Качественный химический анализ. Химические методы качественного анализа

Лекция 3

Качественный анализ

1. Васильев В.П. Аналитическая химия: В 2 кн. : Кн. 1: Титриметрические и гравиметрические методы анализа: учеб. для студ. вузов, обучающихся по химико-технол. спец. – 4-е изд., стереотип. – М. : Дрофа, 2004. – 368 с. (С. 33 – 35, 263, 309 – 311).

2. Лебедева М.И. Аналитическая химия и физико-химические методы анализа: учеб. пособие / М.И. Лебедева. – Тамбов: Изд-во Тамб. гос. техн. ун-та, 2005. – 216 с. – http://window.edu.ru/window_catalog/files/r38085/tstu2005-134.pdf

Качественный анализ – это анализ, целью которого является установление содержащихся в пробе химических элементов, ионов, веществ.

Методы качественного анализа

Методы качественного анализа различны: химические, физические, физико-химические.

Методы качественного анализа, позволяющие определить в анализируемом веществе содержание отдельных элементов, называют элементным анализом ;функциональных групп – функциональным анализом ; индивидуальных химических соединений, характеризующихся определенной молекулярной массой, – молекулярным анализом .

Совокупность разнообразных химических, физических и физико-химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом .

Химические методы основаны на том, что открываемый элемент или ион переводят в какое-либо соединение, обладающее определенными свойствами. Происходящее при этом химическое превращение называется аналитической реакцией . Вещество, которое вызывает это превращение, называется реактивом (реагентом ).

Аналитические реакции можно классифицировать следующим образом:

1. Групповые реакции : один и тот же реактив реагирует с группой ионов, давая одинаковый сигнал. Например , для отделения группы ионов (Ag + , Pb 2 + , Hg 2 2+) используют реакцию их с Cl − -ионами, при этом образуются белые осадки (AgCl, PbCl 2 , Hg 2 Cl 2).

2. Избирательные (селективные) реакции .

Например : йодокрахмальная реакция. Впервые ее описал в 1815 г немецкий химик Ф. Штромейер . Для этих целей используют органические реагенты.

Например: диметилглиоксим + Ni 2 + → образование ало-красного осадка диметилглиоксимата никеля.

Изменяя условия протекания аналитической реакции, можно неизбирательные реакции сделать избирательными.

Например: если реакции Ag + , Pb 2 + , Hg 2 2 + + Cl − проводить при нагревании, то PbCl 2 не осаждается, так как он хорошо растворим в горячей воде.

3. Реакции комплексообразования используются для целей маскирования мешающих ионов.

Например: для обнаружения Со 2 + в присутствии Fe 3 + -ионов с помощью KSCN , реакцию проводят в присутствии F − -ионов. При этом Fe 3 + + 4F − → − , K н = 10 − 16 , поэтому Fe 3 + -ионы закомплексованы и не мешают определению Co 2 + -ионов.

В аналитической химии используются следующие реакции :

1. Гидролиз (по катиону, по аниону, по катиону и аниону):

Al 3 + + HOH ↔ Al(OH) 2 + + H + ;

CO 3 2 − + HOH ↔ HCO 3 − + OH − ;

Fe 3 + + (NH 4) 2 S + HOH → Fe(OH) 3 + ...

2. Реакции окисления-восстановления :

2MnSO 4 + 5K 2 S 2 O 8 + 8H 2 O 2HMnO 4 + 10KHSO 4 + 2H 2 SO 4

3. Реакции комплексообразования :

СuSO 4 + 4NH 4 OH → SO 4 + 4H 2 O

4. Реакции осаждения :

Ba 2 + + SO 4 2 − → BaSO 4 ↓

В качественном анализе используются только те реакции , которые сопровождаются какими-либо хорошо заметными внешними эффектами :

1. Образование или растворение осадка :

Hg 2 + + 2I − → HgI 2 ↓;

HgI 2 + 2KI − → K 2 HgI 4

бесцветный

2. Появление, изменение, исчезновение окраски раствора (цветные реакции):

Mn 2 + → MnO 4 − → MnO 4 2 −

бесцветный фиолетовый зеленый

3. Выделение газа :

SO 3 2 − + 2H + → SO 2 + H 2 O.

4. Реакции образования кристаллов строго определенной формы (микрокристаллоскопические реакции).

5. Реакции окрашивания пламени .

Аналитические реакции можно проводить «сухим» и «мокрым» путем.

Примеры реакций, проводимых «сухим» путем :

– реакции окрашивания пламени (Na + – желтый; Sr 2 + – красный; Ba 2 + – зеленый; Са 2+ – кирпично-красный, K + – фиолетовый; Li + – малиновый, Tl 3 + – зеленый, In + – синий и др.);

– при сплавлении Na 2 B 4 O 7 и Co 2 + , Na 2 B 4 O 7 и Ni 2 + , Na 2 B 4 O 7 и Cr 3 + образуются «перлы » буры различной окраски. Например , соединения Co 2 + дадут интенсивно-синюю окраску, Cr 3 + – изумрудно-зеленую.

Окраска перла зависит от того, в каком конусе (зоне) пламени происходи нагревание – окислительном или восстановительном. В центре пламени у основания фитиля температура достигает 320 0 С – это зона восстановления , выше находится зона окисления , температура в верхней части доходит до 1550 0 С.

Методика получения перлов проста. Берут платиновую проволоку , один конец сгибают в ушко , а другой впаивают в стеклянную трубочку . Платиновое ушко нагревают в пламени горелки и горячее погружают в соль . Приставшую соль сначала держат под пламенем горелки, чтобы не слишком интенсивно выделялась вода, а затем сплавляют в бесцветный перл (соль буры Na 2 B 4 O 7 · 7Н 2 О). После этого еще горячим перлом прикасаются к исследуемому веществу и затем вновь вносят в окислительную часть пламени, получая цветной перл. Наблюдают полученный цвет в холодном и горячем состоянии.

Чаще всего аналитические реакции проводят в растворах («мокрый» путь ). Анализируемый объект (индивидуальное вещество или смесь веществ) может находиться в любом агрегатном состоянии (твердом, жидком, газообразном). Объект для анализа называется образцом, или пробой . Один и тот же элемент в образце может находиться в различных химических формах . Например: S 0 , S 2 − , SO 4 2 − , SO 3 2 − и т.д. В зависимости от цели и задачи анализа после переведения в раствор пробы проводят элементный анализ (определение общего содержания серы) или фазовый анализ (определение содержания серы в каждой фазе или в ее отдельных химических формах).

В зависимости от того, с какими количествами вещества проводят операции при выполнении аналитической реакции, различают :

макроанализ – 1 – 10 г, 10 – 100 мл;

полумикроанализ – 0,05 – 0,5 г, до 10 мл;

микроанализ – 0,001 – 10 -6 г, 0,1 – 10-4 мл;

ультрамикроанализ – 10 -6 – 10 -9 г, 10-4 – 10 -6 мл;

субмикроанализ – 10 -9 – 10 -12 г, 10-7 – 10 -10 мл.

Существует капельный метод анализа , введенный в аналитическую практику Н.А. Тананаевым (1920) . Реакции проводят на фарфоровой пластинке, предметном стекле, но чаще всего на полоске фильтровальном бумаги.

