Как решать уравнения с параболой. Вопросы для самопроверки

Парабола есть множество точек плоскости, равноудаленных от данной точки (фокуса ) и от данной прямой, не проходящей через данную точку (директрисы ), расположенных в той же плоскости (рис.5).

При этом система координат выбрана так, что ось
проходит перпендикулярно директрисе через фокус, положительное ее направление выбрано от директрисы в сторону фокуса. Ось ординат проходит параллельно директрисе, посередине между директрисой и фокусом, откуда уравнение директрисы
, координаты фокуса
. Начало координат является вершиной параболы, а ось абсцисс – ее осью симметрии. Эксцентриситет параболы
.

В ряде случаев рассматриваются параболы, заданные уравнениями

а)

б)
(для всех случаев
)

в)
.

В случае а) парабола симметрична относительно оси
и направлена в ее отрицательную сторону (рис.6).

В случаях б) и в) осью симметрии является ось
(рис.6). Координаты фокусов для этих случаев:

а)
б)
в)
.

Уравнение директрис:

а)
б)
в)
.

Пример 4. Парабола с вершиной в начале координат проходит через точку
и симметрична относительно оси
. Написать ее уравнение.

Решение:

Так как парабола симметрична относительно оси
и проходит через точкус положительной абсциссой, то она имеет вид, представленный на рис.5.

Подставляя координаты точки в уравнение такой параболы
, получим
, т.е.
.

Следовательно, искомое уравнение

,

фокус этой параболы
, уравнение директрисы
.

4. Преобразование уравнения линии второго порядка к каноническому виду.

Общее уравнение второй степени имеет вид

где коэффициенты
одновременно в нуль не обращаются.

Всякая определяемая уравнением (6) линия называется линией второго порядка. С помощью преобразования системы координат уравнение линии второго порядка может быть приведено к простейшему (каноническому) виду.

1. В уравнении (6)
. В данном случае уравнение (6) имеет вид

Оно преобразуется к простейшему виду с помощью параллельного переноса осей координат по формулам

(8)

где
– координаты нового начала
(в старой системе координат). Новые оси
и
параллельны старым. Точка
является центром эллипса или гиперболы и вершиной в случае параболы.

Приведение уравнения (7) к простейшему виду удобно делать методом выделения полных квадратов аналогично тому, как это делалось для окружности.

Пример 5. Уравнение линии второго порядка привести к простейшему виду. Определить вид и расположение этой линии. Найти координаты фокусов. Сделать чертеж.

Решение:

Группируем члены, содержащие только и только, вынося коэффициенты прииза скобку:

Дополняем выражения в скобках до полных квадратов:

Таким образом, данное уравнение преобразовано к виду

Обозначаем

или

Сравнивая с уравнениями (8), видим, что эти формулы определяют параллельный перенос осей координат в точку
. В новой системе координат уравнение запишется так:

Перенося свободный член вправо и разделив на него, получим:

.

Итак, данная линия второго порядка есть эллипс с полуосями
,
. Центр эллипса находится в новом начале координат
, а его фокальная ось есть ось
. Расстояние фокусов от центра, так что новые координаты правого фокуса
. Старые координаты этого же фокуса находятся из формул параллельного переноса:

Аналогично, новые координаты левого фокуса
,
. Его старые координаты:
,
.

Чтобы начертить данный эллипс, наносим на чертеж старые и новые координатные оси. По обе стороны от точки
откладываем по оси
отрезки длины
, а по оси
– длины
; получив таким образом вершины эллипса, чертим сам эллипс (рис. 7).

Замечание . Для уточнения чертежа полезно найти точки пересечения данной линии (7) со старыми координатными осями. Для этого надо в формуле (7) положить сначала
, а затем
и решить получающиеся уравнения.

Появления комплексных корней будет означать, что линия (7) соответствующую координатную ось не пересекает.

