанта не существует, т.к. гре-ческая математика знала только положительные числа.» Диофант умел решать очень сложные уравнения, применял для неизвестных буквенные обозначения, ввёл специальный символ для вычисления, использовал сокращения слов. Бхаскаре – Акариа – индийский математик в XII век н.э. открыл общий метод решения квадратных уравнений.

Разберём одну из задач индийских математиков, например, задачу Бхаскары:

«Стая обезьян забавляется: восьмая часть всего числа их в квадрате резвится в лесу, остальные двенадцать кричат на вершине холмика. Скажите мне, сколько всех обезьян?»

Комментируя задачу, хочется сказать, что задаче соответствует уравнение (х/8) 2 + 12 = x . Бхаскара пишет под видом x 2 – 64х = - 768. Прибавляя к обеим частям квадрат 32, уравнение примет вид:

x 2 – 64 x + 32 2 = - 768 + 1024

(x – 32) 2 = 256

После извлечения квадратного корня получаем: x – 32 =16.

«В данном случае, говорит Бхаскара, - отрицательные единицы первой части таковы, что единицы второй части меньше их, а потому последние можно считать и положительными и отрицательными, и получаем двойное значение неизвестного: 48 и 16».

Необходимо сделать вывод: решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

Предлагается решить старинную индийскую задачу Бхаскары:

«Квадрат пятой части обезьян, уменьшенный на три, спрятался в гроте, одна обезьяна влезла на дерево, была видна. Сколько было обезьян?» Следует заметить, что данная задача решается элементарно, сводясь к квадратному уравнению.
Аль – Хорезми
- арабский учёный, который в 825 г. написал книгу «Книга о восстановлении и противопоставлении». Это был первый в мире учебник алгебры. Он также дал шесть видов квадратных уравнений и для каждого из шести уравнений в словесной форме сформулировал особое правило его решения. В трактате Хорезми насчитывает 6 видов уравнений, выражая их следующим образом:

1.«Квадраты равны корням», т.е. ах 2 = вх.

2.«Квадраты равны числу», т.е. ах 2 = с.

3.«Корни равны числу», т.е. ах = с.

4.«Квадраты и числа равны корням», т.е. ах 2 + с = вх.

5.«Квадраты и корни равны числу», т.е. ах 2 + вх = с.

6.«Корни и числа равны квадратам», т.е. вх +с = ах 2 .

Разберём задачу аль – Хорезми, которая сводится к решению квадратного уравнения. «Квадрат и число равны корням.» Например, один квадрат и число 21 равны 10 корням того же квадрата, т.е. спрашивается, из чего образуется квадрат, который после прибавления к нему 21 делается равным 10 корням того же квадрата?»

Используя 4-ю формулу аль – Хорезми, ученики должны записать: х 2 + 21 = 10х

Франсуа Виет - французский мате-матик, сформулировал и доказал теорему о сумме и произведении корней приведённого квадратного уравнения.

Искусство, которое я излагаю, ново или по крайней мере было настолько испорчено временем искажено влиянием варваров, что я счел нужным придать ему совершенно новый вид.

Франсуа Виет

Иет Франсуа (1540-13.12. 1603) родился в городе Фонтене ле-Конт провинции Пуату, недалеко от знаменитой крепости Ла-Ро-шель. Получив юридическое образование, он с девятнадцати лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. Знал астрономию и математику и все свободное время отдавал этим наукам.

Главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Виета они не только восхищали, в них он видел большой изъян, заключающийся в трудности понимания из-за словесной символики: Почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся. Нельзя было записывать и, следовательно, начать в общем виде алгебраические сравнения или какие-нибудь другие алгебраические выражения. Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Поэтому необходимо было доказать, что существуют такие общие действия над всеми числами, которые от этих самих чисел не зависят. Виет и его последователи установи, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка. Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Значит, их можно обозначать какими-либо отвлеченными знаками. Виет это и сделал. Он не только ввел свое буквенное исчисление, но сделал принципиально новое открытий, поставив перед собой цель изучать не числа, а действия над ними. Такой способ записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно за это Виета называют "отцом" алгебры, основоположником буквенной символики.