Выполняя ту или иную аналитическую реакцию необходимо строго соблюдать определенные условия ее протекания (температура, рН раствора, концентрация) с тем, чтобы она протекала быстро и имела достаточно низкий предел обнаружения . Например , осадки, растворимость которых повышается с увеличением температуры, необходимо получать только на холоду. В тоже время некоторые осадки получают только при нагревании.

Очень важное условие – достаточно большая концентрация открываемого иона в растворе. Наименьшее количество вещества (иона), которое можно открыть с помощью данного реагента в капле исследуемого раствора объемом в 1 микролитр (10 -6 л) называется чувствительностью реакции .

Количественно чувствительность характеризуется следующими показателями:

открываемый минимум (m ) – это наименьшее количество вещества или иона, которое может быть открыто посредством данной реакции при определенных условиях.

m = с пред. ·V min · 10 6 мкг

m = V min · 10 6 / V пред мкг

где с пред – предельная концентрация; V min – минимальный объем предельно разбавленного раствора; V пред – предельное разбавление.

Предельная концентрация (с пред ) – это отношение единицы массы определенного иона к массе наибольшего количества растворителя.

, [мкг/мл ]

Предельное разбавление (V пред ) – это величина, обратная предельной концентрации и показывающая, в каком количестве водного раствора (в мл) содержится 1 г определяемого иона.

;

Минимальный объем (V min ) – это объем раствора, содержащий открываемый минимум определенного иона.

, [мл ]

Чувствительность реакции , служащая для открытия одного и того же иона, может очень сильно различаться . Например , чувствительность реакции на Cu 2+ :

– если используется HCl, то m = 1 мкг, образуется комплекс 2- желто-зеленого цвета;

– если используется NH 3 , то m = 0,2 мкг, образуется комплекс 2+ синего цвета;

– если используется K 4 , то m = 0,02 мкг, образуется комплекс Cu 2 красно-бурого цвета.

Для повышения чувствительности реакции можно использовать следующие приемы :

увеличить продолжительность реакции, что особенно эффективно, если в ней принимают участие неэлектролиты или слабые электролиты .

добавить к раствору этиловый спирт , понижающий растворимость неорганических соединений, если в реакции наблюдается образование осадка;

взболтать водную реакционную смесь с какой-либо несмешивающейся с водой органической жидкостью .

В исследуемом растворе может присутствовать не один ион , а несколько . Применяя специфические реакции, можно открывать соответствующий ион дробным методом , т.е. непосредственно в отдельных порциях исследуемого раствора, не обращая внимания на те ионы, которые соединяются с данным. Дробный анализ был открыт Тананаевым в 1950 г .

Достоинством дробного анализа является быстрота его выполнения. Большую роль он играет тогда, когда анализу подвергается смесь с ограниченным количеством ионов и состав смеси приблизительно известен .

Недостатком дробного метода является в некоторых случаях отсутствие надежных специфических реакций для определенных ионов.

Поэтому для таких ионов необходимо разработать определенную последовательность проведения реакций открытия отдельных ионов, представляющую собой систематический ход анализа . Он состоит в том, что к открытию каждого иона приступают лишь тогда , когда все другие ионы , мешающие его открытию, будут предварительно открыты и удалены . Например , анализ смеси, содержащей Ba 2+ и Са 2+ , открывают оксалат-ионом С 2 О 4 2- :

Ва 2+ + С 2 О 4 2- → ВаС 2 О 4 ↓ (желтый)

фильтрат-Са 2+ + С 2 О 4 2- → СаС 2 О 4 ↓ (белый)

При систематическом ходе анализа ионы выделяются из сложных смесей не по одному, а целыми группами с помощью специальных реактивов, дающих одинаковую реакцию. Эти реактивы называются групповыми реагентами (групповыми реактивами ). Такие реактивы значительно упрощают проведение анализа .

Т.Н.ОРКИНА

ХИМИЯ

ХИМИЧЕСКИЙ И ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ

Учебное пособие

Оркина Т. Н. Химия.Химический и физико-химический анализ. / СПб.: Изд-во Политехн. Ун-та, 2012. – с.

Изложены цели и задачи современной аналитической химии - химических, физико-химических и физических методов анализа. Подробно изложены теоретические основы и методики проведения качественного и количественного анализа. Дается описание лабораторных работ по качественному анализу растворов и металлических сплавов, а также расчеты и методика проведения титриметрического (объемного) анализа. Рассмотрены основы физико-химического анализа - построение фазовых диаграмм, термический анализ металлических сплавов и построение диаграмм плавкости.

Пособие предназначено для студентов высших учебных заведений, обучающихся по различным направлениям и специальностям в области техники и технологии по направлению «Материаловедение», «Металлургия» и другим. Пособие может быть полезно для студентов, обучающихся по любым техническим специальностям в рамках дисциплины «Химия».

ВВЕДЕНИЕ

Аналитическая химия – это раздел химии, изучающий свойства и процессы превращения веществ с целью установления их химического состава. Установление химического состава веществ (химическая идентификация) – это ответ на вопрос о том, какие элементы или их соединения и в каких количественных соотношениях содержаться в анализируемом образце. Аналитическая химия развивает теоретические основы химического анализа веществ и материалов, разрабатывает методы идентификации, обнаружения, разделения и определения химических элементов и их соединений, а также методы установления строения вещества. Обнаружение или, как говорят, открытие элементов или ионов, входящих в состав исследуемого вещества, составляют предмет качественного анализа . Определение концентраций или количества химических веществ, входящих в состав анализируемых объектов, составляет задачу количественного анализа . Качественный анализ обычно предшествует количественному, так как для выполнения количественного анализа требуется знать качественный состав анализируемого образца. Когда состав изучаемого объекта известен заранее, качественный анализ проводят по мере необходимости.

1. МЕТОДЫ АНАЛИТИЧЕСКОЙ ХИМИИ.

Для обнаружения какого-либо компонента обычно используют так называемый аналитический сигнал. Аналитический сигнал этовидимые изменения в самом объекте исследования (образование осадка, изменение окраски, и т.д.) или изменение параметров измерительных приборов (отклонение стрелки прибора, изменение цифрового отсчета, появление линии в спектре и пр.). Для получения аналитического сигнала используют химические реакции разных типов (ионообменные, комплексообразования, окислительно-восстановительные), различные процессы (например, осаждение, выделение газов), а также разнообразные химические, физические и биологические свойства самих веществ и продуктов их реакций. Поэтому аналитическая химия располагает различными методами для решения своих задач.



Химические методы (химический анализ) основаны на проведении химической реакции между изучаемым образцом и специально подобранными реактивами. В химических методах аналитический сигнал, возникающий в результате химической реакции, наблюдают, главным образом, визуально.

Физико-химические методы анализа основаны на количественном изучении зависимости состав – физическое свойство объекта. Аналитическим сигналом служит электрический (потенциал, сила тока, сопротивление и др.) или любой другой параметр (температура фазовых превращений, твердость, плотность, вязкость, давление насыщенного пара и т.п.), связанный определенной функциональной зависимостью с составом и концентрацией объекта исследования. Физико-химические методы исследования обычно связаны с применением высокочувствительной аппаратуры. Достоинствами этих методов являются их объективность, возможность автоматизации и быстрота получения результатов. Примером физико-химического метода анализа является потенциометрическое определение рН раствора с помощью измерительных приборов потенциометров. Этот метод позволяет не только измерять, но и непрерывно следить за изменением рН при протекании в растворах каких-либо процессов.