Например, для эллипса только что разобранной задачи получаются такие уравнения:

Второе из этих уравнений имеет комплексные корни, так что эллипс ось
не пересекает. Корни первого уравнения:

В точках
и
эллипс пересекает ось
(рис.7).

Пример 6. Привести к простейшему виду уравнение линии второго порядка . Определить вид и расположении линии, найти координаты фокуса.

Решение:

Так как член с отсутствует, то надо выделить полный квадрат только по:

Выносим также за скобку коэффициент при

.

Обозначаем

или

Тем самым производится параллельный перенос системы координат в точку
. После переноса уравнение примет вид

.

Отсюда следует, что данная линия есть парабола (рис.8), точка
является ее вершиной. Парабола направлена в отрицательную сторону оси
и симметрична относительно этой оси. Величинадля нее равна.

Поэтому фокус имеет новые координаты

.

Его старые координаты

Если в данном уравнении положить
или
, то обнаружим, что парабола пересекает ось
в точке
, а ось
она не пересекает.

2. В уравнении (1)
. Общее уравнение (1) второй степени преобразуется к виду (2), т.е. к рассмотренному в п.1. случаю, с помощь поворота координатных осей на угол
по формулам

(9)

где
– новые координаты. Угол
находится из уравнения

Оси координат поворачиваются при этом так, чтобы новые оси
и
были параллельны осям симметрии линии второго порядка.

Зная
, можно найти
и
по формулам тригонометрии

,
.

Если угол поворота
условиться считать острым, то в этих формулах надо брать знак плюс, и для
надо взять также положительное решение уравнения (5).

В частности, при
систему координат нужно повернуть на угол
. Формулы поворота на уголимеют вид:

(11)

Пример 7. Уравнение линии второго порядка привести к простейшему виду. Установить вид и расположение этой линии.

Решение:

В данном случае
, 1
,
, поэтому угол поворота
находится из уравнения

.

Решение этого уравнения
и
. Ограничиваясь острым углом
, берем первое из них. Тогда

,

,
.

Подставляя эти значения ив данное уравнение

Раскрывая скобки и приводя подобные, получим

.

Наконец, разделив на свободный член, придем к уравнению эллипса

.

Отсюда следует, что
,
, причем большая ось эллипса направлена по оси
, а малая – по оси
.

Получится точка
, радиус которой
наклонен к оси
под углом
, для которого
. Следовательно, через эту точку
и пройдет новая ось абсцисс. Затем отмечаем на осях
и
вершины эллипса и чертим эллипс (рис.9).

Заметим, что данный эллипс пересекает старые координатные оси в точках, которые находятся из квадратных уравнений (если в данном уравнении положить
или
):

и
.

- (греч. parabole, от parabollo сближаю). 1) иносказание, притча. 2) кривая линия, происходящая от сечения конуса плоскостью, параллельною какой нибудь его производящей. 3) кривая линия, образующаяся при полете бомбы, ядра и т. п. Словарь… … Словарь иностранных слов русского языка

Иносказание, притча (Даль) См. пример … Словарь синонимов

- (греч. parabole) плоская кривая (2 го порядка). Парабола множество точек М, расстояния которых до данной точки F (фокуса) и до данной прямой D1D2 (директрисы) равны. В надлежащей системе координат уравнение параболы имеет вид: y2=2px, где р=2OF.… … Большой Энциклопедический словарь

ПАРАБОЛА, математическая кривая, КОНИЧЕСКОЕ СЕЧЕНИЕ, образуемое точкой, двигающейся таким образом, что ее расстояние до неподвижной точки, фокуса, равно ее расстоянию до неподвижной прямой, директрисы. Парабола образуется при разрезе конуса… … Научно-технический энциклопедический словарь

Жен., греч. иносказанье, притча. | мат. кривая черта, из числа конических сечений; разрез сахарной головы накось, опостен (параллельно) противной стороне. Парабольные вычисленья. Параболическое реченье, инословие, иноречие, переносное.… … Толковый словарь Даля