Информационные ресурсы:

http:// som . fio . ru / Resources / Karpuhina /2003/12/ Complited %20 work / Concert / index 1. htm

http:// pages . marsu . ru / iac / school / s 4/ page 74. html

Как составлял и решал Диофант квадратные уравнения. Отсюда уравнение: (10+х)(10 -х) =96 или же: 100 - х2 =96 х2 - 4=0 (1) Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Src="https://present5.com/presentation/137369579_55459696/image-4.jpg" alt="Квадратные уравнения в Индии. ах2 + bх = с, а>0. (1) "> Квадратные уравнения в Индии. ах2 + bх = с, а>0. (1)

Квадратные уравнения у ал – Хорезми. 1) «Квадраты равны корнями» , т. е. ах2 + с = bх. 2) «Квадраты равны числу» , т. е. ах2 = с. 3) «Корни равны числу» , т. е. ах = с. 4) «Квадраты и числа равны корням» , т. е. ах2 + с = bх. 5) «Квадраты и корни равны числу» , т. е. ах2 + bx = с. 6) «Корни и числа равны квадратам» , т. е. bx + с = ах2.

Квадратные уравнения в Европе ХIII ХVII вв. х2 +bх = с, при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

О теореме Виета. «Если В + D, умноженное на А - А 2, равно ВD, то А равно В и равно D» . На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место (а + b)х - х2 = ab, т. е. х2 - (а + b)х + аb = 0, то х1 = а, х2 = b.

Способы решения квадратных уравнений. 1. СПОСОБ: Разложение левой части уравнения на множители. Решим уравнение х2 + 10 х - 24 = 0. Разложим левую часть на множители: х2 + 10 х - 24 = х2 + 12 х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2). Следовательно, уравнение можно переписать так: (х + 12)(х - 2) = 0 Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10 х - 24 = 0.

2. СПОСОБ: Метод выделения полного квадрата. Решим уравнение х2 + 6 х - 7 = 0. Выделим в левой части полный квадрат. Для этого запишем выражение х2 + 6 х в следующем виде: х2 + 6 х = х2 + 2 х 3. полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как х2 + 2 х 3 + 32 = (х + 3)2. Преобразуем теперь левую часть уравнения х2 + 6 х - 7 = 0, прибавляя к ней и вычитая 32. Имеем: х2 + 6 х - 7 = х2 + 2 х 3 + 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16. Таким образом, данное уравнение можно записать так: (х + 3)2 - 16 =0, (х + 3)2 = 16. Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7.

3. СПОСОБ: Решение квадратных уравнений по формуле. Умножим обе части уравнения ах2 + bх + с = 0, а ≠ 0 на 4 а и последовательно имеем: 4 а 2 х2 + 4 аbх + 4 ас = 0, ((2 ах)2 + 2 ах b + b 2) - b 2 + 4 ac = 0, (2 ax + b)2 = b 2 - 4 ac, 2 ax + b = ± √ b 2 - 4 ac, 2 ax = - b ± √ b 2 - 4 ac,

4. СПОСОБ: Решение уравнений с использованием теоремы Виета. Как известно, приведенное квадратное уравнение имеет вид х2 + px + c = 0. (1) Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид x 1 x 2 = q, x 1 + x 2 = - p а) x 2 – 3 x + 2 = 0; x 1 = 2 и x 2 = 1, так как q = 2 > 0 и p = - 3 0 и p= 8 > 0. б) x 2 + 4 x – 5 = 0; x 1 = - 5 и x 2 = 1, так как q= - 5 0; x 2 – 8 x – 9 = 0; x 1 = 9 и x 2 = - 1, так как q = - 9

5. СПОСОБ: Решение уравнений способом «переброски» . Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. Умножая обе его части на а, получаем уравнение а 2 х2 + аbх + ас = 0. Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0, равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета. Окончательно получаем х1 = у1/а и х1 = у2/а.

Пример. Решим уравнение 2 х2 – 11 х + 15 = 0. Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у2 – 11 у + 30 = 0. Согласно теореме Виета у1 = 5 у2 = 6 х1 = 5/2 x 2 = 6/2 Ответ: 2, 5; 3. x 1 = 2, 5 x 2 = 3.

6. СПОСОБ: Свойства коэффициентов квадратного уравнения. А. Пусть дано квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. 1) Если, а+ b + с = 0 (т. е. сумма коэффициентов равна нулю), то х1 = 1, х2 = с/а. Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение x 2 + b/a x + c/a = 0. Согласно теореме Виета x 1 + x 2 = - b/a, x 1 x 2 = 1 c/a. По условию а – b + с = 0, откуда b = а + с. Таким образом, x 1 + x 2 = - а + b/a= -1 – c/a, x 1 x 2 = - 1 (- c/a), т. е. х1 = -1 и х2 = c/a, что и требовалось доказать.

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней В. Приведенное уравнение х2 + рх + q= 0 совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

7. СПОСОБ: Графическое решение квадратного уравнения. Если в уравнении х2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х2 = - px - q. Построим графики зависимости у = х2 и у = - px - q.