В физических методах анализа аналитический сигнал, как правило, получают и регистрируют с помощью специальной аппаратуры. К физическим методам, прежде всего, относятся оптические спектроскопические методы анализа, основанные на способности атомов и молекул испускать, поглощать и рассеивать электромагнитное излучение. Регистрируя испускание, поглощение или рассеяние электромагнитных волн анализируемым образцом, получают совокупность сигналов, характеризующих ее качественный и количественный состав.

Между всеми тремя методами нет резкой границы, поэтому это деление несколько условно. Например, в химических методах пробу подвергают сначала действию какого-либо реагента, т.е. проводят определенную химическую реакцию, и только после этого наблюдают и измеряют физическое свойство. При анализе физическими методами наблюдение и измерение выполняют непосредственно с анализируемым материалом, используя специальную аппаратуру, причем химические реакции, если они проводятся, играют вспомогательную роль. В соответствии с этим в химических методах анализа главное внимание уделяют правильному выполнению химической реакции, в то время как в физико-химических и физических методах основной упор делается на соответствующее аппаратурное обеспечение измерения – определение физического свойства.

2. КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ И ФИЗИКО-ХИМИЧЕСКИХ МЕТОДОВ.

Химические и физико-химические методы анализа классифицируют в зависимости от массы и объема анализируемых проб. По количеству вещества или смеси веществ (пробы), используемого для анализа, различают макро-, полумикро-, субмикро-, и ультрамикроанализ. В таблице 1 приведены диапазоны массы и объема растворов пробы, рекомендуемые отделением аналитической химии ИЮПАК (аббревиатура с английского Международного союза теоретической и прикладной химии).

Таблица 1

В зависимости от характера поставленной задачи различают следующие виды анализа.

1 . Элементный анализ – установление наличия и содержания отдельных элементов в данном веществе, т.е. нахождение его элементного состава.

2 . Фазовый анализ – установление наличия и содержания отдельных фаз исследуемого материала. Например, углерод в стали может находиться в виде графита или в форме карбидов железа. Задача фазового анализа – найти, сколько углерода содержится в виде графита и сколько в виде карбидов.

3 . Молекулярный анализ (вещественный анализ) - установление наличия и содержания молекул различных веществ (соединений) в материале. Например, в атмосфере определяют количество CO, CO 2 , N 2 , O 2 др. газы.

4 . Функциональный анализ – установление наличия и содержания функциональных групп в молекулах органических соединений, например аминогрупп (-NH 2), нитро(-NO 2), гидроксильных (-ОН), карбоксильных (-СООН) и других групп.

В зависимости от характера анализируемого материала различают анализнеорганических и органических веществ. Выделение анализа органических веществ в отдельный раздел аналитической химии связано с особенностями органических веществ. Даже первый этап анализа – переведение пробы в раствор - существенным образом различается для органических и неорганических веществ.

Основными этапами любого химического анализа сложных материалов являются следующие действия.

1. Отбор пробы для анализа. Средний состав пробы должен соответствовать среднему составу всей партии анализируемого материала.

2. Разложение пробы и переведение ее в раствор. Пробу растворяют в воде или кислотах, сплавляют с различными веществами или используют другие способы или химические воздействия.

3. Проведение химической реакции: Х + R = Р, где Х – компонент пробы; R – реагент; Р – продукт реакции.

4. Фиксация или измерение какого-либо физического параметра продукта реакции, реагента или определяемого вещества.

Рассмотрим более подробно два вида химического анализа – качественный и количественный анализ.

3. КАЧЕСТВЕННЫЙ АНАЛИЗ

Задачей качественного анализа является идентификация компонентов и определение качественного состава вещества или смеси веществ. Обнаружение или, как говорят, открытие элементов и ли ионов в составе исследуемого вещества производят, переводя их в соединение, обладающее какими-либо характерными свойствами, т. е. фиксируют появление аналитического сигнала. Происходящие при этом химические превращения называются аналитической реакцией . Вещество, с помощью которого проводят открытие – реактивом или реагентом .

Существуют разные приемы качественного анализа, требующие применения различных количеств исследуемого вещества в соответствии с таблицей 1. Например: в макроаналитическом методе берут около 1г вещества (0,5г для металлов и сплавов) и растворяют в 20-30 мл воды. Реакции проводят в пробирках (пробирочный анализ). В случае проведения микроанализа веществ берут примерно в 100 раз меньше по сравнению с макроанализом (миллиграммы твердого вещества и несколько десятых миллилитров раствора). Для открытия отдельных частей применяют высокочувствительные реакции, позволяющие обнаружить присутствие малых количеств элемента или иона. Выполнение реакций производят либо микрокристаллическим, либо капельным методом. Микрокристаллические реакции выполняют на предметном стекле и о присутствии элемента судят по форме образующихся кристаллов, которые рассматривают под микроскопом. Капельные реакции , сопровождающиеся изменением окраски раствора и образованием окрашенных осадков, выполняют на полоске фильтровальной бумаги, нанося на нее по капле исследуемые растворы и реактивы. Иногда капельные реакции проводят на специальной «капельной пластинке» - фарфоровой пластинке с углублениями, а также на часовом стекле или в фарфоровом тигле малого размера. Полумикроананализ (полумикрометод) занимает промежуточное положение между макро- и микроанализом. Необходимое для исследования состава количество вещества, примерно 20-25 раз меньше, чем при проведении макроанализа – около 50мг твердого вещества и 1мл раствора. В данном методе сохраняется система макроанализа и открытия ионов, но все реакции выполняют с малыми количествами вещества, пользуясь специальной техникой и аппаратурой. Например, реакции проводят в маленьких пробирках на 1-2мл, в которые растворы вводят с помощью пипеток. Отделение осадков производят только центрифугированием. Субмикроанализ и ультрамикроанализ проводятся по специальным методикам с использованием микроскопов разной степени увеличения, электронных микроскопов и другой аппаратуры. Их рассмотрение не входит в задачу данного пособия.

В качественном анализе химические реакции проводят чаще всего в растворе, так называемым «мокрым путем». Но иногда возможно проведение твердофазных реакций, т.е. реакций «сухим путем» . Вещество и соответствующие реактивы берут в твердом виде и для проведения реакций нагревают до высокой температуры. Примером таких реакций могут служить реакции окрашивания пламени солями некоторых металлов. Известно, что соли натрия окрашивают пламя в ярко-желтый цвет, соли калия – в фиолетовый, соли меди – в зеленый. По этой окраске можно обнаружить присутствие указанных элементов в исследуемом веществе. К реакциям «сухим путем» относятся также реакции образования окрашенных перлов – стеклообразных сплавов различных солей . Например буры – Na 2 B 4 O 7 10H 2 O или перлов двойной соли NaNH 4 HPO 4 4Н 2 О. Эти методы называются пирохимическими и широко используются для определения минералов и горных пород. Но в основном, в качественном анализе реакции проводятся «мокрым путем» между растворенными веществами.

