Как определяется проекция вектора на координатные оси. Линейные операции над векторами и их основные свойства

Пусть в пространстве даны два вектора и . Отложим от произвольной точки O векторы и . Углом между векторами и называется наименьший из углов . Обозначается .

Рассмотрим ось l и отложим на ней единичный вектор (т.е. вектор, длина которого равна единице).

Под углом между вектором и осью l понимают угол между векторами и .

Итак, пусть l – некоторая ось и – вектор.

Обозначим через A 1 и B 1 проекции на ось l соответственно точек A и B . Предположим, что A 1 имеет координату x 1 , а B 1 – координату x 2 на оси l .

Тогда проекцией вектора на ось l называется разность x 1 x 2 между координатами проекций конца и начала вектора на эту ось.

Проекцию вектора на ось l будем обозначать .

Ясно, что если угол между вектором и осью l острый, то x 2 > x 1 , и проекция x 2 x 1 > 0; если этот угол тупой, то x 2 < x 1 и проекция x 2 x 1 < 0. Наконец, если вектор перпендикулярен оси l , то x 2 = x 1 и x 2 x 1 =0.

Таким образом, проекция вектора на ось l – это длина отрезка A 1 B 1 , взятая с определённым знаком. Следовательно, проекция вектора на ось это число или скаляр.

Аналогично определяется проекция одного вектора на другой. В этом случае находятся проекции концов даного вектора на ту прямую, на которой лежит 2-ой вектор.

Рассмотрим некоторые основные свойства проекций .

ЛИНЕЙНО ЗАВИСИМЫЕ И ЛИНЕЙНО НЕЗАВИСИМЫЕ СИСТЕМЫ ВЕКТОРОВ

Рассмотрим несколько векторов .

Линейной комбинацией данных векторов называется любой вектор вида , где - некоторые числа. Числа называются коэффициентами линейной комбинации. Говорят также, что в этом случае линейно выражается через данные векторы , т.е. получается из них с помощью линейных действий.

Например, если даны три вектора то в качестве их линейной комбинации можно рассматривать векторы:

Если вектор представлен как линейная комбинация каких-то векторов, то говорят, что он разложен по этим векторам.

Векторы называются линейно зависимыми , если существуют такие числа, не все равные нулю, что . Ясно, что заданные векторы будут линейно зависимыми, если какой-либо из этих векторов линейно выражается через остальные.

В противном случае, т.е. когда соотношение выполняется только при , эти векторы называются линейно независимыми .

Теорема 1. Любые два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.

Доказательство :

Аналогично можно доказать следующую теорему.

Теорема 2. Три вектора линейно зависимы тогда и только тогда, когда они компланарны.

Доказательство .

БАЗИС

Базисом называется совокупность отличных от нулей линейно независимых векторов. Элементы базиса будем обозначать .

В предыдущем пункте мы видели, что два неколлинеарных вектора на плоскости линейно независимы. Поэтому согласно теореме 1, из предыдущего пункта, базисом на плоскости являются любые два неколлинеарных вектора на этой плоскости.

Аналогично в пространстве линейно независимы любые три некомпланарных вектора. Следовательно, базисом в пространстве назовём три некомпланарных вектора.

Справедливо следующее утверждение.

Теорема. Пусть в пространстве задан базис . Тогда любой вектор можно представить в виде линейной комбинации , где x , y , z – некоторые числа. Такое разложение единственно.

Доказательство .

Таким образом, базис позволяет однозначно сопоставить каждому вектору тройку чисел – коэффициенты разложения этого вектора по векторам базиса: . Верно и обратное, каждой тройке чисел x, y, z при помощи базиса можно сопоставить вектор, если составить линейную комбинацию .

Если базис и , то числа x, y, z называются координатами вектора в данном базисе. Координаты вектора обозначают .


ДЕКАРТОВА СИСТЕМА КООРДИНАТ

Пусть в пространстве задана точка O и три некомпланарных вектора .

Декартовой системой координат в пространстве (на плоскости) называется совокупность точки и базиса, т.е. совокупность точки и трёх некомпланарных векторов (2-х неколлинеарных векторов), выходящих из этой точки.

Точка O называется началом координат; прямые, проходящие через начало координат в направлении базисных векторов, называются осями координат – осью абсцисс, ординат и аппликат. Плоскости, проходящие через оси координат, называют координатными плоскостями.