Пример 1) Решим графически уравнение х2 - 3 х - 4 = 0 (рис. 2). Решение. Запишем уравнение в виде х2 = 3 х + 4. Построим параболу у = х2 и прямую у = 3 х + 4. Прямую у = 3 х + 4 можно построить по двум точкам М (0; 4) и N (3; 13). Ответ: х1 = - 1; х2 = 4

8. СПОСОБ: Решение квадратных уравнений с помощью циркуля и линейки. нахождения корней квадратного циркуля и линейки (рис. 5). уравнения Тогда по теореме о секущих имеем OB OD = OA OC, откуда OC = OB OD/ OA= х1 х2/ 1 = c/a. ах2 + bх + с = 0 с помощью

Src="https://present5.com/presentation/137369579_55459696/image-19.jpg" alt="1) Радиус окружности больше ординаты центра (AS > SK, или R > a +"> 1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2 a), окружность пересекает ось Ох в двух точках (6, а рис.) В(х1; 0) и D(х2; 0), где х1 и х2 - корни квадратного уравнения ах2 + bх + с = 0. 2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2 a), окружность касается оси Ох (рис. 6, б) в точке В(х1; 0), где х1 - корень квадратного уравнения. 3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс (рис. 6, в), в этом случае уравнение не имеет решения.

9. СПОСОБ: Решение квадратных уравнений с помощью номограммы. z 2 + pz + q = 0. Криволинейная шкала номограммы построена по формулам (рис. 11): Полагая ОС = р, ED = q, ОЕ = а (все в см.), Из подобия треугольников САН и CDF получим пропорцию

Примеры. 1) Для уравнения z 2 - 9 z + 8 = 0 номограмма дает корни z 1 = 8, 0 и z 2 = 1, 0 (рис. 12). 2) Решим с помощью номограммы уравнение 2 z 2 - 9 z + 2 = 0. Разделим коэффициенты этого уравнения на 2, получим уравнение z 2 - 4, 5 z + 1 = 0. Номограмма дает корни z 1 = 4 и z 2 = 0, 5. 3) Для уравнения z 2 - 25 z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5 t, получим уравнение t 2 - 5 t + 2, 64 = 0, которое решаем посредством номограммы и получим t 1 = 0, 6 и t 2 = 4, 4, откуда z 1 = 5 t 1 = 3, 0 и z 2 = 5 t 2 = 22, 0.

10. СПОСОБ: Геометрический способ решения квадратных уравнений. Примеры. 1) Решим уравнение х2 + 10 х = 39. В оригинале эта задача формулируется следующим образом: «Квадрат и десять корней равны 39» (рис. 15). Для искомой стороны х первоначального квадрата получим

у2 + 6 у - 16 = 0. Решение представлено на рис. 16, где у2 + 6 у = 16, или у2 + 6 у + 9 = 16 + 9. Решение. Выражения у2 + 6 у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6 у - 16 + 9 - 9 = 0 - одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = - 8 (рис. 16).

Из истории квадратных уравнений .

а) Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать , что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 + х = , х 2 – х = 14

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным , однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры , однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 2. «Найти два числа, зная, что их сумма равна 20, а произведение - 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны , то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х. Другое же меньше, т. е. 10 - х. Разность между ними 2х. Отсюда уравнение:

(10+x)(10-x) =96,

или же


100 -x 2 = 96.

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = - 2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если решить эту задачу, выбирая в качестве неизвестного одно из искомых чисел , то можно прийти к решению уравнения:

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения.
б) Квадратные уравнения в Индии.

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме

ах 2 + b х = с, а > 0

В уравнении коэффициенты , кроме а , могут быть отрицательными. Правило Брахмагупта по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача 3.


Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений.

Соответствующее задаче 3 уравнение:

Бхаскара пишет под видом:

x 2 - 64x = - 768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

x 2 - б4х + 32 2 = -768 + 1024,

(х - 32) 2 = 256,

x 1 = 16, x 2 = 48.

в) Квадратные уравнения у Аль-Хорезми

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:


  1. «Квадраты равны корням», т. е. ах 2 = bх.

  2. «Квадраты равны числу», т. е. ах 2 = с.

  3. «Корни равны числу», т. е. ах = с.

  4. «Квадраты и числа равны корням», т. е. ах 2 + с = bх.

  5. «Квадраты и корни равны числу», т. е. ах 2 + bх =с.

  6. «Корни и числа равны квадратам», т. е. bх + с == ах 2 .
Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений , пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми , как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

Задача 4. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение: раздели пополам число корней, получишь 5, умножь 5 само на себя , от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

г) Квадратные уравнения в Европе XIII-XVII вв.

Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой , и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI-XVII вв. и частично XVIII.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду

х 2 + bх = с,

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета , однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера , решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX-VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения , составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI-Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака. А затем европейскими математиками Возрождения , в итоге длительного поиска создавшими язык современной алгебры, использование букв, введение символов арифметических операций, скобок и т. д. На рубеже XVI-XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения , была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Итак, ввиду важности и обширности материала, связанного с понятием уравнения , его изучение в современной методике математики связано с тремя главными областями своего возникновения и функционирования.

HTML-версии работы пока нет.

Подобные документы

    История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.

    контрольная работа , добавлен 27.11.2010

    История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.

    реферат , добавлен 09.05.2009

    Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.

    реферат , добавлен 18.12.2012

    Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья , добавлен 05.01.2010

    Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.

    реферат , добавлен 06.09.2006

    История развития математической науки в Европе VI-XIV вв., ее представители и достижения. Развитие математики эпохи Возрождения. Создание буквенного исчисления, деятельность Франсуа Виета. Усовершенствование вычислений в конце XVI – начале XVI вв.

    презентация , добавлен 20.09.2015

    Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация , добавлен 20.09.2015

    Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.

    презентация , добавлен 20.09.2015

    Достижения древнегреческих математиков, живших в период между VI веком до н.э. и V веком н.э. Особенности начального периода развития математики. Роль пифагорейской школы в развитии математики: Платон, Евдокс, Зенон, Демокрит, Евклид, Архимед, Аполлоний.

    контрольная работа , добавлен 17.09.2010

    История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

Министерство образования Российской Федерации

Муниципальное общеобразовательное учреждение

"Средняя общеобразовательная школа №22"

Квадратные уравнения и уравнения высших порядков

Выполнили:

Ученики 8 "Б" класса

Кузнецов Евгений и Руди Алексей

Руководитель:

Зенина Алевтина Дмитриевна

преподаватель математики

Введение

1.1 Уравнения в Древнем Вавилоне

1.2 Уравнения арабов

1.3 Уравнения в Индии

Глава 2. Теория квадратные уравнения и уравнения высших порядков

2.1 Основные понятия

2.2 Формулы четного коэффициента при х

2.3 Теорема Виета

2.4 Квадратные уравнения частного характера

2.5 Теорема Виета для многочленов (уравнений) высших степеней

2.6 Уравнения, сводимые к квадратным (биквадратные)

2.7 Исследование биквадратных уравнений

2.8 Формулы Кордано

2.9 Симметричные уравнения третьей степени

2.10 Возвратные уравнения

2.11 Схема Горнера

Заключение

Список используемой литературы

Приложение 1

Приложение 2

Приложение 3

Введение

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее число задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

В этом реферате хотелось бы отобразить формулы и способы решения различных уравнений. Для этого приводятся уравнения, которые не изучаются в школьной программе. В основном это уравнения частного характера и уравнения высших степеней. Чтобы раскрыть эту тему приводятся доказательства этих формул.

Задачи нашего реферата:

Улучшить навыки решения уравнений

Наработать новые способы решения уравнений

Выучить некоторые новые способы и формулы для решения этих уравнений.

Объект исследования - элементарная алгебра Предмет исследования уравнения. Выбор этой темы основывался на том, что уравнения есть как в программе начальной, так и в каждом последующем классе общеобразовательных школ, лицеев, колледжей. Многие геометрические задачи, задачи по физике, химии и биологии решаются с помощью уравнений. Уравнения решали двадцать пять веков назад. Они создаются и сегодня – как для использования в учебном процессе, так и для конкурсных экзаменов в вузы, для олимпиад самого высокого уровня.

Глава 1. История квадратных уравнений и уравнений высших порядков

1.1 Уравнения в Древнем Вавилоне

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведённых над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучается общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земельными работами военного характера, а также с развитием астрономии и самой математики. Как было сказано ранее, квадратные уравнения умели решать около 2000 лет до нашей эры вавилонянами. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются как неполные, так и полные квадратные уравнения.

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решением, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствует понятие отрицательного числа и общие методы решения квадратного уравнения.

1.2 Уравнения арабов

Некоторые способы решения уравнений как квадратных, так и уравнений высших степеней были выведены арабами. Так известный арабский математик Ал-Хорезми в своей книге «Ал - джабар» описал многие способы решения различных уравнений. Их особенность была в том, что Ал-Хорезми применял сложные радикалы для нахождения корней (решений) уравнений. Необходимость в решении таких уравнений была нужна в вопросах о разделе наследства.