Методика проведения качественного анализа

Первый этап любого анализа состоит в переведении пробы в раствор с помощью различных растворителей. При анализе неорганических веществ в качестве растворителей чаще всего используются вода, водные растворы кислот, щелочей, реже - других неорганических веществ. Затем проводят характерные реакции открытия ионов. Качественные реакций открытия ионов – это химические реакции, которые сопровождаются внешним эффектом (изменение окраски раствора, выделение газа, образование осадка), на основании которого можно судить, что реакция имеет место. Чаще всего имеют дело с водными растворами солей, кислот, оснований, между которыми протекают ионообменные реакции (реже – окислительно-восстановительные).

Та или иная аналитическая реакция должна выполняться в определенных условиях, зависящих от свойств образующихся соединений. При несоблюдении этих условий результаты открытия ионов могут оказаться недостоверными. Например, осадки, растворимые в кислотах, не выпадают из раствора при избытке кислоты. Поэтому необходимо соблюдать следующие условия проведения реакций.

1.Надлежащая среда исследуемого раствора, которая создается прибавлением кислоты или щелочи.

2.Определенная температура раствора. Например, реакции образования осадков, растворимость которых сильно возрастает с температурой, проводят на «холоду». Наоборот, если реакция протекает чрезвычайно медленно, требуется нагревание.

3.Достаточно высокая концентрация открываемого иона, так как при малых концентрациях реакция не проходит, т.е. реакция малочувствительна.

Понятие «чувствительность реакции» количественно характеризуется двумя показателями: открываемый минимум и предельное разбавление. Для экспериментального определения чувствительности реакцию многократно повторяют с исследуемыми растворами, постепенно уменьшая количество растворенного вещества и объем растворителя. Открываемый минимум (Υ) – это наименьшее количество вещества, которое может быть открыто посредством данной реакции при определенных условиях ее выполнения. Выражают в микрограммах (1Υ- миллионные доли грамма, 10 -6 г). Открываемый минимум не может полностью характеризовать чувствительность реакции, так как имеет значение концентрация открываемого иона в растворе. Предельное разбавление (1:G)характеризует наименьшую концентрацию вещества (иона), при которой его можно открыть посредством данной реакции; где G – массовое количество растворителя, приходящееся на единицу массы открываемого вещества или иона. В макроанализе и полумикрометоде применяют те реакции, чувствительность которых превышает 50Υ, а предельное разбавление 1: 1000.

При выполнении аналитических реакций следует учитывать не только чувствительность, но и специфичностьреакции – возможность открытия данного иона в присутствии других ионов. Открытие ионов посредством специфических реакций, производимое в отдельных порциях исследуемого раствора в произвольной последовательности, называется дробным анализом . Но специфических реакций не так много. Чаще приходится иметь дело с реактивами, дающими одинаковый или сходный эффект реакции со многими ионами. Например, хлорид бария осаждает из раствора карбонат- и сульфат- ионы в виде осадков ВаСО 3 и ВаSO 4 . Реактивы, дающие одинаковый аналитический сигнал с ограниченным числом ионов, называются избирательными или селективными . Чем меньше число ионов, открываемых данным реактивом, тем выше степень селективности реактива.

Иногда посторонние ионы не реагируют с данным реактивом, но уменьшают чувствительность реакции или изменяют характер образующихся продуктов. В этом случае надо учитывать предельное соотношение концентраций открываемого и постороннего ионов, а также использовать маскирующие средства (приемы или реактивы). Мешающий ион переводят в малодиссоциирующие соединения или комплексные ионы, его концентрация в растворе понижается, и этот ион уже не препятствует открытию анализируемых ионов. Все выше перечисленные особенности и приемы используются при разработке последовательности проведения химических реакций в процессе анализа. Если реакции, используемые при анализе, неспецифичны, и мешающее влияние посторонних ионов устранить нельзя, то применение дробного метода становиться невозможным и прибегают к систематическому ходу анализа .

Систематический ход анализа – это определенная последовательность реакций, разработанная с таким расчетом, чтобы открытие каждого иона производилось лишь после открытия и удаления всех мешающих этому открытию ионов. При систематическом ходе анализа из сложной смеси ионов производят выделение отдельных групп ионов, пользуясь сходным отношением их к действию некоторых реактивов, называемых групповым реагентом . Например, одним из групповых реагентов является хлорид натрия, который производит сходное действие на ионы Ag + , Pb 2+ , Hg 2 2+ . Действие хлорида натрия на растворимые соли, содержащие эти катионы, приводит к образованию осадков, нерастворимых в хлороводородной кислоте:

Ag + + Cl - = AgCl↓

Pb 2 + Cl - = PbCl 2 ↓

Hg 2 2+ + 2Cl - = Hg 2 Cl 2 ↓

Все остальные ионы, если подействовать HCl, перейдут в раствор, а три катиона Ag + , Pb 2+ и Hg 2 2+ будут отделены от других с помощью группового реагента NaCl. Применение групповых реагентов представляет большие удобства: сложная задача распадается на ряд более простых. Кроме того, если какая-либо группа ионов полностью отсутствует, то ее групповой реагент не даст с анализируемым раствором никакого осадка. В этом случае не имеет смысла проводить реакции на отдельные ионы этой группы. В результате достигается значительная экономия труда, времени и реактивов. Из вышесказанного следует, что в качественном анализе в основу классификации ионов положено различие в растворимости некоторых образуемых ими соединений; на основании этого различия основан метод отделения одной группы ионов от другой. Основная классификация катионов была введена выдающимся русским химиком Н.А. Меншуткиным (1871г.) и представлена в таблице.

В основу классификации анионов положена растворимость солей бария и серебра в соответствующих кислотах. Эта классификация не является строго установленной, так как различные авторы подразделяют анионы на различное число групп. Один из самых распространенных вариантов – подразделение изучаемых анионов на три группы, как показано в таблице 3. В противоположность катионам анионы в большинстве случаев не мешают обнаружению друг друга, поэтому к реакциям отделения анионов приходиться прибегать только в редких случаях. Чаще обнаружение анионов ведут дробным анализом, т.е. в отдельных порциях исследуемого раствора. При анализе анионов групповые реагенты обычно применяются не для разделения групп, а лишь для их обнаружения. Отсутствие в исследуемом растворе какой-либо группы значительно облегчает работу.

Таблица 2

Классификация катионов

Сульфиды раствормы в воде Сульфиды нераст
Карбонаты растворимы в воде Карбонаты нерастворимы в воде Сульфиды или (гидроксиды, образующиеся при их разл. водой) раств. в разб. кислотах Сульфиды нерастворимы в разбавленных кислотах
I группа II группа III группа IV группа V группа
К + ,Na + , NH 4 + Mg 2+ и др. Ва 2+ ,Са 2+ ,Sr 2+ и др. Al 3+ ,Cr 3+ ,Fe 3+ Fe 2+ ,Mn 2+ ,Zn 2+ Ni 2+ ,Co 2+ и др. а) I подгруппа (хлориды нерастворимы в воде) Аg + Hg 2 2+ ,Pb 2+ , б) II подгруппа (хлориды раст. в воде) Hg 2+ ,Cu 2+ , Cd 2+ ,Bi 3+ Сульфиды растворимы в (NH 4) 2 S 2 As 5+ ,As 3+ Sb 5+ ,Sb 3+ Sn 4+ ,Sn 2+ и др.
Группового реагента нет Групповой реагент (NH 4) 2 CO 3 Групповой реагент (NH 4) 2 S Групповой реагент Н 2 S в присут. НСl (для осаждения I подгруппы – НСl) Групповой реагент (NH 4) 2 S 2

Таблица 3

Классификация анионов

3.2. Лабораторные работы по теме «Качественный анализ»

Методы качественного анализа делятся на физические, физико-химические и химические.