Рассмотрим в выбранной системе координат произвольную точку M . Введём понятие координаты точки M . Вектор , соединяющий начало координат с точкой M . называется радиус-вектором точки M .

Вектору в выбранном базисе можно сопоставить тройку чисел – его координаты: .

Координаты радиус-вектора точки M . называются координатами точки M . в рассматриваемой системе координат. M(x,y,z) . Первая координата называется абсциссой, вторая – ординатой, третья – аппликатой.

Аналогично определяются декартовы координаты на плоскости. Здесь точка имеет только две координаты – абсциссу и ординату.

Легко видеть, что при заданной системе координат каждая точка имеет определённые координаты. С другой стороны, для каждой тройки чисел найдётся единственная точка, имеющая эти числа в качестве координат.

Если векторы, взятые в качестве базиса, в выбранной системе координат, имеют единичную длину и попарно перпендикулярны, то система координат называется декартовой прямоугольной.

Несложно показать, что .

Направляющие косинусы вектора полностью определяют его направление, но ничего не говорят о его длине.

а на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.

Предварительные сведения

Основное понятие – непосредственно понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок . Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу - его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $\overline{a}$ (рис. 1).

Введем еще несколько понятий, связанных с понятием вектора.

Определение 3

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой или на прямых, параллельных друг другу (рис.2).

Определение 4

Два ненулевых вектора будем называть сонаправленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они будут направлены в одну сторону (рис. 3).

Обозначение: $\overline{a}\overline{b}$

Определение 5

Два ненулевых вектора будем называть противоположно направленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они направлены в разные стороны (рис. 4).

Обозначение: $\overline{a}↓\overline{d}$

Определение 6

Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|\overline{a}|$

Перейдем к определению равенства двух векторов

Определение 7

Два вектора будем называть равными, если они удовлетворяют двух условиям:

  1. Они сонаправлены;
  2. Их длины равны (рис. 5).

Геометрическая проекция

Как мы уже сказали ранее, результатом геометрической проекции будет вектор.

Определение 8

Геометрической проекцией вектора $\overline{AB}$ на ось будем называть такой вектор, который получается следующим образом: Точка начала вектора $A$ проецируется на данную ось. Получаем точку $A"$ - начало искомого вектора. Точка конца вектора $B$ проецируется на данную ось. Получаем точку $B"$ - конец искомого вектора. Вектор $\overline{A"B"}$ и будет искомым вектором.

Рассмотрим задачу:

Пример 1

Постройте геометрическую проекцию $\overline{AB}$ на ось $l$, изображенные на рисунке 6.

Проведем из точки $A$ перпендикуляр к оси $l$, получим на ней точку $A"$. Далее проведем из точки $B$ перпендикуляр к оси $l$, получим на ней точку $B"$ (рис. 7).

а на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.

Предварительные сведения

Основное понятие – непосредственно понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок . Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу - его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $\overline{a}$ (рис. 1).

Введем еще несколько понятий, связанных с понятием вектора.

Определение 3

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой или на прямых, параллельных друг другу (рис.2).

Определение 4

Два ненулевых вектора будем называть сонаправленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они будут направлены в одну сторону (рис. 3).

Обозначение: $\overline{a}\overline{b}$

Определение 5

Два ненулевых вектора будем называть противоположно направленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они направлены в разные стороны (рис. 4).

Обозначение: $\overline{a}↓\overline{d}$

Определение 6

Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|\overline{a}|$

Перейдем к определению равенства двух векторов

Определение 7

Два вектора будем называть равными, если они удовлетворяют двух условиям:

  1. Они сонаправлены;
  2. Их длины равны (рис. 5).

Геометрическая проекция

Как мы уже сказали ранее, результатом геометрической проекции будет вектор.

Определение 8

Геометрической проекцией вектора $\overline{AB}$ на ось будем называть такой вектор, который получается следующим образом: Точка начала вектора $A$ проецируется на данную ось. Получаем точку $A"$ - начало искомого вектора. Точка конца вектора $B$ проецируется на данную ось. Получаем точку $B"$ - конец искомого вектора. Вектор $\overline{A"B"}$ и будет искомым вектором.

Рассмотрим задачу:

Пример 1

Постройте геометрическую проекцию $\overline{AB}$ на ось $l$, изображенные на рисунке 6.

