Как раскладывать квадратный трехчлен на линейные множители. Разложение квадратного трехчлена на множители

На данном уроке мы с вами научимся раскладывать квадратные трёхчлены на линейные множители. Для этого необходимо вспомнить теорему Виета и обратную ей. Данное умение поможет нам быстро и удобно раскладывать квадратные трёхчлены на линейные множители, а также упростит сокращение дробей, состоящих из выражений.

Итак вернёмся к квадратному уравнению , где .

То, что стоит у нас в левой части, называется квадратным трёхчленом.

Справедлива теорема: Если - корни квадратного трёхчлена, то справедливо тождество

Где - старший коэффициент, - корни уравнения.

Итак, мы имеем квадратное уравнение - квадратный трёхчлен, где корни квадратного уравнения также называются корнями квадратного трёхчлена. Поэтому если мы имеем корни квадратного трёхчлена, то этот трёхчлен раскладывается на линейные множители.

Доказательство:

Доказательство данного факта выполняется с помощью теоремы Виета, рассмотренной нами в предыдущих уроках.

Давайте вспомним, о чём говорит нам теорема Виета:

Если - корни квадратного трёхчлена, у которого , то .

Из данной теоремы вытекает следующее утверждение, что .

Мы видим, что, по теореме Виета, , т. е., подставив данные значения в формулу выше, мы получаем следующее выражение

что и требовалось доказать.

Вспомним, что мы доказали теорему, что если - корни квадратного трёхчлена, то справедливо разложение .

Теперь давайте вспомним пример квадратного уравнения , к которому с помощью теоремы Виета мы подбирали корни . Из этого факта мы можем получить следующее равенство благодаря доказанной теореме:

Теперь давайте проверим правильность данного факта простым раскрытием скобок:

Видим, что на множители мы разложили верно, и любой трёхчлен, если он имеет корни, может быть разложен по данной теореме на линейные множители по формуле

Однако давайте проверим, для любого ли уравнения возможно такое разложение на множители:

Возьмём, к примеру, уравнение . Для начала проверим знак дискриминанта

А мы помним, что для выполнения выученной нами теоремы D должен быть больше 0, поэтому в данном случае разложение на множители по изученной теореме невозможно.

Поэтому сформулируем новую теорему: если квадратный трёхчлен не имеет корней, то его нельзя разложить на линейные множители.

Итак, мы рассмотрели теорему Виета, возможность разложения квадратного трёхчлена на линейные множители, и теперь решим несколько задач.

Задача №1

В данной группе мы будем по факту решать задачу, обратную к поставленной. У нас было уравнение, и мы находили его корни, раскладывая на множители. Здесь мы будем действовать наоборот. Допустим, у нас есть корни квадратного уравнения

Обратная задача такова: составьте квадратное уравнение, чтобы были его корнями.

Для решения данной задачи существует 2 способа.

Поскольку - корни уравнения, то - это квадратное уравнение, корнями которого являются заданные числа. Теперь раскроем скобки и проверим:

Это был первый способ, по которому мы создали квадратное уравнение с заданными корнями, в котором нет каких-либо других корней, поскольку любое квадратное уравнение имеет не более двух корней.

Данный способ предполагает использование обратной теоремы Виета.

Если - корни уравнения, то они удовлетворяют условию, что .

Для приведённого квадратного уравнения , , т. е. в данном случае , а .

Таким образом, мы создали квадратное уравнение, которое имеет заданные корни.

Задача №2

Необходимо сократить дробь .

Мы имеем трёхчлен в числителе и трёхчлен в знаменателе, причём трёхчлены могут как раскладываться, так и не раскладываться на множители. Если же и числитель, и знаменатель раскладываются на множители, то среди них могут оказаться равные множители, которые можно сократить.

В первую очередь необходимо разложить на множители числитель .

Вначале необходимо проверить, можно ли разложить данное уравнении на множители, найдём дискриминант . Поскольку , то знак зависит от произведения ( должно быть меньше 0), в данном примере , т. е. заданное уравнение имеет корни.

Для решения используем теорему Виета:

В данном случае, поскольку мы имеем дело с корнями, то просто подобрать корни будет довольно сложно. Но мы видим, что коэффициенты уравновешены, т. е. если предположить, что , и подставить это значение в уравнение, то получается следующая система: , т. е. 5-5=0. Таким образом, мы подобрали один из корней данного квадратного уравнения.

Второй корень мы будем искать методом подставления уже известного в систему уравнений, к примеру, , т.е. .

Таким образом, мы нашли оба корня квадратного уравнения и можем подставить их значения в исходное уравнение, чтобы разложить его на множители:

Вспомним изначальную задачу, нам необходимо было сократить дробь .

Попробуем решить поставленную задачу, подставив вместо числителя .

