Как изменяется скорость молекул жидкости при испарении. Испарение и конденсация

1. Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарения и кипения.

Испарение происходит с поверхности жидкости при любой температуре. Так, лужи высыхают и при 10 °С, и при 20 °С, и при 30 °С. Таким образом, испарением называется процесс превращения вещества из жидкого состояния в газообразное, происходящий с поверхности жидкости при любой температуре .

С точки зрения молекулярно-кинетической теории строения вещества испарение жидкости объясняется следующим образом. Молекулы жидкости, участвуя в непрерывном движении, имеют разные скорости. Наиболее быстрые молекулы, находящиеся на границе поверхности воды и воздуха и имеющие сравнительно большую энергию, преодолевают притяжение соседних молекул и покидают жидкость. Таким образом, над жидкостью образуется пар.

Поскольку из жидкости при испарении вылетают молекулы, обладающие большей внутренней энергией по сравнению с энергией молекул, остающихся в жидкости, то средняя скорость и средняя кинетическая энергия молекул жидкости уменьшаются и, следовательно, температура жидкости уменьшается.

Скорость испарения жидкости зависит от рода жидкости. Так, скорость испарения эфира больше, чем скорость испарения воды и растительного масла. Кроме того, скорость испарения зависит от движения воздуха над поверхностью жидкости. Доказательством может служить то, что бельё сохнет быстрее на ветру, чем в безветренном месте при тех же внешних условиях.

Скорость испарения зависит от температуры жидкости. Иапример, вода при температуре 30 °С испаряется быстрее, чем вода при 10 °С.

Хорошо известно, что вода, налитая в блюдце, испариться быстрее, чем вода такой же массы, налитая в стакан. Следовательно, скорость испарения зависит от площади поверхности жидкости.

2. Процесс превращения вещества из газообразного состояния в жидкое называется конденсацией.

Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, и в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы вернутся в неё.

Если сосуд открыт, то процесс испарения происходит быстрее, чем конденсация, и масса жидкости в сосуде уменьшается. Пар, образующийся над жидкостью, называется ненасыщенным .

Если жидкость находится в закрытом сосуде, то вначале число молекул, вылетающих из жидкости, будет больше, чем число молекул, возвращающихся в неё, но с течением времени плотность пара над жидкостью возрастет настолько, что число молекул, покидающих жидкость, станет равным числу молекул, возвращающихся в неё. В этом случае наступает динамическое равновесие жидкости с её паром .

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром.

Если сосуд с жидкостью, в котором находится насыщенный пар, нагреть, то вначале число молекул, вылетающих из жидкости, увеличится и будет больше, чем число молекул, возвращающихся в неё. С течением времени равновесие восстановится, но плотность пара над жидкостью и соответственно его давление увеличатся.

3. В воздухе всегда содержится водяной пар, являющийся продуктом испарения воды. Содержание водяного пара в воздухе характеризует его влажность.

Абсолютной влажностью воздуха ​\((\rho) \) ​ называют массу водяного пара, содержащегося в 1 м 3 воздуха, или плотность водяного пара, содержащегося в воздухе.

Если относительная влажность равна 9,41·10 -3 кг/м 3 , то это означает, что в 1 м 3 содержится 9,41·10 -3 кг водяного пара.

Для того чтобы судить о степени влажности воздуха, вводят величину, называемую относительной влажностью .

Относительной влажностью воздуха ​\((\varphi) \) ​ называют величину, равную отношению плотности водяного пара ​\((\rho) \) ​, содержащегося в воздухе (абсолютной влажности), к плотности насыщенного водяного пара ​\((\rho_0) \) ​ при этой температуре:

\[ \varphi=\frac{\rho}{\rho_0}100\% \]

​Обычно относительную влажность выражают в процентах.

При понижении температуры ненасыщенный нар может превратиться в насыщенный. Примером такого превращения является выпадение росы и образование тумана. Так, летним днём при температуре 30 °С плотность водяного пара равна 12,8·10 -3 кг/м 3 . Этот водяной пар является ненасыщенным. При понижении вечером температуры до 15 °С он уже будет насыщенным, и выпадет роса.

Температуру, при которой водяной пар, содержащийся в воздухе, становится насыщенным, называют точкой росы.