Физические и физико-химические методы анализа основаны на измерении какого-либо параметра системы, который является функ­цией состава. Например, в спектральном анализе исследуют спектры излучения, возникающие при внесении вещества в пламя горелки или электрической дуги. По наличию в спектре линий, характер­ных для данных элементов, узнают об элементарном составе веще­ства.

В физико-химических методах анализа об элементарном составе веществ судят по тем или иным характерным свойствам атомов или ионов, используемых в данном методе. Например, в хроматографии состав вещества определяют по характерной окраске ионов, адсорбирующихся в определенном порядке, или же по окраске соединений, образующихся при проявлении хроматограммы.

Между физическими и физико-химическими методами не всегда можно установить строгую границу. Поэтому их часто объединяют под общим названием «инструментальные» методы.

Химические методы основаны на превращении анализируемого вещества в новые соединения, обладающие определенными свой­ствами. По образованию характерных соединений элементов и уста­навливают элементарный состав веществ. Например, ионы Сu 2+ можно обнаружить по образованию комплексного иона [Сu (NH 3) 4 ] 2+ лазурно-синего цвета.

Качественные аналитические реакции по способу их выполнения делятся на реакции «мокрым» и «сухим» путем. Наибольшее зна­чение имеют реакции «мокрым» путем. Для проведения их иссле­дуемое вещество должно быть предварительно растворено. В ка­чественном анализе находят применение только те реакции, которые сопровождаются ка­кими-либо хорошо заметными для наблюда­теля внешними эффектами: изменением окраски раствора; выпаде­нием или растворением осадка; выделением газов, обладающих характерным запахом или цветом, и т. п.

Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями «открытия», так как с их помощью обнаруживаются присутствующие в растворе ионы. Широко используются также реакции идентификации, с помощью которых проверяется правильность «открытия» того или иного иона. Наконец, применяют­ся реакции осаждения, с помощью которых обычно отделяется одна группа ионов от другой или один ион от других ионов.

В зависимости от количества анализируемого вещества, объема раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро-, микро-, полумикро- и ультрамикроанализ и др.

В 1955 г. секция аналитической химии Международного объединения по чистой и прикладной химии приняла «Классификацию методов анализа» и предложила их новые наименования (табл. 1.1).



Классический макрохимический анализ требует для проведения анализа от 1 до 10 г вещества или от 10 до 100 мл исследуемого раствора. Он проводится в обычных пробирках на 10-15 мл, при этом пользуются также химическими стаканами и колбами на 150-200 мл, воронками для фильтрования и другим оборудованием. Микрохимический анализ позволяет анализировать от 0,001 до 10 -6 г вещества или от 0,1 до 10 -4 мл исследуемого раствора. По тех­нике выполнения микрохимический анализ делится на микрокристаллоскопический и капельный методы анализа.

Микрокристаллоскопический метод анализа проводится с помощью микроскопа. На предметном стекле микроскопа капля исследуемого раствора приводится во взаимодействие с каплей реагента. Образующееся химическое соединение определяется по форме кристал­лов, а иногда по окраске или оптическим свойствам его.

Капельный метод анализа введен в аналитическую практику Н. А. Тананаевым с 1920 г. Этим методом реакции выполняются с каплями растворов и реагентов, обладающих высокой чувствительностью. Применение их, поэтому дает возможность обнаруживать весьма малые количества катионов. Данный вид анализа можно проводить на фарфоровой плас­тинке, предметном и часовом стеклах и на фильтровальной бумаге.

В полумикроанализе химик работает с пробами исследуемого вещества массой от 0,05 до 0,5 г и оперирует с объемами растворов от 1 до 10 мл. При этом виде анализа частично используется техника макроанализа и микроанализа. Посуда и оборудование те же, что и в макроанализе, но уменьшенного типа.

Методы микро- и полумикрохимического анализа имеют целый ряд преимуществ перед методами макрохимического анализа; они позволяют с меньшей затратой времени и реактивов производить капельный анализ.

Анализ «сухим» путем проводится с твердыми веществами. Он делится на пирохимический анализ и анализ методом растирания.

Пирохимический анализ - нагревание исследуемого вещества в пламени газовой горелки. Рассмотрим два приема анализа: полу­чение окрашенных перлов; реакции окрашивания пламени.

Получение окрашенных перлов. Ряд солей и оксидов металлов при растворении в расплавленном фосфате натрия-аммония NaNH 4 HPО 4 · 4Н 2 О или тетраборате натрия Na 2 B 4 О 7 · l0H 2 O об­разуют стекла (перлы). Наблюдая их окраску, можно установить, какие элементы имеются в исследуемом веществе. Так, например, соединения хрома дают изумрудно-зеленые перлы; соединения ко­бальта - интенсивно синие перлы; соединения марганца - фиоле­тово-аметистовые перлы; соединения железа - желто-бурые пер­лы; соединение никеля - красно-бурые перлы и т. д. Методика получения перлов довольно проста. Платиновую про­волочку, один конец которой согнут в ушко, а второй впаян в стек­лянную трубку, накаливают в пламени газовой горелки и погружа­ют в соль, например тетраборат натрия. Часть соли расплавляется около горячей проволоки и пристает к ней. Проволоку с кристалли­ками сначала держат над пламенем горелки, а затем помещают в бесцветную часть пламени и получают бесцветный перл. Горячим перлом прикасаются к исследуемому веществу, затем его накали­вают в окислительном пламени горелки до полного растворения взятого вещества и отмечают цвет перла в горячем и холодном состоянии.

Реакции окрашивания пламени. Летучие соли многих металлов при внесении их в несветящуюся часть пламени газовой горелки окрашивают пламя в различные цвета, характерные для этих ме­таллов (табл. 1.2). Окраска зависит от раскаленных паров свободных металлов, получающихся в результате термического разложения солей при внесении их в пламя горелки.

Реакции окрашивания пламени удаются хорошо только с лету­чими солями (хлоридами, карбонатами и нитратами). Нелетучие соли (бораты, силикаты, фосфаты) смачивают перед внесением их в пламя концентрированной соляной кислотой для перевода их в летучие хлориды.

Приемы пирохимического анализа используются в качественном анализе как предварительное испытание при анализе смеси сухих веществ или как проверочные реакции.

Анализ методом растирания предложен в 1898 г. Ф. М. Флавицким. В методе растирания исследуемое твердое вещество помещают в фарфоровую ступку и растирают с примерно равным количеством твердого реагента. В результате реакции обычно образуется окра­шенное вещество, по окраске которого и судят о наличии определя­емого иона. Например, для открытия иона кобальта несколько кри­сталликов хлорида кобальта CoCl 2 растирают с кристаллами роданида аммония NH 4 SCN. При этом смесь синеет вследствие обра­зования комплексной соли тетрародано (II) кобальтата аммония (NH 4) 2 :

CoCI 2 + 4NH 4 SCN = (NH 2) 2 + 2NH 4 C1

Для открытия ацетат-аниона СН 3 СОО - кристалл соли расти­рают с небольшим количеством твердого гидросульфата натрия или гидросульфата калия. Выделяющаяся при этом свободная уксусная кислота узнается по запаху:

CH 3 COONa + NaHSO 4 = Na 2 SO + СН 3 СООН

Метод Ф. М. Флавицкого почти не применялся на практике и и только в 50-х годах П. М. Исаков значительно расширил и углу­бил метод растирания и показал целесообразность его применения при анализе руд и минералов в полевых условиях.