1.3 Уравнения в Индии

Квадратные уравнения решали и в Индии. Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 году индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII век), изложил общее правило решения квадратных уравнений, приведенных к единой конической форме:

aх² + bx= c, где a > 0

В этом уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи ». Задачи часто облекались в стихотворную форму.

Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.

Глава 2. Квадратные уравнения и уравнения высших порядков

2.1 Основные понятия

Квадратным уравнением называют уравнения вида

где коэффициенты a, b, c – любые действительные числа, причём a ≠ 0.

Квадратное уравнение называют приведённым, если его старший коэффициент равен 1.

Пример :

x 2 + 2x + 6 = 0.

Квадратное уравнение называют не приведенным, если старший коэффициент отличен от 1.

Пример :

2x 2 + 8x + 3 = 0.

Полное квадратное уравнение - квадратное уравнение, в котором присутствуют все три слагаемых, иными словами, это уравнение, у которого коэффициенты b и c отличны от нуля.

Пример :

3x 2 + 4x + 2 = 0.

Неполное квадратное уравнение – это квадратное уравнение, у которого хотя бы один коэффициент b, c равен нулю.

Таким образом, выделяют три вида неполных квадратных уравнений:

1) ax² = 0 (имеет два совпадающих корня x = 0).

2) ax² + bx = 0 (имеет два корня x 1 = 0 и x 2 = -)

Пример :

x 1 = 0, x 2 = -5.

Ответ : x 1 =0, x 2 = -5.

Если –<0 - уравнение не имеет корней.

Пример :

Ответ : уравнение не имеет корней.

Если –> 0, то x 1,2 = ±

Пример :


Ответ : х 1,2 =±

Любое квадратное уравнение можно решить через дискриминант (b² - 4ac). Обычно выражение b² - 4ac обозначают буквой D и называют дискриминантом квадратного уравнение ax² +bx + c = 0 (или дискриминантом квадратного трёх члена ax² + bx + c)

Пример :

х 2 +14x – 23 = 0

D = b 2 – 4ac = 144 + 92 = 256

x 2 =

Ответ : x 1 = 1, x 2 = - 15.

В зависимости от дискриминанта уравнение может иметь или не иметь решение.

1) Если D < 0, то не имеет решения.

2) Если D = 0, то уравнение имеет два совпадающих решения x 1,2 =

3) Если D > 0, то имеет два решения, находящиеся по формуле:

x 1,2 =

2.2 Формулы четного коэффициента при х

Мы привыкли к тому, что корни квадратного уравнения

ax² + bx + c = 0 находятся по формуле

x 1,2 =

Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что эту формулу можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если b есть четное число.

В самом деле, пусть у квадратного уравнения ax² + bx + c = 0 коэффициент bимеет вид b = 2k. Подставив в нашу формулу число 2k вместо b, получим:

Итак, корни квадратного уравнения ax² + 2kx + c = 0 можно вычислять по формуле:

x 1,2 =

Пример :

5х 2 - 2х + 1 = 0


Преимущество этой формулы в том, что в квадрат возводится не число b, а его половина, вычитается из этого квадрата не 4ac, а просто ac и, наконец, в том, что в знаменателе содержится не 2a, а просто a.

В случае если квадратное уравнение приведенное, то наша формула будет выглядеть так:

Пример :

х 2 – 4х + 3 = 0

Ответ : х 1 = 3, х 2 = 1.

2.3 Теорема Виета

Очень любопытное свойство корней квадратного уравнения обнаружил французский математик Франсуа Виет. Это свойство назвали теорема Виета:

Чтобы числа x 1 и x 2 являлись корнями уравнения:

ax² + bx + c = 0

необходимо и достаточно выполнения равенства


x 1 + x 2 = -b/aи x 1 x 2 = c/a

Теорема Виета позволяет судить о знаках и абсолютной величине квадратного уравнения

x² + bx + c = 0

1. Если b>0, c>0 то оба корня отрицательны.

2. Если b<0, c>0 то оба корня положительны.

3. Если b>0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине больше положительного.

4. Если b<0, c<0 то уравнение имеет корни разных знаков, причём отрицательный корень по абсолютной величине меньше положительного.

2.4 Квадратные уравнения частного характера

1) Если a + b + c = 0 в уравнении ax² + bx + c = 0, то

х 1 =1, а х 2 = .

Доказательство :

В уравнении ax² + bx + c = 0, его корни

x 1,2 = (1).

Представим b из равенства a + b + c = 0

Подставим это выражение в формулу (1):


=

Если рассмотрим по отдельности два корня уравнения, получим:

1) х 1 =

2) х 2 =

Отсюда следует: х 1 =1, а х 2 = .