Для измерения влажности воздуха используют прибор, называемый психрометром .

Психрометр состоит из двух термометров, один из которых сухой, а другой - влажный (рис. 74). Термометры прикреплены к таблице, в которой по вертикали указана температура, которую показывает сухой термометр, а по горизонтали - разность показаний сухого и влажного термометров. Определив показания термометров, по таблице находят значение относительной влажности воздуха.

Например, температура, которую показывает сухой термометр, 20 °С, показание влажного термометра — 15 °С. Разность показаний 5 °С. По таблице находим значение относительной влажности ​\(\varphi \) ​ = 59%.

4. Второй процесс парообразования - кипение . Наблюдать этот процесс можно с помощью простого опыта, нагревая воду в стеклянной колбе. При нагревании воды в ней через некоторое время появляются пузырьки, в которых содержатся воздух и насыщенный водяной пар, который образуется при испарении воды внутри пузырьков. При повышении температуры давление внутри пузырьков растёт, и под действием выталкивающей силы они поднимаются вверх. Однако, поскольку температура верхних слоёв воды меньше, чем нижних, пар в пузырьках начинает конденсироваться, и они сжимаются. Когда вода прогреется по всему объёму, пузырьки с паром поднимаются до поверхности, лопаются, и пар выходит наружу. Вода кипит. Это происходит при такой температуре, при которой давление насыщенного пара в пузырьках равно атмосферному давлению.

Процесс парообразования, происходящий во всем объёме жидкости при определённой температуре, называют кипением . Температуру, при которой жидкость кипит, называют температурой кипения .

Эта температура зависит от атмосферного давления. При повышении атмосферного давления температура кипения возрастает.

Опыт показывает, что в процессе кипения температура жидкости не изменяется, несмотря на то, что извне поступает энергия. Переход жидкости в газообразное состояние при температуре кипения связан с увеличением расстояния между молекулами и соответственно с преодолением притяжения между ними. На совершение работы по преодолению сил притяжения расходуется подводимая к жидкости энергия. Так происходит до тех пор, пока вся жидкость не превратится в пар. Поскольку жидкость и пар в процессе кипения имеют одинаковую температуру, то средняя кинетическая энергия молекул не изменяется, увеличивается лишь их потенциальная энергия.

На рисунке 75 приведён график зависимости температуры воды от времени в процессе её нагревания от комнатной температуры до температуры кипения (АБ), кипения (БВ), нагревания пара (ВГ), охлаждения пара (ГД), конденсации (ДЕ) и последующего охлаждения (ЕЖ).

5. Для превращения разных веществ из жидкого состояния в газообразное требуется разная энергия, эта энергия характеризуется величиной, называемой удельной теплотой парообразования .

Удельной теплотой парообразования ​\((L) \) ​ называют величину, равную отношению количества теплоты, которое нужно сообщить веществу массой 1 кг, для превращения его из жидкого состояния в газообразное при температуре кипения.

Единица удельной теплоты парообразования - ​\([L] \) ​ = Дж/кг.

Чтобы рассчитать количество теплоты ​\(Q \) ​, которое необходимо сообщить веществу массой ​\(m \) ​ для его превращения из жидкого состояния в газообразное, необходимо удельную теплоту парообразования ​\((L) \) ​ умножить на массу вещества: ​\(Q=Lm \) ​.

При конденсации пара выделяется некоторое количество теплоты, причем его значение равно значению количества теплоты, которое необходимо затратить для превращения жидкости в пар при той же температуре.

Часть 1

1. Испарение и кипение - два процесса превращения вещества из одного агрегатного состояния в другое. Общей характеристикой этих процессов является то, что оба они

А. Представляют собой процесс превращения вещества из жидкого состояния в газообразное
Б. Происходят при определённой температуре

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. Испарение и кипение - два процесса перехода вещества из одного агрегатного состояния в другое. Различие между ними заключается в том, что

А. Кипение происходит при определённой температуре, а испарение - при любой температуре.
Б. Испарение происходит с поверхности жидкости, а кипение - во всём объёме жидкости.