Проведем из точки $A$ перпендикуляр к оси $l$, получим на ней точку $A"$. Далее проведем из точки $B$ перпендикуляр к оси $l$, получим на ней точку $B"$ (рис. 7).

На чертежах изображения геометрических тел строятся при использовании метода проекции. Но для этого одного изображения недостаточно, необходимо минимум две проекции. С помощью них и определяются точки в пространстве. Следовательно, нужно знать, как найти проекцию точки.

Проекция точки

Для этого потребуется рассмотреть пространство двугранного угла, с расположенной внутри точкой (А). Здесь используются горизонтальная П1 и вертикальная П2 плоскости проекций. Точка (А) проецируется на проекционные плоскости ортогонально. Что касается перпендикулярных проецирующих лучей, то они объединяются в проецирующую плоскость, перпендикулярную плоскостям проекций. Таким образом, при совмещении горизонтальной П1 и фронтальной П2 плоскостей путем вращения по оси П2 / П1, получаем плоский чертеж.

Затем перпендикулярно оси показывается линия с расположенными на ней точками проекции. Так получается комплексный чертеж. Благодаря построенным отрезкам на нем и вертикальной линии связи, легко можно определять положение точки относительно проекционных плоскостей.

Чтобы было проще понять, как найти проекцию, необходимо рассмотреть прямоугольный треугольник. Его короткая сторона является катетом, а длинная – гипотенузой. Если выполнить на гипотенузу проекцию катета, то она поделится на два отрезка. Для определения их величины, нужно выполнить расчет набора исходных данных. Рассмотрим на данном треугольнике, способы расчета основных проекций.

Как правило, в данной задаче указывают длину катета N и длину гипотенузы D, чью проекцию и требуется найти. Для этого узнаем, как найти проекцию катета.

Рассмотрим способ нахождения длины катета (А). Учитывая, что среднее геометрическое от проекции катета и длины гипотенузы равняется искомой нами величине катета: N = √(D*Nd).

Как найти длину проекции

Корень из произведения можно найти возведением в квадрат значения длины искомого катета (N), а затем поделенного на длину гипотенузы: Nd = (N / √ D)² = N² / D. При указании в исходных данных значений только катетов D и N, длину проекции следует находить при помощи теоремы Пифагора.
Найдем длину гипотенузы D. Для этого нужно воспользоваться значениями катетов √ (N² + T²), а затем подставить полученное значение в следующую формулу нахождения проекции: Nd = N² / √ (N² + T²).

Когда в исходных данных указаны данные о длине проекции катета RD, а также данные о величине гипотенузы D, следует вычислять длину проекции второго катета ND при помощи простой формулы вычитания: ND = D – RD.

Проекция скорости

Рассмотрим, как найти проекцию скорости. Для того чтобы заданный вектор представлял описание движения, его следует разместить в проекции на координатные оси. Различают одну координатную ось (луч), две координатные оси (плоскость) и три координатные оси (пространство). При нахождении проекции необходимо из концов вектора опустить перпендикуляры на оси.

Для того чтобы уяснить значения проекции, необходимо узнать, как найти проекцию вектора.

Проекция вектора

При движении тела перпендикулярно относительно оси, проекция будет представлена в виде точки, и иметь значение равное нулю. Если же движение осуществляется параллельно координатной оси, то проекция будет совпадать с модулем вектора. В случае, когда тело движется таким образом, что вектор скорости направлен под углом φ относительно оси (х), проекция на данную ось будет являться отрезком: V(x) = V cos(φ), где V – это модель вектора скорости.Когда направления вектора скорости и координатной оси совпадают, то проекция является положительной, и наоборот.

Возьмем следующее координатное уравнение: x = x(t), y = y(t), z = z(t). В данном случае функция скорости будет спроецирована на три оси и будет иметь следующий вид: V(x) = dx / dt = x"(t), V(y) = dy / dt = y"(t), V(z) = dz / dt = z"(t). Отсюда следует, что для нахождения скорости необходимо брать производные. Сам же вектор скорости выражается уравнением такого вида: V = V(x) i + V(y) j + V(z) k. Здесь i, j, k являются единичными векторами координатных осей x, y, z соответственно. Таким образом, модуль скорости вычисляется по следующей формуле: V = √ (V(x) ^ 2 + V(y) ^ 2 + V(z) ^ 2).