1. Пример :

2х² - 3х + 1 = 0

a = 2, b = -3, c = 1.

a + b + c = 0, следовательно

2. Пример :

418х² - 1254х + 836 = 0

Этот пример очень тяжело решить через дискриминант, но, зная выше приведенную формулу его с легкостью можно решить.

a = 418, b = -1254, c = 836.

х 1 = 1 х 2 = 2


2) Если a - b + c = 0, в уравнении ax² + bx + c = 0, то:

х 1 =-1, а х 2 =- .

Доказательство :

Рассмотрим уравнение ax² + bx + c = 0, из него следует, что:

x 1,2 = (2).

Представим b из равенства a - b + c = 0

b = a + c, подставим в формулу (2):

=

Получаем два выражения:

1) х 1 =

2) х 2 =

Эта формула похожа на предыдущую, но она тоже важна, т.к. часто встречаются примеры такого типа.

1) Пример :

2х² + 3х + 1 = 0

a = 2, b = 3, c = 1.


a - b + c = 0, следовательно

2) Пример :

Ответ : x 1 = -1; х 2 = -

3) Метод “переброски

Корни квадратных уравнений y² + by + аc = 0 и ax² + bx + c = 0 связанны соотношениями:

х 1 = и х 2 =

Доказательство :

а) Рассмотрим уравнение ax² + bx + c = 0

x 1,2 = =

б) Рассмотрим уравнение y² + by + аc = 0

y 1,2 =


Заметим, что дискриминанты у обоих решений равны, сравним корни этих двух уравнений. Они отличаются друг от друга на старший коэффициент, корни первого уравнения меньше корней второго на а. Используя теорему Виета и выше приведенное правило, нетрудно решать разнообразные уравнения.

Пример :

Имеем произвольное квадратное уравнение

10х² - 11х + 3 = 0

Преобразуем это уравнение по приведенному правилу

y² - 11y + 30 = 0

Получим приведенное квадратное уравнение, которое можно достаточно легко решить с помощью теоремы Виета.

Пусть y 1 и y 2 корни уравнения y² - 11y + 30 = 0

y 1 y 2 = 30 y 1 = 6

y 1 + y 2 = 11 y 2 = 5

Зная, что корни этих уравнений отличны друг от друга на а, то

х 1 = 6/10 = 0,6

х 2 = 5/10 = 0,5

В некоторых случаях удобно решать сначала не данное уравнение ax² + bx + c = 0, а приведенное y² + by + аc = 0, которое получается из данного «переброской» коэффициента а, а затем разделить найденный корни на а для нахождения исходного уравнения.

2.5 Формула Виета для многочленов (уравнений) высших степеней

Формулы, выведенные Виетом для квадратных уравнений, верны и для многочленов высших степеней.

Пусть многочлен

P(x) = a 0 x n + a 1 x n -1 ­­­ + … +a n

Имеет n различных корней x 1 , x 2 …, x n .

В этом случае он имеет разложение на множители вида:

a 0 x n + a 1 x n-1 +…+ a n = a 0 (x – x 1)(x – x 2)…(x – x n)

Разделим обе части этого равенства на a 0 ≠ 0 и раскроем в первой части скобки. Получим равенство:

x n + ()x n -1 + … + () = x n – (x 1 + x 2 + … + x n) x n -1 + (x 1 x 2 + x 2 x 3 + … + x n -1 x n)x n -2 + … +(-1) n x 1 x 2 … x n

Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняется равенство

x 1 + x 2 + … + x n = -

x 1 x 2 + x 2 x 3 + … + x n -1 x n =

x 1 x 2 … x n = (-1) n


Например, для многочленов третей степени

a 0 x³ + a 1 x² + a 2 x + a 3

Имеем тождества

x 1 + x 2 + x 3 = -

x 1 x 2 + x 1 x 3 + x 2 x 3 =

x 1 x 2 x 3 = -

Как и для квадратных уравнений, эту формулу называют формулами Виета. Левые части этих формул являются симметрическими многочленами от корней x 1 , x 2 …, x n данного уравнения, а правые части выражаются через коэффициент многочлена.

2.6 Уравнения, сводимые к квадратным (биквадратные)

К квадратным уравнениям сводятся уравнения четвертой степени:

ax 4 + bx 2 + c = 0,

называемые биквадратными, причем, а ≠ 0.

Достаточно положить в этом уравнении х 2 = y, следовательно,

ay² + by + c = 0

найдём корни полученного квадратного уравнения


y 1,2 =

Чтобы найти сразу корни х 1, x 2, x 3, x 4 , заменим y на x и получим

x² =

х 1,2,3,4 = .