Правильным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. При нагревании вода превращается в пар той же температуры. При этом

1) увеличивается среднее расстояние между молекулами
2) уменьшается средний модуль скорости движения молекул
3) увеличивается средний модуль скорости движения молекул
4) уменьшается среднее расстояние между молекулами

4. В процессе конденсации водяного пара при неизменной его температуре выделилось некоторое количество теплоты. Что произошло с энергией молекул водяного пара?

1) изменилась как потенциальная, так и кинетическая энергия молекул пара
2) изменилась только потенциальная энергия молекул пара
3) изменилась только кинетическая энергия молекул пара
4) внутренняя энергия молекул пара не изменилась

5. На рисунке приведён график зависимости температуры воды от времени при её охлаждении и последующем нагревании. Первоначально вода находилась в газообразном состоянии. Какой участок графика соответствует процессу конденсации воды?

1) АВ
2) ВС
3) CD
4) DE

6. На рисунке приведён график зависимости температуры воды от времени. В начальный момент времени вода находилась в газообразном состоянии. В каком состоянии находится вода в момент времени ​\(\tau_1 \) ​?

1) только в газообразном
2) только в жидком
3) часть воды в жидком состоянии, часть - в газообразном
4) часть воды в жидком состоянии, часть - в кристаллическом

7. На рисунке приведён график зависимости температуры спирта от времени при его нагревании и последующем охлаждении. Первоначально спирт находился в жидком состоянии. Какой участок графика соответствует процессу кипения спирта?

1) АВ
2) ВС
3) CD
4) DE

8. Какое количество теплоты необходимо затратить, чтобы превратить в газообразное состояние 0,1 кг спирта при температуре кипения?

1) 240 Дж
2) 90 кДж
3) 230 кДж
4) 4500 кДж

9. В понедельник абсолютная влажность воздуха днём при температуре 20 °С была равной 12,8 г/см 3 . Во вторник она увеличилась и стала равной 15,4 г/см 3 . Выпала ли роса при понижении температуры до 16 °С, если плотность насыщенного пара при этой температуре 13,6 г/см 3 ?

1) не выпала ни в понедельник, ни во вторник
2) выпала и в понедельник, и во вторник
3) в понедельник выпала, во вторник не выпала
4) в понедельник не выпала, во вторник выпала

10. Чему равна относительная влажность воздуха, если при температуре 30 °С абсолютная влажность воздуха равна 18·10 -3 кг/м 3 , а плотность насыщенного пара при этой температуре 30·10 -3 кг/м 3 ?

1) 60%
2) 30%
3) 18 %
4) 1,7 %

11. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ
A) физическая величина
Б) единица физической величины
B) прибор для измерения физической величины

ПРИМЕРЫ
1) кристаллизация
2) джоуль
3) кипение
4) температура
5) мензурка

12. На рисунке приведены графики зависимости от времени температуры двух веществ одинаковой массы, находившихся первоначально в жидком состоянии, получающих одинаковое количество теплоты в единицу времени. Из приведённых ниже утверждений выберите правильные и запишите их номера.

1) Вещество 1 полностью переходит в газообразное состояние, когда начинается кипение вещества 2
2) Удельная теплоёмкость вещества 1 больше, чем вещества 2
3) Удельная теплота парообразования вещества 1 больше, чем вещества 2
4) Температура кипения вещества 1 выше, чем вещества 2
5) В течение промежутка времени ​\(0-t_1 \) ​ оба вещества находились в жидком состоянии

Часть 2

13. Какое количество теплоты необходимо для превращения в стоградусный пар 200 г воды, взятой при температуре 40 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.

Ответы

Урок: Испарение. Поглощение энергии при испарении жидкости и выделение её при конденсации пара

На этом уроке мы рассмотрим вопрос, связанный с испарением, а также с поглощением энергии при испарении жидкости и с выделением энергии при конденсации пара.

На предыдущих уроках мы рассматривали различные процессы и, в частности, говорили о плавлении, о нагревании тел, об отвердевании или кристаллизации тел.

Сегодня мы рассмотрим процессы, при которых образуется пар (разновидность газа) или газ.

Давайте вспомним схему, по которой происходят различные процессы превращения агрегатных состояний (Рис. 1).

Рис. 1.