В качественном анализе реакции «сухим» путем играют вспомогательную роль; ими пользуются обычно в качестве предварительных испытаний и проведения проверочных реакций.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЮЖНО-УРАЛЬСКИЙ ГАУ

ИНСТИТУТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ

Кафедра общей химии и экологического мониторинга

по дисциплине «Аналитическая химия»

на тему: «Качественный анализ»

Выполнил: студент 1а группы Корепанова А.А

Проверила: Гизатуллина Юлия Абдуловна

Троицк 2017

качественный анализ реакция ион

Введение

Заключение

Введение

Аналитическая химия - установление качественного и количественного состава вещества или смеси веществ. В соответствии с этим аналитическая химия делится на качественный и количественный анализ.

Задачей качественного анализа является выяснение качественного состава вещества, т. е. из каких элементов или ионов состоит данное вещество.

При изучении состава неорганических веществ в большинстве случаев приходится иметь дело с водными растворами кислот, солей и оснований. Эти вещества являются электролитами и в растворах диссоциированы на ионы. Поэтому анализ сводится к определению отдельных ионов -- катионов и анионов.

При проведении качественного анализа можно работать с различными количествами исследуемого вещества. Имеются так называемые грамм-метод, при котором масса исследуемого вещества берется более 0,5 г (более 10 мл раствора), сантиграмм-метод (масса исследуемого вещества от 0,05 до 0,5 г, или 1--10 мл раствора), миллиграмм-метод (масса исследуемого вещества от 10 -6 г до 10 -3 г, или от 0,001 до 0,1 мл раствора) и др. Наиболее распространенным является сантиграмм-метод, или полумикрометод.

1. Методы качественного анализа

Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества, в которых наличие определяемых веществ заведомо известно. Например, установлено, что присутствие спектральной линии с длиной волны 350,11 нм в эмиссионном спектре сплава, при возбуждении спектра электрической дугой, свидетельствует о наличии в сплаве бария; посинение водного раствора при добавлении к нему крахмала является АС на присутствие в нем I2 и наоборот.

Качественный анализ всегда предшествует количественному.

В настоящее время качественный анализ выполняют инструментальными методами: спектральными, хроматографическими, электрохимическими и др. Химические методы используют на отдельных стадиях инструментальных (вскрытие пробы, разделение и концентрирование и др.), но иногда с помощью химического анализа можно получить результаты более просто и быстро, например, установить наличие двойных и тройных связей в непредельных углеводородах при пропускании их через бромную воду или водный раствор KMnO4. При этом растворы теряют окраску.

Детально разработанный качественный химический анализ позволяет определять элементный (атомный), ионный, молекулярный (вещественный), функциональный, структурный и фазовый составы неорганических и органических веществ.

При анализе неорганических веществ основное значение имеют элементный и ионный анализы, так как знание элементного и ионного состава достаточно для установления вещественного состава неорганических веществ. Свойства органических веществ определяются их элементным составом, но также и структурой, наличием разнообразных функциональных групп. Поэтому анализ органических веществ имеет свою специфику.

Качественный химический анализ базируется на системе химических реакций, характерных для данного вещества - разделения, отделения и обнаружения.

К химическим реакциям в качественном анализе предъявляют следующие требования.

1. Реакция должна протекать практически мгновенно.

2. Реакция должна быть необратимой.

3. Реакция должна сопровождаться внешним эффектом (АС):

а) изменением окраски раствора;

б) образованием или растворением осадка;

в) выделением газообразных веществ;

г) окрашиванием пламени и др.

4. Реакция должна быть чувствительной и по возможности специфичной.

Реакции, позволяющие получить внешний эффект с определяемым веществом, называют аналитическими, а добавляемое для этого вещество - реагентом. Аналитические реакции, проводимые между твердыми веществами, относят к реакциям «сухим путем », а в растворах - «мокрым путем ».

К реакциям «сухим путем» относятся реакции, выполняемые путем растирания твердого исследуемого вещества с твердым реагентом, а также путем получения окрашенных стекол (перлов) при сплавлении некоторых элементов с бурой.

Значительно чаще анализ проводят «мокрым путем», для чего анализируемое вещество переводят в раствор. Реакции с растворами могут выполняться пробирочным, капельным и микрокристалли-ческим методами. При пробирочном полумикроанализе его выполняют в пробирках вместимостью 2-5см3. Для отделения осадков используют центрифугирование, а выпаривание ведут в фарфоровых чашечках или тиглях. Капельный анализ (Н.А. Тананаев, 1920 г.) осуществляют на фарфоровых пластинках или полосках фильтрованной бумаги, получая цветные реакции при добавлении к одной капле раствора вещества одной капли раствора реактива. Микрокристаллический анализ основан на обнаружении компонентов с помощью реакций, в результате которых образуются соединения с характерным цветом и формой кристаллов, наблюдаемых в микроскоп.

2. Специфичность и чувствительность реакций

Чувствительность реакции характеризуется минимальным количеством определяемого компонента или минимальной его концентрацией в растворе, при которых с помощью данного реагента этот компонент может быть обнаружен.

Предельная концентрация C min -- это минимальная концентрация вещества в растворе, при которой данная реакция еще дает положительный результат. Предельное разбавление G -- величина, обратная предельной концентрации. Предельную концентрацию выражают отношением 1: G, которое показывает, в какой массе растворителя должна содержаться одна массовая часть вещества, чтобы внешний эффект был еще заметен. Например, для реакции Сu 2+ с аммиаком предельное разбавление равно 250 000 и предельная концентрация 1:250 000, что означает возможность открыть ионы меди в растворе, содержащем 1 г Сu 2+ в 250 000 г воды. Реакция считается тем чувствительнее, чем больше предельное разбавление.

Чувствительность реакции зависит от многих условий: кислотности среды, температуры, ионной силы раствора и других, поэтому каждую аналитическую реакцию следует проводить в строго определенных условиях. Если не соблюдать требуемых условий, то реакция может или совсем не пойти, или пойти в нежелательном направлении.

Аналитическая реакция, свойственная только данному иону, называется специфической реакцией. Это, например, реакция обнаружения иона NH + 4 действием щелочи в газовой камере, синее окрашивание крахмала при действии йода и некоторые другие реакции. При наличии специфических реакций можно было бы открыть любой ион непосредственно в пробе исследуемой смеси, независимо от присутствия в ней других ионов. Открытие ионов специфическими реакциями в отдельных пробах всего исследуемого раствора в произвольно выбранной последовательности называется дробным анализом.

Отсутствие специфических реакций для большинства ионов делает невозможным проведение качественного анализа сложных смесей дробным методом. Для таких случаев разработан систематический анализ. Он состоит в том, что смесь ионов с помощью особых групповых реагентов предварительно разделяют на отдельные группы.

Из этих групп каждый ион выделяют в строго определенной последовательности, а потом уже открывают характерной для него аналитической реакцией.