Необходимо не забыть, что при этом знаменатель не может равняться 0, т. е. , .

Если данные условия будут выполняться, то мы сократили исходную дробь до вида .

Задача №3 (задача с параметром)

При каких значениях параметра сумма корней квадратного уравнения

Если корни данного уравнения существуют, то , вопрос: когда .

Разложение квадратного трехчлена на множители может пригодится при решении неравенств из задачи С3 или задачи с параметром С5. Так же многие текстовые задачи B13 решатся значительно быстрее, если вы владеете теоремой Виета.

Эту теорему, конечно, можно рассматривать с позиций 8-го класса, в котором она впервые проходится. Но наша задача - хорошо подготовиться к ЕГЭ и научиться решать задания экзамена максимально эффективно. Поэтому в этом уроке рассмотрен подход немного отличный от школьного.

Формулу корней уравнения по теореме Виета знают (или хотя бы видели) многие:

$$x_1+x_2 = -\frac{b}{a}, \quad x_1 · x_2 = \frac{c}{a},$$

где `a, b` и `c` - коэффициенты квадратного трехчлена `ax^2+bx+c`.

Чтобы научиться легко пользоваться теоремой, давайте поймем, откуда она берется (так будет реально легче запомнить).

Пусть перед нами есть уравнение `ax^2+ bx+ с = 0`. Для дальнейшего удобства разделим его на `a` получим `x^2+\frac{b}{a} x + \frac{c}{a} = 0`. Такое уравнение называется приведенным квадратным уравнением.

Важная мысль урока: любой квадратный многочлен, у которого есть корни, можно разложить на скобки. Предположим, что наш можно представить в виде `x^2+\frac{b}{a} x + \frac{c}{a} = (x + k)(x+l)`, где `k` и `l` - некоторые константы.

Посмотрим, как раскроются скобки:

$$(x + k)(x+l) = x^2 + kx+ lx+kl = x^2 +(k+l)x+kl.$$

Таким образом, `k+l = \frac{b}{a}, kl = \frac{c}{a}`.

Это немного отличается от классической трактовки теоремы Виета - в ней мы ищем корни уравнения. Я же предлагаю искать слагаемые для разложения на скобки - так не нужно помнить про минус из формулы (имеется в виду `x_1+x_2 = -\frac{b}{a}`). Достаточно подобрать два таких числа, сумма которых равна среднему коэффициенту, а произведение - свободному члену.

Если нам нужно решение именно уравнения, то оно очевидно: корни `x=-k`или `x=-l` (так как в этих случаях одна из скобок занулится, значит, будет равно нулю и все выражение).

На примере покажу алгоритм, как раскладывать квадратный многочлен на скобки.

Пример первый. Алгоритм разложения квадратного трехчлена на множители

Путь у нас есть квадртаный трехчлен `x^2+5x+4`.

Он приведенный (коэффициент у `x^2` равен единице). Корни у него есть. (Для верности можно прикинуть дискриминант и убедиться, что он больше нуля.)

Дальнейшие шаги (их нужно выучить, выполнив все тренировочные задания):

  1. Выполнить следующую запись: $$x^2+5x+4=(x \ldots)(x \ldots).$$ Вместо точек оставьте свободное место, туда будем дописывать подходящие числа и знаки.
  2. Рассмотреть все возможные варианты, как можно разложить число `4` на произведение двух чисел. Получим пары "кандидатов" на корни уравнения: `2, 2` и `1, 4`.
  3. Прикинуть, из какой пары можно получить средний коэффициент. Очевидно, что это `1, 4`.
  4. Записать $$x^2+5x+4=(x \quad 4)(x \quad 1)$$.
  5. Следующий этап - расставить знаки перед вставленными числами.

    Как понять и навсегда запомнить, какие знаки должны быть перед числами в скобках? Попробуйте раскрыть их (скобки). Коэффициент перед `x` в первой степени будет `(± 4 ± 1)` (пока что знаков мы не знаем - нужно выбрать), и он должен равняться `5`. Очевидно, что здесь будут два плюса $$x^2+5x+4=(x + 4)(x + 1)$$.

    Выполните эту операцию несколько раз (привет, тренировочные задания!) и больше проблем с этим не будет никогда.

Если нужно решить уравнение `x^2+5x+4`, то теперь его решение не составит труда. Его корни: `-4, -1`.

Пример второй. Разложение на множители квадратного трехчлена с коэффициентами различных знаков

Пусть нам нужно решить уравнение `x^2-x-2=0`. Навскидку дискриминант положительный.

Идем по алгоритму.