Ось – это направление. Значит, проекция на ось или на направленную прямую считается одним и тем же. Проекция бывает алгебраическая и геометрическая. В геометрическом понимают проекцию вектора на ось как вектор, а алгебраическом – число. То есть применяются понятия проекция вектора на ось и числовая проекция вектора на ось.

Yandex.RTB R-A-339285-1

Если имеем ось L и ненулевой вектор A B → , то можем построить вектор A 1 B 1 ⇀ , обозначив проекции его точек A 1 и B 1 .

A 1 B → 1 будет являться проекцией вектора A B → на L .

Определение 1

Проекцией вектора на ось называют вектор, начало и конец которого являются проекции начала и конца заданного вектора. n p L A B → → принято обозначать проекцию A B → на L . Для построения проекции на L опускают перпендикуляры на L .

Пример 1

Пример проекции вектора на ось.

На координатной плоскости О х у задается точка M 1 (x 1 , y 1) . Необходимо построить проекции на О х и О у для изображения радиус-вектора точки M 1 . Получим координаты векторов (x 1 , 0) и (0 , y 1) .

Если идет речь о проекции a → на ненулевой b → или проекции a → на направление b → , то имеется в виду проекция a → на ось, с которой совпадает направление b → . Проекция a → на прямую, определяемая b → , имеет обозначение n p b → a → → . Известно, что когда угол между a → и b → , можно считать n p b → a → → и b → сонаправленными. В случае, когда угол тупой, n p b → a → → и b → противоположно направлены. В ситуации перпендикулярности a → и b → , причем a → - нулевой, проекция a → по направлению b → является нулевым вектором.

Числовая характеристика проекции вектора на ось – числовая проекция вектора на заданную ось.

Определение 2

Числовой проекцией вектора на ось называют число, которое равно произведению длины данного вектора на косинус угла между данным вектором и вектором, который определяет направление оси.

Числовая проекция A B → на L имеет обозначение n p L A B → , а a → на b → - n p b → a → .

Исходя из формулы, получим n p b → a → = a → · cos a → , b → ^ , откуда a → является длиной вектора a → , a ⇀ , b → ^ - угол между векторами a → и b → .

Получим формулу вычисления числовой проекции: n p b → a → = a → · cos a → , b → ^ . Она применима при известных длинах a → и b → и угле между ними. Формула применима при известных координатах a → и b → , но имеется ее упрощенный вид.

Пример 2

Узнать числовую проекцию a → на прямую по направлению b → при длине a → равной 8 и углом между ними в 60 градусов. По условию имеем a ⇀ = 8 , a ⇀ , b → ^ = 60 ° . Значит, подставляем числовые значения в формулу n p b ⇀ a → = a → · cos a → , b → ^ = 8 · cos 60 ° = 8 · 1 2 = 4 .

Ответ: 4.

При известном cos (a → , b → ^) = a ⇀ , b → a → · b → , имеем a → , b → как скалярное произведение a → и b → . Следуя из формулы n p b → a → = a → · cos a ⇀ , b → ^ , мы можем найти числовую проекцию a → направленную по вектору b → и получим n p b → a → = a → , b → b → . Формула эквивалента определению, указанному в начале пункта.

Определение 3

Числовой проекцией вектора a → на ось, совпадающей по направлению с b → , называют отношение скалярного произведения векторов a → и b → к длине b → . Формула n p b → a → = a → , b → b → применима для нахождения числовой проекции a → на прямую, совпадающую по направлению с b → , при известных a → и b → координатах.

Пример 3

Задан b → = (- 3 , 4) . Найти числовую проекцию a → = (1 , 7) на L .

Решение

На координатной плоскости n p b → a → = a → , b → b → имеет вид n p b → a → = a → , b → b → = a x · b x + a y · b y b x 2 + b y 2 , при a → = (a x , a y) и b → = b x , b y . Чтобы найти числовую проекцию вектора a → на ось L , нужно: n p L a → = n p b → a → = a → , b → b → = a x · b x + a y · b y b x 2 + b y 2 = 1 · (- 3) + 7 · 4 (- 3) 2 + 4 2 = 5 .

Ответ: 5.

Пример 4

Найти проекцию a → на L , совпадающей с направлением b → , где имеются a → = - 2 , 3 , 1 и b → = (3 , - 2 , 6) . Задано трехмерное пространство.