Если уравнение четвёртой степени имеет х 1 , то имеет и корень х 2 = -х 1 ,

Если имеет х 3 , то х 4 = - х 3 . Сумма корней такого уравнения равна нулю.

Пример :

2х 4 - 9x² + 4 = 0

Подставим уравнение в формулу корней биквадратных уравнений:

х 1,2,3,4 = ,

зная, что х 1 = -х 2 , а х 3 = -х 4 , то:

х 3,4 =

Ответ : х 1,2 = ±2; х 1,2 =

2.7 Исследование биквадратных уравнений

Возьмем биквадратное уравнение

ax 4 + bx 2 + c = 0,

где a, b, c –действительные числа, причем а > 0. Введя вспомогательную неизвестную y = x², исследуем корни данного уравнения, и результаты занесем в таблицу (см. приложение №1)

2.8 Формула Кардано

Если воспользоваться современной символикой, то вывод формулы Кардано может иметь такой вид:

х =

Эта формула определяет корни общего уравнения третей степени:

ax 3 + 3bx 2 + 3cx + d = 0.

Эта формула очень громоздкая и сложная (она содержит несколько сложныных радикалов). Она не всегда примениться, т.к. очень сложна для заполнения.

2.9 Симметричные уравнения третей степени

Симметричными уравнениями третей степени называют уравнения вида


ax³ + bx² +bx + a = 0 (1 )

ax³ + bx² - bx – a = 0 (2 )

где a и b – заданные числа, причём a¹0.

Покажем, как решаются уравнение (1 ).

ax³ + bx² + bx + a = a(x³ + 1) + bx(x + 1) = a(x + 1) (x² - x + 1) + bx(x + 1) = (x + 1) (ax² +(b – a)x + a).

Получаем, что уравнение (1 ) равносильно уравнению

(x + 1) (ax² +(b – a)x + a) = 0.

Значит его корнями, будут корни уравнения

ax² +(b – a)x + a = 0

и число x = -1

аналогично решается уравнение (2 )

ax³ + bx² - bx - a = a(x³ - 1) + bx(x - 1) = a(x - 1) (x² + x + 1) + bx(x - 1) = (x - 1) (ax 2 + ax + a + bx) = (x - 1) (ax² +(b + a)x + a).

1) Пример :

2x³ + 3x² - 3x – 2 = 0


Ясно, что x 1 = 1, а

х 2 и х 3 корни уравнения 2x² + 5x + 2 = 0 ,

Найдем их через дискриминант:

x 1,2 =

x 2 = -, x 3 = -2

2) Пример :

5х³ + 21х² + 21х + 5 = 0

Ясно, что x 1 = -1, а

х 2 и х 3 корни уравнения 5x² + 26x + 5 = 0 ,

Найдем их через дискриминант:

x 1,2 =

x 2 = -5, x 3 = -0,2.

2.10 Возвратные уравнения

Возвратное уравнение – алгебраическое уравнение

а 0 х n + a 1 x n – 1 + … + a n – 1 x + a n =0,

в котором а к = a n – k , где k = 0, 1, 2 …n, причем, а ≠ 0.

Задачу нахождения корней возвратного уравнения сводят к задаче нахождения решений алгебраического уравнения меньшей степени. Термин возвратные уравнения был введён Л. Эйлером.

Уравнение четвёртой степени вида:


ax 4 + bx 3 + cx 2 + bmx + am² = 0, (a ≠ 0).

Приведя это уравнение к виду

a (x² + m²/x²) + b(x + m/x) + c = 0, и y = x + m/x и y² - 2m = x² + m²/x²,

откуда уравнение приводится к квадратному

ay² + by + (c-2am) = 0.

3х 4 + 5х 3 – 14х 2 – 10х + 12 = 0

Разделив его на х 2 , получим эквивалентное уравнение

3х 2 + 5х – 14 – 5 × , или

Где и

3(y 2 - 4) + 5y – 14 = 0, откуда

y 1 = y 2 = -2, следовательно

И , откуда


Ответ: х 1,2 = х 3,4 = .

Частным случаем возвратных уравнений являются симметричные уравнения. О симметричных уравнениях третей степени мы говорили ранее, но существуют симметричные уравнения четвертой степени.

Симметричные уравнения четвертой степени.