  1. $$x^2-x-2=(x \ldots) (x \ldots).$$
  2. Разложение двойки на целые множители есть только одно: `2 · 1`.
  3. Пропускаем пункт - выбирать не из чего.
  4. $$x^2-x-2=(x \quad 2) (x \quad 1).$$
  5. Произведение наших чисел отрицательное (`-2` - свободный член), значит, одно из них будет отрицательное, а другое - положительное.
    Поскольку их сумма равна `-1` (коэффициент при `x`), то отрицательным будет `2` (интуитивное объяснение - двойка большее из двух чисел, оно сильнее "перетянет" в отрицательную сторону). Получим $$x^2-x-2=(x - 2) (x + 1).$$

Третий пример. Разложение квадратного трехчлена на множители

Уравнение `x^2+5x -84 = 0`.

  1. $$x+ 5x-84=(x \ldots) (x \ldots).$$
  2. Разложение 84 на целые множители: `4· 21, 6· 14, 12· 7, 2·42`.
  3. Поскольку нам нужно, чтобы разница (или сумма) чисел равнялась 5, то нам подойдет пара `7, 12`.
  4. $$x+ 5x-84=(x\quad 12) (x \quad 7).$$
  5. $$x+ 5x-84=(x + 12) (x - 7).$$

Надеюсь, разложение этого квадратного трехчлена на скобки понятно.

Если нужно решение уравнения, то вот оно: `12, -7`.

Задания для тренировки

Предлагаю вашему вниманию несколько примеров, которые легко решаются с помощью теоремы Виета. (Примеры взяты из журнала "Математика", 2002.)

  1. `x^2+x-2=0`
  2. `x^2-x-2=0`
  3. `x^2+x-6=0`
  4. `x^2-x-6=0`
  5. `x^2+x-12=0`
  6. `x^2-x-12=0`
  7. `x^2+x-20=0`
  8. `x^2-x-20=0`
  9. `x^2+x-42=0`
  10. `x^2-x-42=0`
  11. `x^2+x-56=0`
  12. `x^2-x-56=0`
  13. `x^2+x-72=0`
  14. `x^2-x-72=0`
  15. `x^2+x-110=0`
  16. `x^2-x-110=0`
  17. `x^2+x-420=0`
  18. `x^2-x-420=0`

Спустя пару лет после написания статьи появился сборник из 150 заданий для разложения квадратного многочлена по теореме Виета.

Ставьте лайки и задавайте вопросы в комментариях!

Приводится 8 примеров разложения многочленов на множители. Они включают в себя примеры с решением квадратных и биквадратных уравнений, примеры с возвратными многочленами и примеры с нахождением целых корней у многочленов третьей и четвертой степени.

1. Примеры с решением квадратного уравнения

Пример 1.1


x 4 + x 3 - 6 x 2 .

Решение

Выносим x 2 за скобки:
.
2 + x - 6 = 0 :
.
Корни уравнения:
, .


.

Ответ

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Решение

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Ответ

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 - 2 x 4 + 10 x 3 .

Решение

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Ответ

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 - 20 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) .

;
.

Ответ

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) :

;

;
.

Ответ

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Решение

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;


;
.

Ответ

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

6
-6, -3, -2, -1, 1, 2, 3, 6 .
(-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
(-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
(-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
(-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
1 3 - 6·1 2 + 11·1 - 6 = 0 ;
2 3 - 6·2 2 + 11·2 - 6 = 0 ;
3 3 - 6·3 2 + 11·3 - 6 = 0 ;
6 3 - 6·6 2 + 11·6 - 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Ответ

Пример 3.2

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
-2, -1, 1, 2 .
Подставляем поочередно эти значения:
(-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
(-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид.

Найдем сумму и произведение корней квадратного уравнения. Используя формулы (59.8) для корней приведенного уравнения, получим

(первое равенство очевидно, второе получается после несложного вычисления, которое читатель проведет самостоятельно; удобно использовать формулу для произведения суммы двух чисел на их разность).

Доказана следующая

Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту с противоположным знаком, а их произведение равно свободному члену.

В случае неприведенного квадратного уравнения следует в формулы (60.1) подставить выражения формулы (60.1) примут вид

Пример 1. Составить квадратное уравнение по его корням:

Решение, а) Находим уравнение имеет вид

Пример 2. Найти сумму квадратов корней уравнения не решая самого уравнения.

Решение. Известны сумма и произведение корней. Представим сумму квадратов корней в виде

и получим

Из формул Виета легко получить формулу

выражающую правило разложения квадратного трехчлена на множители.

В самом деле, напишем формулы (60.2) в виде

Теперь имеем

что и требовалось получить.

Вышеуказанный вывод формул Виета знаком читателю из курса алгебры средней школы. Можно дать другой вывод, использующий теорему Безу и разложение многочлена на множители (пп. 51, 52).

Пусть корни уравнения тогда по общему правилу (52.2) трехчлен в левой части уравнения разлагается на множители:

Раскрывая скобки в правой части этого тождественного равенства, получим

и сравнение коэффициентов при одинаковых степенях даст нам формулы Виета (60.1).