парабола - ы, ж. parabole f. <гр. parabole. 1. устар. Притча, иносказание. БАС 1. Француз, захотя посмеяться русаку, приезжему в Париж, спросил: Что такое значит парабол, фарибол и обол? Но тот вскоре ему отвечал: Парабол, есть то, что ты не разумеешь;… … Исторический словарь галлицизмов русского языка

ПАРАБОЛА - (1) незамкнутая кривая линия 2 го порядка на плоскости, являющаяся графиком функции у2 = 2рх, где р параметр. Параболу получают при пересечении кругового (см.) плоскостью, не проходящей через его вершину и параллельной одной из его образующих.… … Большая политехническая энциклопедия

- (от греческого parabole), плоская кривая, расстояния любой точки M которой до данной точки F (фокуса) и до данной прямой D 1D1 (директрисы) равны (MD=MF) … Современная энциклопедия

ПАРАБОЛА, параболы, жен. (греч. parabole). 1. Кривая второго порядка, представляющая коническое сечение прямого кругового конуса плоскостью, параллельною одной из образующих (мат.). || Путь, описываемый тяжелым телом (напр. пулей), брошенным под… … Толковый словарь Ушакова

ПАРАБОЛА, ы, жен. В математике: состоящая из одной ветви незамкнутая кривая, образующаяся при пересечении конической поверхности плоскостью. | прил. параболический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

- «ПАРАБОЛА», Россия, 1992, цв., 30 мин. Документальное эссе. Попытка понять мистическую суть сказаний удмуртов маленького народа в Поволжье. Режиссер: Светлана Стасенко (см. СТАСЕНКО Светлана). Автор сценария: Светлана Стасенко (см. СТАСЕНКО… … Энциклопедия кино

Книги

  • Парабола замысла поиска работы мечты. Архетипы HR-менеджеров... , Марина Зорина. Книга Марины Зориной "Парабола замысла поиска работы мечты" основана на реальном опыте автора и наполнена полезной информацией, касающейся закономерностей процесса внутреннего рекрутмента.…
  • Парабола моей жизни , Титта Руффо. Автор книги - известнейший итальянский певец, солист ведущих оперных театров мира. Воспоминания Титта Руффо, написанные живо и непосредственно, содержат зарисовкитеатральной жизни первой…

Рассмотрим на плоскости прямую и точку, не лежащую на этой прямой. И эллипс , и гипербола могут быть определены единым образом как геометрическое место точек, для которых отношение расстояния до данной точки к расстоянию до данной прямой есть постоянная вели-

чина ε. При 0 1 - гипербола. Параметр ε является эксцентриситетом как эллипса, так и гиперболы . Из возможных положительных значений параметра ε одно, а именно ε = 1, оказывается незадействованным. Этому значению соответствует геометрическое место точек, равноудаленных от данной точки и от данной прямой.

Определение 8.1. Геометрическое место точек плоскости, равноудаленных от фиксированной точки и от фиксированной прямой, называют параболой.

Фиксированную точку называют фокусом параболы , а прямую - директрисой параболы . При этом полагают, что эксцентриситет параболы равен единице.

Из геометрических соображений вытекает, что парабола симметрична относительно прямой, перпендикулярной директрисе и проходящей через фокус параболы. Эту прямую называют осью симметрии параболы или просто осью параболы . Парабола пересекается со своей осью симметрии в единственной точке. Эту точку называют вершиной параболы . Она расположена в середине отрезка, соединяющего фокус параболы с точкой пересечения ее оси с директрисой (рис. 8.3).

Уравнение параболы. Для вывода уравнения параболы выберем на плоскости начало координат в вершине параболы, в качестве оси абсцисс - ось параболы, положительное направление на которой задается положением фокуса (см. рис. 8.3). Эту систему координат называют канонической для рассматриваемой параболы, а соответствующие переменные - каноническими .