Парообразование может происходить двумя способами: кипение и испарение . Как правило, указывают первый способ – кипение.

На сегодняшнем уроке мы подробно рассмотрим второй способ парообразования: испарение.

Определение

Испарение – это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. То есть тогда, когда поверхность жидкости открыта и с поверхности начинается переход вещества из жидкого состояния в газообразное.

Вспомним, для начала, схему, на которой представлена картина превращений одного состояния вещества в другое состояние.

Конденсация

Парообразование

Десублимация

Сублимация

Отвердевание

Плавление

Таблица, в которой описаны названия процессов переходов между агрегатными состояниями вещества, выглядит следующим образом:

Переход

Название

Твёрдое жидкое

Плавление

Жидкое твёрдое

Отвердевание (кристаллизация)

Жидкое газообразное

Парообразование

Газообразное жидкое

Конденсация

Твёрдое газообразное

Сублимация

Газообразное твёрдое

Десублимация

Процесс испарения происходит не мгновенно, поэтому мы говорим, что испарение – процесс непрерывный и, соответственно, испарение жидкости происходит в течение некоторого времени.

Как происходит испарение?

Рассмотрим поверхность жидкости. Мы знаем, что жидкость состоит из атомов и молекул, которые находятся в непрерывном движении. Соответственно, может найтись такая частица данного вещества, у которой скорость (а, соответственно, и энергия) будет достаточно велика для того, чтобы преодолеть притяжение своих соседей и покинуть жидкость, то есть перейти в газообразное состояние. Поэтому говорят, что испарение происходит со свободной поверхности.

Рассмотрим факторы, которые влияют на испарение (в частности, его скорость).

1. Строение вещества

В первую очередь испарение связано со строением самого вещества. Можно привести следующий пример: возьмём две бумажные салфетки, смочим одну салфетку водой, а другую – эфиром. Можно заметить, что та салфетка, которая смочена эфиром, высохнет гораздо быстрее. Это объясняется тем, что сила взаимодействия между молекулами эфира гораздо меньше, чем сила взаимодействия между молекулами воды. И поэтому испарение происходит у эфира быстрее.

2. Площадь поверхности

Площадь свободной поверхности жидкости играет очень важную роль: если площадь поверхности достаточно большая, то количество частиц, покидающих жидкость, будет, конечно же, больше, и в этом случае испарение будет происходить быстрее. Можно привести такой пример: если в блюдце налить воду и такое же количество воды налить в стакан, то из блюдца испарение будет происходить гораздо быстрее (Рис. 2). Другой пример: все знают, что бельё, перед тем как его повесить сушиться, встряхивают и расправляют. В этом случае площадь белья увеличивается, соответственно, площадь испарения также увеличивается, и сам процесс испарения происходит быстрее.

Рис. 2. Блюдце и стакан с водой () ()

3. Температура

Ещё одно явление, которое влияет на испарение, – это изменение температуры. Чем температура выше, тем быстрее происходит испарение. То есть, нагревая тело, мы можем увеличивать скорость процесса испарения, ускорять его, или, наоборот, если мы будем понижать температуру, то процесс испарения будет замедляться. Объясняется это тем, что с увеличением температуры возрастает скорость движения частиц. А раз скорость движения возрастает, то большее количество частиц может покинуть жидкость и перейти в газообразное состояние.

Поскольку движение частиц происходит непрерывно, то процесс испарения также непрерывен. Поскольку при любой температуре движение частиц не прекращается, то и испарение может происходить практически при любой температуре. Поэтому испарение происходит даже при низкой температуре. Например, лужи на улице высыхают не только летом, когда жарко, но и осенью, когда холодно (Рис. 3). Отличается лишь скорость высыхания луж.

Рис. 3. ()

Возникает вопрос: что можно сказать об энергии жидкости при испарении? Так как жидкость покидают наиболее быстрые частицы, то они обладают большей кинетической энергией. Следовательно, в целом энергия испаряющейся жидкости уменьшается. Пояснить это можно на следующем примере: возьмём несколько человек, построим их в ряд и измерим их средний рост. Затем из этого строя уберём самых высоких и снова измерим средний рост. В результате, вполне логично, получится меньшее значение. То же самое происходит и с энергией. Каждый раз частицы с наибольшей энергией уходят из жидкости, и внутренняя энергия жидкости уменьшается.