Реактивы, позволяющие в определенных условиях разделять ионы на аналитические группы, называются групповыми реагентами (реактивами). В основе использования групповых реагентов лежит избирательность их действия. В отличие от специфических избирательные (или селективные) реакции проходят с несколькими ионами или веществами. Например, С1---ионы образуют осадки с катионами Ag + , Hg 2 2+ и Pb 2+ , следовательно, эта реакция является селективной для указанных ионов, а соляная кислота НСl может использоваться в качестве группового реагента аналитической группы, включающей эти катионы.

3. Типы реакций, используемые в качественном анализе

Пирохимические реакции. Ряд методов качественного анализа основан на проведении химических реакций, проводимых сплавлением, нагреванием на древесном угле, в пламени газовой горелки или паяльной лампы. При этом вещества окисляются кислородом воздуха, восстанавливаются оксидом углерода, атомарным углеродом пламени или древесного угля. Окисление или восстановление может привести к образованию окрашенных продуктов. Одной из наиболее употребительных пирохимических реакций является проба окрашивания пламени. Пламя окрашивается в характерный для катиона цвет. Окрашивание пламени соединениями некоторых элементов представлено в таблице.

Цвет пламени

Цвет пламени

Карминово-красный

Сине-фиолетовый

Изумрудно-зеленый

Фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Кирпично-красный

Бледно-синий

Стронций

Карминово-красный

Изумрудно-зеленый

Желто-зеленый

Зеленый, голубой

Молибден

Желто-зеленый

Микрокристаллоскопические реакции - это реакции при проведении которых образуются осадки, состоящие из кристаллов характерной формы и цвета. Определяют внешнюю форму кристаллов, которые обладают определенной симметрией. Газовыделительные реакции - реакции в которых выделяются газообразные соединения. Для обнаружения отдельных газов применяют специфичные реактивы (сероводород обнаруживают ацетатом свинца - почернение, аммиак-фенолфталеином - покраснение в щелочной среде). Цветные реакции - основной тип реакций обнаружения веществ. Цвет сохраняется у всех соединений цветных катионов и анионов (манганаты, хроматы, дихроматы). Цвет может появиться и измениться в зависимости от условий под действием иона противоположного знака- например б/ц ионы йода и серебра образуют иодид серебра желто-коричневого цвета.

Открытие ионов, специфическим реакциями в отдельной пробе всего исследуемого раствора в любой последовательности называется дробным анализом. Систематический ход анализа в отличие от дробного анализа заключается в том, что смесь ионов с помощью особых реактивов предварительно разделяют на отдельные группы. Из этих групп каждый ион выделяют в определенной последовательности, а потом уже открывают характерной реакцией. Реактивы, позволяющие в определенной последовательности разделять ионы на аналитические группы, называются групповыми.

4. Маскирование ионов в качественном анализе

Многие качественные реакции являются общими для нескольких ионов, что не позволяет обнаружить их в присутствии друг друга. В этом случае применяют маскирование или удаление мешающих ионов одним из следующих способов:

Связывание мешающих ионов в комплексное соединение. Чаще всего для этой цели используют получение фторидных (Al3+, Fe3+), хлоридных (Ag+, Fe3+, Mn2+), тиоцианатных (Сu2+, Zn2+, Cd2+, Co2+, Ni2+), тиосульфатных (Pb2+, Bi3+, Cr3+, Cu2+, Ag+), аммиачных (Zn2+, Cd2+, Co2+, Ni2+), ЭДТА -- (большинство катионов) и других комплексов. Получаемый комплекс должен обладать необходимой устойчивостью, чтобы осуществить достаточно полное связывание мешающего иона. Возможность применения того или иного маскирующего реагента определяют по общей константе химической реакции с совмещенными равновесиями. При этом руководствуются прежде всего отсутствием взаимодействия определяемого иона с маскирующим реагентом и степенью маскирования мешающих ионов, исходя из которой и определяют требуемую величину константы равновесия. Большое значение константы равновесия свидетельствует о полноте связывания маскируемого нона (или о степени маскирования).

Удаление мешающих ионов в осадок. При этом руководствуются произведениями растворимости получающихся осадков и значением общей константы реакции с совмещенными равновесиями.

Часто для избирательного осаждения мешающих ионов используют малорастворимые реактивы, ПР которых меньше ПР осадка обнаруживаемых ионов и больше ПР осадков мешающих ионов. При этом обнаруживаемые ионы в силу равновесного состояния не связываются, мешающие -- выпадают в виде осадка. Подобным образом решают довольно сложные задачи избирательного удаления многих мешающих ионов. Чаще всего используют осаждение гидроксидов, карбонатов, сульфидов, сульфатов, фосфатов.

Экстракция органическими растворителями. Относится к числу широко применяемых методов удаления мешающих ионов. Экстракционному отделению подвергают соединения ионов, легко растворимые в органических растворителях. Чаще всего экстракцией удаляют ионы в виде хлоридных (Со2+, Sn2+), дитизонатных (Со2+, Ni2+, Сu2+, Zn2+, Cd2+, Hg2+), оксихинолятных (Mg2+, Са2+, Sr2+, Fe2+), диэтилдитиокарбаминатных (Mn2+, Co2+, Fe2+, Ni2+, Cu2+), купферонатных (Ва2+, Cr3+, Fe3+, Sn2+, Bi3+, Sb3+) и других комплексов. При этом используют органические растворители, не смешивающиеся с водой, -- бензол, гексан, хлороформ, высшие спирты. Экстракционное отделение осуществляют при определенном оптимальном значении рН, способствующем полной экстракции мешающих ионов.

Окисление мешающих ионов до высших степеней окисления.При этом получают ионы, не вступающие в реакцию с реагентом. Применяют для маскирования ионов Сг3+ (окисление до СгO42-), Sn2+ (окисление до Sn4+), Mn2+(окисление до МnO4- или MnO2), Fe2+ (перевод в Fe3+) и др. Окисление обычно проводят пероксидом водорода при нагревании.

Часто также используют восстановление катионов до элементного состояния или низших степеней окисления. При выборе восстановителя руководствуются значениями редокс-потенциалов Е°. Чаще всего применяют цинк, восстанавливающий в аммиачной среде катионы d-элементов (кроме Cr3+, Fe2+, Fe3+) и некоторых p-элементов (Pb2+, Sb3+, Bi3+). Иногда используют восстановители, действующие селективно. Например, элементное железо восстанавливает до металла Sb3+, Cu2+, Bi3+, переводит Sn4+ в Sn2+, хлорид олова (II) восстанавливает Fe3+ до Fе2+.

5. Дробные реакции обнаружения ионов

Дробные реакции предназначены для обнаружения ионов либо в присутствии всех остальных, либо после предварительного удаления (1 -- 2 операции), либо после маскировки мешающих ионов. Специфичных реакций, позволяющих обнаружить данный ион в присутствии всех остальных, известно немного. Поэтому многие реакции приходится проводить после предварительной обработки анализируемой пробы и маскировки или удаления катионов и веществ, мешающих определению При выборе и проведении дробных реакций обычно необходимо: подобрать наиболее специфичную реакцию обнаружения анализируемого иона; выяснить по литературным данным или экспериментально, какие катионы, анионы или другие соединения мешают обнаружению; установить специфичными реакциями присутствие мешающих ионов в анализируемой пробе; подобрать, руководствуясь табличными данными, маскирующий реагент, не вступающий в реакцию с анализируемым веществом; рассчитать полноту удаления мешающих ионов (по общей константе реакции); определить методику выполнения дробной реакции.