1) Если m = 1, то это симметричное уравнение первого рода, имеющее вид

ax 4 + bx 3 + cx 2 + bx + a = 0 и решающееся новой подстановкой

2) Если m = -1, то это симметричное уравнение второго рода, имеющее вид

ax 4 + bx 3 + cx 2 - bx + a = 0 и решающееся новой подстановкой

2.11 Схема Горнера

Для деления многочленов применяется правило “деления углом”, или схема Горнера. С этой целью располагают многочлены по убывающим степеням х и находят старший член частного Q(x) из условия, что при умножении его на старший член делителя D(x) получается старший член делимого P(x). Найденный член частного умножают, затем на делитель и вычитают из делимого. Старший член частного определяют из условия, что он при умножении на старший член делителя даёт старший член многочлена разности и т.д. Процесс продолжается до тех пор, пока степень разности не окажется меньше степени делителя.(см. приложение №2).

В случае уравнений R = 0 этот алгоритм заменяется схемой Горнера.

Пример :

х 3 + 4х 2 + х – 6 = 0

Находим делители свободного члена ±1; ± 2; ± 3; ± 6.

Левую часть уравнения обозначим f(x). Очевидно, что f(1) = 0, x1 = 1. Делим f(x) на х – 1. (см. приложение №3)

х 3 + 4х 2 + х – 6 = (х – 1) (х 2 + 5х + 6)

Последний множитель обозначим через Q(x). Решаем уравнение Q(x) = 0.

х 2,3 =

Ответ : 1; -2; -3.

В этой главе мы привели некоторые формулы решения различных уравнений. Большинство этих формул решения уравнений частного характера. Эти свойства очень удобны так, как гораздо легче решать уравнения по отдельной формуле для этого уравнения, а не по общему принципу. К каждому из способов мы привели доказательство и несколько примеров.

Заключение

В первой главе была рассмотрена история возникновения квадратных уравнений и уравнений высших порядков. Различные уравнения решали более 25 веков назад. Множество способов решения таких уравнений были созданы в Вавилоне, Индии. Потребность в уравнениях была и будет.

Во второй главе приведены различные способы решения (нахождения корней) квадратных уравнений и уравнений высших порядков. В основном это способы решения для уравнений частного характера, то есть к каждой группе уравнений, объединенных какими- либо общими свойствами или видом, приведено особое правило, которое применяется только для этой группы уравнений. Этот способ (подбора к каждому уравнению собственной формулы) гораздо легче, чем нахождение корней через дискриминант.

В этом реферате достигнуты все цели и выполнены основные задачи, доказаны и разучены новые, ранее неизвестные формулы. Мы проработали много вариантов примеров перед тем, как занести их в реферат, по этому мы уже представляем, как решать некоторые уравнения. Каждое решение пригодится нам в дальнейшей учебе. Этот реферат помог классифицировать старые знания и познать новые.


Список литературы

1. Виленкин Н.Я. “Алгебра для 8 класса”, М., 1995.

2. Галицкий М.Л. “Сборник задач по алгебре”, М. 2002.

3. Даан-Дальмедико Д. “Пути и лабиринты”, М., 1986.

4. Звавич Л.И. “Алгебра 8 класс”, М., 2002.

5. Кушнир И.А. “Уравнения”, Киев 1996.

6. Савин Ю.П. “Энциклопедический словарь юного математика”, М., 1985.

7. Мордкович А.Г. “Алгебра 8 класс”, М., 2003.

8. Худобин А.И. “Сборник задач по алгебре”, М., 1973.

9. Шарыгин И.Ф. “Факультативный курс по алгебре”, М., 1989.

Приложение 1

Исследование биквадратных уравнений

C b Выводы
О корнях вспомогательного уравнения ay² +by+c=0 О корнях данного уравнения a(x²)² +bx² +c=0

C < 0

b- любое действительное число

y < 0 ; y > 0

1 2

x = ±Öy

C > 0 b<0 D > 0

x = ±Öy

D = 0 y > 0

x = ±Öy

D < 0 Нет корней Нет корней
b ≥ 0 Нет корней
Нет корней Нет корней

y > 0 ; y < 0

1 2

x = ±Öy

C = 0 b > 0 y = 0 x = 0
b = 0 y = 0 x = 0
b < 0 y = 0 x = 0

Приложение 2

Деление многочлена на многочлен «уголком»

A 0 a 1 a 2 ... a n c
+
b 0 c b 1 c b n-1 c
B 0 b 1 b 2 b n = R (остаток)

Приложение 3

Схема Горнера

Корень
1 4 1 -6 1
х 1 = 1
сносим 5 6 0
1 1×1 +4 = 5 5×1 + 1 = 6 6×1 – 6 = 0
корень
х 1 = 1


Понравилась статья? Поделитесь с друзьями!