Однако в жизни это охлаждение мы замечаем крайне редко. С чем же это связано? Это происходит из-за того, что жидкость сообщается с окружающими телами, в первую очередь, конечно, с воздухом, и поэтому, охлаждаясь, одновременно получает энергию из окружающих тел, то есть из воздуха. В результате этого «теплообмена» температура поддерживается на одном уровне. А испарение происходит с приблизительно одинаковой интенсивностью.

4. Ветер

Следующий фактор, который влияет на испарение, – это наличие ветра. Представьте себе, что над поверхностью жидкости образуется газ. Процесс испарения, как мы выяснили, продолжается непрерывно. Но точно так же будет происходить процесс возвращения молекул обратно в жидкость. Если же дует ветер, то он уносит молекулы, которые перешли из жидкости в газ, и не даёт им вернуться обратно в жидкость. В этом случае процесс испарения ускоряется, то есть скорость испарения возрастает.

Очень важно заметить и то, что в быту часто встречается так называемое испарение в закрытых сосудах. К примеру, если взять кастрюлю, в которой находится вода, то на поверхности крышки с внутренней стороны образуются капельки воды. То есть, поскольку внутри кастрюли ветра нет, то процесс испарения и возвращения молекул обратно в жидкость в данном случае выравнивается. Вот такое состояние называют динамическим равновесием .

Определение

Динамическое равновесие – это состояние системы «пар – жидкость», при которой количество молекул, вышедших из жидкости (перешедших в пар), равно количеству молекул, которое вернулось из пара обратно в жидкость.

Если же преобладает испарение над возвращением частиц обратно в жидкость, то такой пар, который находится над жидкостью, называется ненасыщенным .

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным .

При динамическом равновесии общая масса системы «пар – жидкость» не меняется: количество молекул, которые «вылетели» с поверхности жидкости, равно количеству молекул, которые «вернулись». Поэтому в целом масса всей системы «пар – жидкость» не изменяется.

Кроме испарения существует и обратный ему процесс, который называется конденсацией (от латинского – «сгущаю»).

То есть, конденсация – это процесс перехода пара (газа) в жидкость. Этот процесс происходит всегда с выделением количества теплоты (так как внутренняя энергия вещества уменьшается). То есть температура окружающих тел будет повышаться (жидкость передаёт избыточную энергию окружающим телам).

Конденсация происходит так же непрерывно, как и испарение. Точнее, можно сказать, что эти два процесса происходят одновременно, непрерывно.

Подтверждением этого, например, является образование облаков, ведь облака – это сконденсированная жидкость. Выпадение росы или, например, дождь, который идёт, – это всё процессы, которые связаны с конденсацией.

Отметим, что существует испарение не только с поверхности жидкостей, но и твёрдых тел. Для этого существует наглядный пример: если зимой мокрое бельё повесить на улице, то оно замёрзнет, то есть покроется коркой льда. Но, через некоторое время выяснится, что бельё сухое, то есть вода, даже в твёрдом состоянии, куда-то исчезла. Это и есть процесс испарения твёрдого тела, в данном случае льда. Встречаются испарения и других веществ, например, нафталина. Запах нафталина, который мы чувствуем, говорит о том, что нафталин также способен к испарению.

На следующем уроке мы рассмотрим вопросы, связанные с другим процессом перехода из жидкого состояния в газообразное – парообразованием.

Кипение. Зависимость температуры кипения от давления. Процесс испарения может происходить не только с поверхности жидкости, но и внутри жидкости. Пузырьки пара внутри жидкости расширяются и всплывают на поверхность, если давление насыщенного пара равно внешнему давлению или превышает его. Этот процесс называется кипением.

При температуре 100 °С давление насыщенного водяного пара равно нормальному атмосферному давлению, поэтому при нормальном давлении кипение воды происходит при 100 °С. При температуре 80 °С давление насыщенного пара примерно в два раза меньше нормального атмосферного давления. Поэтому вода кипит при 80 °С, если давление над ней уменьшить до 0,5 нормального атмосферного давления (рис. 96).