Обозначим расстояние от фокуса до директрисы через p. Его называют фокальным параметром параболы .

Тогда фокус имеет координаты F(p/2; 0), а директриса d описывается уравнением x = - p/2. Геометрическое место точек M(x; y), равноудаленных от точки F и от прямой d, задается уравнением

Возведем уравнение (8.2) в квадрат и приведем подобные. Получим уравнение

которое называют каноническим уравнением параболы .

Отметим, что возведение в квадрат в данном случае - эквивалентное преобразование урав-нения (8.2), так как обе части уравнения неотрицательны, как и выражение под радикалом.

Вид параболы. Если параболу у 2 = x, вид которой считаем известным, сжать с коэффициентом 1/(2р) вдоль оси абсцисс, то получится парабола общего вида, которая описывается уравнением (8.3).

Пример 8.2. Найдем координаты фокуса и уравнение директрисы параболы, если она проходит через точку, канонические координаты которой (25; 10).

В канонических координатах уравнение параболы имеет вид у 2 = 2px. Поскольку точка (25; 10) находится на параболе, то 100 = 50p и поэтому p = 2. Следовательно, у 2 = 4x является каноническим уравнением параболы, x = - 1 - уравнением ее директрисы, а фокус находится в точке (1; 0).

Оптическое свойство параболы. Парабола имеет следующее оптическое свойство . Если в фокус параболы поместить источник света, то все световые лучи после отражения от параболы будут параллельны оси параболы (рис. 8.4). Оптическое свойство означает, что в любой точке M параболы нормальный вектор касательной составляет с фокальным радиусом MF и осью абсцисс одинаковые углы.

Определение 1. Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и от данной прямой, не проходящей через данную точку и называемой директрисой.

Составим уравнение параболы с фокусом в данной точке F и директрисой которой является прямая d, не проходящая через F. Выберем прямоугольную систему координат следующим образом: ось Ох проведем через фокус F перпендикулярно директрисе d в направлении от d к F, а начало координат О расположим посередине между фокусом и директрисой (рис. 1).

Определение 2. Расстояние от фокуса F до директрисы d называется параметром параболы и обозначается через р (р > 0).

Из рис. 1 видно, что p = FK, следовательно, фокус имеет координаты F (р/2; 0) , а уравнение директрисы имеет вид х = – р/2, или

Пусть М(х; у) – произвольная точка параболы. Соединим точку М с F ипроведем MN d. Непосредственно из рис. 1 видно, что

а по формуле расстояния между двумя точками

Согласно определению параболы, MF = MN, (1)

следовательно, (2)

Уравнение (2) является искомым уравнением параболы. Для упрощения уравнения (2) преобразуем его следующим образом:

т.е.,

Координаты х и у точки М параболы удовлетворяют условию (1), а следовательно, и уравнению (3).

Определение 3. Уравнение (3) называется каноническим уравнением параболы.

2. Исследование формы параболы по ее уравнению. Определим форму параболы по ее каноническому уравнению (3).

1) Координаты точки О (0; 0) удовлетворяют уравнению (3), следовательно, парабола, определяемая этим уравнением, проходит через начало координат.

2) Так как в уравнение (3) переменная у входит только в четной степени, то парабола у 2 = 2рх симметрична относительно оси абсцисс.

3) Так как р > 0 , то из (3) следует х ≥ 0. Следовательно, парабола у 2 = 2рх расположена справа от оси Оу .

4) При возрастании абсциссы х от 0 до +∞ ордината у изменяется от 0 до ± ∞, т.е. точки параболы неограниченно удаляются как от оси Ох , так и от оси Оу .

Парабола у 2 = 2рх имеет форму, изображенную на рис. 2.

Определение 4. Ось Ох называется осью симметрии параболы . Точка О (0; 0) пересечения параболы с осью симметрии называется вершиной параболы . Отрезок FM называется фокальным радиусом точки М .