Решение

По заданным a → = a x , a y , a z и b → = b x , b y , b z вычислим скалярное произведение: a ⇀ , b → = a x · b x + a y · b y + a z · b z . Длину b → найдем по формуле b → = b x 2 + b y 2 + b z 2 . Отсюда следует, что формула определения числовой проекции a → будет: n p b → a ⇀ = a → , b → b → = a x · b x + a y · b y + a z · b z b x 2 + b y 2 + b z 2 .

Подставляем числовые значения: n p L a → = n p b → a → = (- 2) · 3 + 3 · (- 2) + 1 · 6 3 2 + (- 2) 2 + 6 2 = - 6 49 = - 6 7 .

Ответ: - 6 7 .

Просмотрим связь между a → на L и длиной проекции a → на L . Начертим ось L , добавив a → и b → из точки на L , после чего проведем перпендикулярную прямую с конца a → на L и проведем проекцию на L . Существуют 5 вариаций изображения:

Первый случай при a → = n p b → a → → означает a → = n p b → a → → , отсюда следует n p b → a → = a → · cos (a , → b → ^) = a → · cos 0 ° = a → = n p b → a → → .

Второй случай подразумевает применение n p b → a → ⇀ = a → · cos a → , b → , значит, n p b → a → = a → · cos (a → , b →) ^ = n p b → a → → .

Третий случай объясняет, что при n p b → a → → = 0 → получаем n p b ⇀ a → = a → · cos (a → , b → ^) = a → · cos 90 ° = 0 , тогда n p b → a → → = 0 и n p b → a → = 0 = n p b → a → → .

Четвертый случай показывает n p b → a → → = a → · cos (180 ° - a → , b → ^) = - a → · cos (a → , b → ^) , следует n p b → a → = a → · cos (a → , b → ^) = - n p b → a → → .

Пятый случай показывает a → = n p b → a → → , что означает a → = n p b → a → → , отсюда имеем n p b → a → = a → · cos a → , b → ^ = a → · cos 180 ° = - a → = - n p b → a → .

Определение 4

Числовой проекцией вектора a → на ось L , которая направлена как и b → , имеет значение:

  • длины проекции вектора a → на L при условии, если угол между a → и b → меньше 90 градусов или равен 0: n p b → a → = n p b → a → → с условием 0 ≤ (a → , b →) ^ < 90 ° ;
  • ноля при условии перпендикулярности a → и b → : n p b → a → = 0 , когда (a → , b → ^) = 90 ° ;
  • длины проекции a → на L , умноженной на -1, когда имеется тупой или развернутый угол векторов a → и b → : n p b → a → = - n p b → a → → с условием 90 ° < a → , b → ^ ≤ 180 ° .

Пример 5

Дана длина проекции a → на L , равная 2 . Найти числовую проекцию a → при условии, что угол равен 5 π 6 радиан.

Решение

Из условия видно, что данный угол является тупым: π 2 < 5 π 6 < π . Тогда можем найти числовую проекцию a → на L: n p L a → = - n p L a → → = - 2 .

Ответ: - 2 .

Пример 6

Дана плоскость О х y z с длиной вектора a → равной 6 3 , b → (- 2 , 1 , 2) с углом в 30 градусов. Найти координаты проекции a → на ось L .

Решение

Для начала вычисляем числовую проекцию вектора a → : n p L a → = n p b → a → = a → · cos (a → , b →) ^ = 6 3 · cos 30 ° = 6 3 · 3 2 = 9 .

По условию угол острый, тогда числовая проекция a → = длине проекции вектора a → : n p L a → = n p L a → → = 9 . Данный случай показывает, что векторы n p L a → → и b → сонаправлены, значит имеется число t , при котором верно равенство: n p L a → → = t · b → . Отсюда видим, что n p L a → → = t · b → , значит можем найти значение параметра t: t = n p L a → → b → = 9 (- 2) 2 + 1 2 + 2 2 = 9 9 = 3 .

Тогда n p L a → → = 3 · b → с координатами проекции вектора a → на ось L равны b → = (- 2 , 1 , 2) , где необходимо умножить значения на 3. Имеем n p L a → → = (- 6 , 3 , 6) . Ответ: (- 6 , 3 , 6) .

Необходимо повторить ранее изученную информацию об условии коллинеарности векторов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



Понравилась статья? Поделитесь с друзьями!