При понижении внешнего давления температура кипения жидкости понижается, при повышении давления температура кипения повышается.


При любой температуре с поверхности жидкости вылетает часть молекул, образуя над ней пар. Процесс перехода вещества из жидкого состояния в газообразное называется парообразованием. Парообразование, происходящее при любых температурах с открытой поверхности жидкости, называется испарением. Его скорость зависит от рода жидкости, величины ее свободной поверхности, температуры, внешнего давления и наличия над жидкостью потока воздуха, уносящего пар.

Уход молекул с поверхности жидкости при испарении связан с затратой внутренней энергии на работу выхода А в, которую молекуле необходимо совершить для преодоления сил молекулярного притяжения и сил внешнего давления. Эта работа совершается за счет кинетической энергии молекул. Молекула покинет жидкость только в том случае, если ее кинетическая энергия будет равна или больше работы выхода: (m - масса молекулы, v - составляющая скорости молекулы, направленная перпендикулярно к поверхности жидкости). При парообразовании жидкость охлаждается, так как вылетевшие молекулы уносят часть ее внутренней энергии.

Чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию. Скалярная величина, измеряемая количеством энергии, необходимой для превращения единицы массы жидкости в пар при постоянной температуре, называется удельной теплотой парообразования.

Для превращения единицы массы жидкости в пар при постоянной температуре ей сообщается количество теплоты, равное удельной теплоте парообразования. При парообразовании происходит увеличение объема вещества. Так, пары воды при, 100° С занимают объем почти в 1700 раз больше объема той же массы воды при 100° С. Поэтому вещество, испаряясь, часть удельной теплоты парообразования затрачивает на совершение работы против силы внешнего давления, а часть - на увеличение его внутренней потенциальной энергии. Поэтому при одинаковой температуре внутренняя энергия единицы массы вещества в газообразном состоянии больше, чем в жидком. Так, 1 кг водяного пара при 100° С имеет на 2*10 6 дж внутренней энергии больше, чем 1 кг воды при той же температуре.

Опыты показали, что удельная теплота парообразования вещества зависит от его температуры. Чем выше температура вещества, тем меньше его удельная теплота парообразования. Например, при 0°С удельная теплота парообразование воды 2499 кдж / кг , при 50° С - 2385 кдж / кг, при 100° С - 2257 кдж / кг, при 200°С - 1943 кдж / кг. Уменьшение теплоты парообразования объясняется тем, что чем выше температура вещества, тем больше кинетическая энергия его молекул и тем меньше энергии надо дополнительно сообщить жидкости, чтобы ее молекулы вылетели в окружающую среду.

Наименование удельной теплоты парообразования r кг / дж. Для превращения m кг массы жидкости в пар надо определенное количество энергии, в частности количество теплоты Q = rm.

Допустим, что жидкость испаряется в закрытом сосуде. Часть молекул пара вследствие теплового движения, приблизившись к поверхности жидкости, возвращается в нее. В закрытом сосуде одновременно происходит и процесс испарения и процесс конденсации Если число молекул, вылетевших из жидкости, больше числа молекул, возвратившихся в нее, то пар над жидкостью называется ненасыщенным. Опыты с ненасыщенными парами показали, что они подчиняются газовым законам.

В процессе испарения и конденсации наступает такой момент, начиная с которого число молекул, вылетевших из жидкости в единицу времени, окажется равным числу молекул, возвращающихся обратно в жидкость, то есть наступит динамическое равновесие между жидкостью и паром. Пар, находящийся в динамическим равновесием со своей жидкостью, называется насыщенным паром. Он может быть насыщенным не только в закрытом сосуде, но и в атмосфере. Так, при тумане пары воды в воздухе насыщены.

Откроем кран А (рис. 35) и впустим в колбу несколько капель эфира, который испаряется, образуя ненасыщенный пар. Чем больше эфира мы впускаем в колбу, тем больше становится давление его ненасыщенного пара. Эфир впускаем до тех пор, пока на дне колбы окажется немного жидкого эфира. Появление последнего указывает на то, что пары эфира стали насыщенными. С этого момента манометр перестает показывать увеличение давления - оно стало постоянным, несмотря на последующее добавление эфира. Следовательно, давление и плотность паров при данной температуре наибольшее, когда пар насыщен.