Преимущество этого вывода состоит в том, что его можно применить и к уравнениям высших степеней с тем, чтобы получить выражения коэффициентов уравнения через его корни (не находя самих корней!). Например, если корни приведенного кубического уравнения

суть то согласно равенству (52.2) находим

(в нашем случае Раскрыв скобки в правой части равенства и собрав коэффициенты при различных степенях получим

Квадратным трёхчленом называется многочлен вида ax^2 + bx + с, где x - переменная, а, b и с - некоторые числа, причем, а ≠ 0.

Чтобы разложить трехчлен на множители, нужно знать корни этого трехчлена. (далее пример на трехчлене 5х^2 + 3х- 2)

Заметим: значение квадратного трёхчлена 5х^2 + 3х - 2 зависит от значения х. Например: Если х = 0, то 5х^2 + 3х - 2 = -2

Если х = 2, то 5х^2 + 3х - 2 = 24

Если х = -1, то 5х^2 + 3х - 2 = 0

При х = -1 квадратный трёхчлен 5х^2 + 3х - 2 обращается в нуль, в этом случае число -1 называют корнем квадратного трёхчлена .

Как получить корень уравнения

Поясним, как мы получили корень этого уравнения. Для начала необходимо четко знать теорему и формулу, по которой мы будем работать:

“Если х1 и х2 – корни квадратного трехчлена ax^2 + bx + c, то ax^2 + bx + c = a(x - x1)(x - x2)”.

Х = (-b±√(b^2-4ac))/2a \

Это формула нахождения корней многочлена является самой примитивной формулой, решая по которой вы никогда не запутаетесь.

Выражение 5х^2 + 3х – 2.

1. Приравниваем к нулю: 5х^2 + 3х – 2 = 0

2. Находим корни квадратного уравнения, для этого подставляем значения в формулу (а – коэффициент при Х^2, b – коэффициент при Х, свободный член, то есть цифра без Х):

Первый корень находим со знаком плюс перед корнем квадратным:

Х1 = (-3 + √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 + √(9 -(-40)))/10 = (-3 + √(9+40))/10 = (-3 + √49)/10 = (-3 +7)/10 = 4/(10) = 0,4

Второй корень со знаком минус перед корнем квадратным:

X2 = (-3 - √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 - √(9- (-40)))/10 = (-3 - √(9+40))/10 = (-3 - √49)/10 = (-3 - 7)/10 = (-10)/(10) = -1

Вот мы и нашли корни квадратного трехчлена. Чтобы убедиться, что они верные, можно сделать проверку: сначала подставляем первый корень в уравнение, затем второй:

1) 5х^2 + 3x – 2 = 0

5 * 0,4^2 + 3*0,4 – 2 = 0

5 * 0,16 + 1,2 – 2 = 0

2) 5х^2 + 3x – 2 = 0

5 * (-1)^2 + 3 * (-1) – 2 = 0

5 * 1 + (-3) – 2 = 0

5 – 3 – 2 = 0

Если при подстановке всех корней уравнение обращается в ноль, значит уравнение решено верно.

3. Теперь воспользуемся формулой из теоремы: ax^2 + bx + c = a(x-x1)(x-x2), помним, что Х1 и Х2 – это корни квадратного уравнения. Итак: 5х^2 + 3x – 2 = 5 * (x - 0,4) * (x- (-1))

5х^2 + 3x– 2 = 5(x - 0,4)(x + 1)

4. Чтобы убедиться в правильности разложения можно просто перемножить скобки:

5(х - 0,4)(х + 1) = 5(х^2 + x - 0,4x - 0,4) = 5(x^2 + 0,6x – 0,4) = 5x^2 +3 – 2. Что подтверждает правильность решения.

Второй вариант нахождения корней квадратного трехчлена

Еще один вариант нахождения корней квадратного трехчлена - теорема обратная теореме Виетта. Здесь корни квадратного уравнения находятся по формулам: x1 + x2 = -(b) , х1 * х2 = с . Но важно понимать, что данной теоремой можно пользоваться только в том случае, если коэффициент а = 1, то есть число, стоящее перед х^2 = 1.

Например: x^2 – 2x +1 = 0, a = 1, b = - 2, c = 1.

Решаем: х1 + х2 = - (-2), х1 + х2 = 2

Теперь важно подумать, какие числа в произведении дают единицу? Естественно это 1 * 1 и -1 * (-1) . Из этих чисел выбираем те, которые соответствую выражению х1 + х2 = 2, конечно же - это 1 + 1. Вот мы и нашли корни уравнения: х1 = 1, х2 = 1. Это легко проверить, если подставить в выражение x^2 – 2x + 1 = 0.



Понравилась статья? Поделитесь с друзьями!