6. Аналитическая классификация ионов

В качественном анализе выделяют две методики проведения анализа вещества: дробный анализ и систематический анализ.

Дробный анализ основан на открытии ионов специфическими реакциями, проводимыми в отдельных порциях исследуемого раствора. Так например, ион Fe2+ можно открыть при помощи реактива К3 в присутствии любых ионов. Так как специфических реакций немного, то в ряде случаев мешающее влияние посторонних ионов устраняют маскирующими средствами. Например, ион Zn2+ можно открыть в присутствии Fe2+ при помощи реактива (NH4)2, связывая мешающие ионы Fe2+ гидротартратом натрия в бесцветный комплекс.

Дробный анализ имеет ряд преимуществ перед систематическим: возможность обнаруживать ионы в отдельных порциях в любой последовательности, а также экономия времени и реактивов. Однако, большинство аналитических реакций недостаточно специфично и дает сходный эффект с несколькими ионами. Специфических реакций немного и мешающее влияние многих ионов нельзя устранить маскирующими средствами. Поэтому для проведения полного анализа и получения более надежных результатов в процессе анализа приходится прибегать к разделению ионов на группы, а затем открывать их в определенной последовательности. Последовательное разделение ионов, а затем их последующее открытие и является систематическим методом анализа. Лишь некоторые ионы открывают дробным методом. Систематическим анализом называют полный анализ исследуемого объекта, осуществляемый путем разделения исходной аналитической системы на несколько подсистем (групп) в определенной последовательности на основе сходства и различий аналитических свойств компонентов системы. Систематический ход анализа основан на том, что сначала с помощью групповых реактивов смесь ионов разделяют на группы и подгруппы, а затем уже в пределах этих подгрупп обнаруживают каждый ион характерными реакциями. Групповыми реагентами действуют на смесь ионов последовательно и в строго определенном порядке. Для удобства определения в аналитической химии предложено объединять ионы в аналитические группы, дающие одинаковые или сходные эффекты (осадки) с определенными реактивами, и созданы аналитические классификации ионов (отдельно для катионов и анионов). Установление присутствия тех или иных катионов в исследуемом растворе значительно облегчает обнаружение анионов. Пользуясь таблицей растворимости, можно заранее предсказать наличие в исследуемом растворе отдельных анионов. Например, если соль хорошо растворяется в воде и в нейтральном водном растворе обнаружен катион Ва2+, то этот раствор не может содержать анионы SO42-, CO32-, SO32-. Поэтому вначале открывают катионы, присутствующие в исследуемом растворе, а затем анионы.

Для катионов практическое значение имеют две классификации: сероводородная и кислотно-основная. В основе сероводородной классификации и сульфидного (или сероводородного) метода систематического анализа лежит взаимодействие катионов с сульфидом (или полисульфидом) аммония или сероводородом. Серьёзный недостаток данного метода - использование ядовитого сероводорода, следовательно, необходимость использования специального оборудования.

Поэтому в учебных лабораториях предпочтительнее использование кислотно-основного метода систематического анализа. В основе этого метода лежит взаимодействие катионов с серной и соляной кислотой, гидроксидами натрия и аммония.

По кислотно-основной классификации катионы делят на шесть аналитических групп.

Заключение

Значение аналитической химии определяется необходимостью общества в аналитических результатах, в установлении качественного и количественного состава веществ, уровнем развития общества, общественной потребностью в результатах анализа, так же и уровнем развития самой аналитической химии.

Цитата из учебника по аналитической химии Н.А.Меншуткина 1897 года выпуска: «Представив весь ход занятий по аналитической химии в виде задач, решение которых предоставлено занимающемуся, мы должны указать на то, что для подобного решения задач аналитическая химия даст строго определенный путь. Эта определенность (систематичность решения задач аналитической химии) имеет большое педагогическое значение. Занимающийся приучается при этом применять свойства соединений к решению вопросов, выводить условия реакций, комбинировать их. Весь этот ряд умственных процессов можно выразить так: аналитическая химия приучает химически думать. Достижение последнего представляется самым важным для практических занятий аналитической химией».

Список использованной литературы

1. https://ru.wikipedia.org/wiki/Аналитическая_химия.

2. «Аналитическая химия. Химические методы анализа», Москва, «Химия», 1993 г.

3. http://www.chem-astu.ru/chair/study/anchem/.

4. http://studopedia.ru/7_12227_analiticheskaya-himiya.html.

Размещено на Allbest.ru

...

Подобные документы

    Применение качественного анализа в фармации. Определение подлинности, испытания на чистоту фармацевтических препаратов. Способы выполнения аналитических реакций. Работа с химическими реактивами. Реакции катионов и анионов. Систематический анализ вещества.

    учебное пособие , добавлен 19.03.2012

    Описание методов качественного определения урана и тория. Особенности химического анализа урана, описание хода испытания, химических реакций, используемых реактивов. Специфика качественного определения тория. Техника безопасности при выполнении работ.

    методичка , добавлен 28.03.2010

    Исследование возможности применения фотометрических реакций в фармацевтическом анализе для различных групп лекарственных веществ. Реакция с реактивом Марки. Приборы и компоненты для анализа. Реакция диазотирования, азосочетания и комплексообразования.

    курсовая работа , добавлен 25.04.2015

    Понятие "гетерогенная система". Специфические, групповые, общие осадочные реакции. Кристаллический и аморфный осадок. Проведение реакций обнаружения ионов полумикрометодом. Кислотно-основная, сероводородная и аммиачно-фосфатная классификация катионов.

    презентация , добавлен 14.11.2013

    Рассмотрение превращения энергии (выделение, поглощение), тепловых эффектов, скорости протекания химических гомогенных и гетерогенных реакций. Определение зависимости скорости взаимодействия веществ (молекул, ионов) от их концентрации и температуры.

    реферат , добавлен 27.02.2010

    Рассмотрение пособов разделения смесей. Изучение особенностей качественного и количественного анализа. Описание выявления катиона Сu2+. Проведение анализа свойств веществ в предлагаемой смеси, выявление метода очистки и обнаружение предложенного катиона.

    курсовая работа , добавлен 01.03.2015

    Проведение качественного анализа смеси неизвестного состава и количественного анализа одного из компонентов по двум методикам. Методы определения хрома (III). Ошибки определения по титриметрическому и электрохимическому методу и их возможные причины.

    курсовая работа , добавлен 17.12.2009

    Анализ вещества, проводимый в химических растворах. Условия проведения аналитических реакций. Систематический и дробный анализ. Аналитические реакции ионов алюминия, хрома, цинка, олова, мышьяка. Систематический ход анализа катионов четвертой группы.

    реферат , добавлен 22.04.2012

    Понятие и сущность качественного анализа. Цель, возможные методы их описание и характеристика. Качественный химический анализ неорганических и органических веществ. Математическая обработка результатов анализа, и также описание значений показателей.

    реферат , добавлен 23.01.2009

    Понятие и виды сложных реакций. Обратимые реакции различных порядков. Простейший случай двух параллельных необратимых реакций первого порядка. Механизм и стадии последовательных реакций. Особенности и скорость протекания цепных и сопряженных реакций.



Понравилась статья? Поделитесь с друзьями!