Если в колбу помещать поочередно различные жидкости и измерять давление их насыщенных паров, то оказывается, что при одной и той же температуре давление насыщенных паров разных жидкостей различно. Наибольшим давлением обладают пары эфира, меньшим - пары спирта и еще меньшим - пары воды.

При температуре 20° С давление насыщенных паров этих жидкостей равно (в мм рт. ст.):


Выясним, зависит ли давление насыщенного пара при постоянной температуре от его объема. Под поршнем в цилиндре, соединенном с манометром, находится жидкость и ее насыщенный пар (рис. 36). Изменяя его объем перемещением поршня вверх, а затем вниз, по показанию манометра видим, что при постоянной температуре давление насыщенного пара от объема не зависит, и оно при данной температуре для данной жидкости есть величина постоянная. Это означает, что насыщенные пары закону Бойля-Мариотта не подчиняются. Так, манометр парового котла при данной температуре показывает всегда одно и то же давление, независимо от того, какой объем занимает в нем насыщенный пар.

Объясняется это тем, что при изменении объема насыщенного пара происходит изменение его массы. Причувеличении объема масса пара увеличивается (происходит дополнительное испарение жидкости), при уменьшении объема масса пара уменьшается (часть его конденсируется).

Выясним, зависит ли при постоянном объеме давление насыщенного пара от его температуры. Нагреем насыщенный пар в колбе (см. рис. 35), поместив ее в горячую воду. Видим, с повышением температуры давление насыщенного пара увеличивается. Например, давление насыщенного пара воды при 50° С равно 92,5 мм рт. ст. , а при 100° С - 760 мм рт. ст.

Опыты и расчеты по изменению давления насыщенного пара от нагревания показывают, что давление увеличивается во много раз больше, чем следовало бы по закону Шарля, т. е. зависимость давления от температуры не подчиняется данному закону. Объясняется это тем, что давление насыщенного пара при нагревании возрастает, во-первых, вследствие увеличения средней кинетической энергии молекул этого пара и, во-вторых, из-за увеличения концентрации молекул пара, т. е. увеличения общей массы молекул.

Пока пар остается насыщенным, изменение его температуры или объема всегда сопровождается изменением массы пара, т.е. парообразованием, или конденсацией.

Свойство насыщенных паров воды увеличивать свое давление с повышением температуры применяется в паровых котлах для получения пара, имеющего большое давление, например 100 ат, при температуре кипения воды 310° С. Для использования пара в паровых машинах его отводят из котла, нагревают, превращают в ненасыщенный. Такой пар называется перегретым, он обладает большим запасом внутренней энергии. Если пар не перегрет, то он содержит капельки жидкости.

Получив в пробирке пары эфира, начнем охлаждать их, поместив ее в смесь льда и соли. На стенках пробирки появляется налет жидкого эфира, так как при охлаждении его пары превратились в жидкость. Существует два способа обращения пара в жидкость: увеличение давления на пар, сжатие его (см. рис.36) и понижение температуры пара, охлаждение его. Опыты показывают, что и газы можно превратить в жидкость (сжижение газов). Для этого их надо одновременно и сжимать и охлаждать, пока они не превратятся в жидкость.

Всем известно, что в мокрой одежде холоднее, чем в сухой, особенно при ветре. Известно также, что, обернув сосуд с водой мокрой тряпкой и выставив его в жаркий день на ветер, мы заметно охладим воду в сосуде. Иногда с этой же целью в жарких странах употребляют специальные сосуды с пористыми стенками, сквозь которые вода медленно просачивается, поддерживая их все время влажными. Эти наблюдения показывают, что испарение вызывает охлаждение жидкости, а вместе с тем и окружающих тел. В этом случае теплота парообразования заимствуется у самой жидкости.

Особенно сильное охлаждение получается, если испарение происходит очень быстро, так что испаряющаяся жидкость не успевает получать теплоту от окружающих тел. Быстрое испарение легко получить у летучих жидкостей. Например, при испарении эфира или хлористого этила легко получается охлаждение ниже (рис. 490). Этим пользуются врачи, когда им нужно заморозить кожу больного, чтобы сделать ее нечувствительной к боли. Охлаждение при испарении можно также наблюдать в следующем опыте. Два стеклянных шарика и соединены изогнутой стеклянной трубкой (криофор, рис. 491). В шариках находятся вода и ее пары, воздух удален. Шарик С помещают в охлаждающую смесь (смесь снега и соли). Тогда вода в шарике замерзает. Причина этого такова. Охлаждение шарика вызывает усиленную конденсацию в нем паров. Вследствие этого вода в шарике испаряется и потому охлаждается. Температура падает настолько сильно, что вода в шарике замерзает.

Рис. 490. Продувая воздух сквозь трубку, т. е. ускоряя испарение эфира, можно заставить воду внизу пробирки замерзнуть

Рис. 491. Когда шарик охлаждается, вода в шарике замерзает

Охлаждение при испарении и выделение теплоты при конденсации паров играют исключительно важную роль в природе, обусловливая умеренность климата приморских стран. Отметим, что испарение пота с кожи человека и животных является способом, при помощи которого организм регулирует температуру тела. Во время жары кожа потеет и испарение пота охлаждает ее.

296.1. Почему в резиновой одежде трудно переносить жару?

296.2. Почему при обмахивании веером легче переносить жару?

296.3. Имеются два одинаковых по форме и размерам стакана, один металлический, а другой фарфоровый. В стаканы наливают одинаковое количество воды и оставляют их надолго в комнате. Одинакова ли температура воды в стаканах?

При превращении жидкости в пар молекулы жидкости, преодолевая силы сцепления в поверхностном слое, совершают работу. Так как из жидкости улетают молекулы, имеющие большую скорость, то средняя скорость оставшихся молекул жидкости уменьшается, уменьшается их кинетическая энергия. Поэтому, когда нет притока энергии к жидкости извне, испарение ведет к уменьшению внутренней энергии жидкости, вследствие чего жидкость охлаждается.

Охлаждение жидкости при испарении легко наблюдать, обмотав кисеёй или ватой шарик термометра и полив его эфиром. Быстро испаряющийся эфир отнимает часть внутренней энергии шарика термометра, вследствие чего температура последнего значительно понижается. Если налить на деревянную подставку тонкий слой воды и поставить на него стакан с эфиром, то эфир при обдувании воздухом быстро испаряется и его температура настолько понижается, что стакан примерзает к подставке.

Явление охлаждения при испарении жидкости широко используется в практике. При перевозке скоропортящихся продуктов для охлаждения вагонов в специальных устройствах испаряют жидкий аммиак или жидкую двуокись углерода.

Для получения льда в холодильных установках испаряется жидкий аммиак в змеевиках, которые проходят через раствор соли и охлаждают его ниже 0°С. В раствор соли помещают формы из листовой стали, наполненные водой; в этих формах, омываемых охлаждённым рассолом, и образуются блоки льда.

В настоящее время широкое применение в быту получили электрические холодильники. Рассмотрим принцип действия компрессионного холодильник. Этот холодильник состоит из трёх основных частей; компрессора А, конденсатора В и испарителя С.

В змеевике-конденсаторе посредством компрессора А сжимают какое-нибудь вещество, которое легко переходит из газообразного состояния в жидкое и из жидкого состояния в газообразное. В качестве таких веществ применяют аммиак, фреон-12 (дифтордихлорметан – CF 2 Cl 2), сернистый ангидрид и др.

При сжатии холодильный агент переходит из газообразного состояния в в жидкое. Одновременно с этим компрессор создает в змеевике-испарителе С разрежение. Туда через регулирующий вентиль К, устремляется жид холодильный агент, который быстро там испаряется. Испарение сопровождается поглощением энергии от стенок змеевика С, воздуха, соприкасающегося с ним, и далее от продуктов, находящихся в холодильной камере Вследствие этого в холодильной камере понижается температура и продукты охлаждаются.

Компрессор приводится в действие электродвигателем.

В жарких странах воду обычно содержат в пористых глиняных сосудах. Вода, просачивающаяся через поры сосуда, испаряется, вследствие чего неиспарившаяся вода в сосуде остаётся холодной.



Понравилась статья? Поделитесь с друзьями!