Замечание. Для составления уравнения параболы вида у 2 = 2рх мы специальным образом выбрали прямоугольную систему координат (см. п. 1). Если же систему координат выбрать другим образом, то и уравнение параболы будет иметь иной вид.



а


Так, например, если направить ось Ох от фокуса к директрисе (рис. 3, а

у 2 = –2рх. (4)

F(–р/2; 0) , а директриса d задана уравнением х = р/2.

Если ось Оу проведем через фокус F d в направлении от d к F , а начало координат О расположим посередине между фокусом и директрисой (рис. 3, б ), то уравнение параболы пример вид

х 2 = 2ру. (5)

Фокус такой параболы имеет координаты F (0; р/2) , а директриса d задана уравнением у=–р/2.

Если ось Оу проведем через фокус F перпендикулярно к директрисе d в направлении от F к d (рис. 3, в ), то уравнение параболы примет вид

х 2 = –2ру (6)

Координаты ее фокуса будут F (0; –р/2) , а уравнением директрисы d будет у = р/2.

Об уравнения (4), (5), (6) говорят, что они имеют простейший вид.

3. Параллельный перенос параболы. Пусть дана парабола с вершиной в точке О" (а; b) , ось симметрии которой параллельна оси Оу , а ветви направлены вверх (рис. 4). Требуется составить уравнение параболы.

(9)

Определение 5. Уравнение (9) называется уравнением параболы со смещенной вершиной.

Преобразуем это уравнение следующим образом:

Положив

будем иметь (10)

Нетрудно показать, что для любых А, В, С график квадратного трехчлена (10) представляет собой параболу в смысле определения 1. Уравнение параболы вида (10) изучалось в школьном курсе алгебре.


УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

№1. Составить уравнение окружности:

a. с центром в начале координат и радиусом 7;

b. с центром в точке (-1;4) и радиусом 2.

Построить данные окружности в прямоугольной декартовой системе координат.

№2. Составить каноническое уравнение эллипса с вершинами

и фокусами

№3. Построить эллипс, заданный каноническим уравнением:

1) 2)

№4. Составить каноническое уравнение эллипса с вершинами



и фокусами

№5. Составить каноническое уравнение гиперболы с вершинами

и фокусами

№6. Составить каноническое уравнение гиперболы, если:

1. расстояние между фокусами , а между вершинами

2. действительная полуось , а эксцентриситет ;

3. фокусы на оси , действительная ось 12, а мнимая 8.

№7. Построить гиперболу, заданную каноническим уравнением:

1) 2) .

№8. Составить каноническое уравнение параболы, если:

1) парабола расположена в правой полуплоскости симметрично относительно оси и её параметр ;

2) парабола расположена в левой полуплоскости симметрично относительно оси и её параметр .

Построить эти параболы, их фокусы и директрисы.

№9. Определить тип линии, если её уравнение:


ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Векторы в пространстве.

1.1. Что такое вектор?

1.2. Что такое абсолютная величина вектора?

1.3. Какие виды векторов в пространстве Вы знаете?

1.4. Какие действия можно выполнять с ними?

1.5. Что такое координаты вектора? Как их найти?

2. Действия над векторами, заданными своими координатами.

2.1. Какие действия можно выполнять с векторами, заданными в координатной форме (правила, равенства, примеры); как найти абсолютную величину такого вектора.

2.2. Свойства:

2.2.1 коллинеарных;

2.2.2 перпендикулярных;

2.2.3 компланарных;

2.2.4 равных векторов.
(формулировки, равенства).

3. Уравнение прямой. Прикладные задачи.

3.1. Какие виды уравнения прямой Вы знаете (уметь записывать и интерпретировать по записи);

3.2. Как исследовать на параллельность – перпендикулярность две прямые, заданные уравнениями с угловым коэффициентом или общими уравнениями?

3.3. Как найти расстояние от точки до прямой, между двумя точками?

3.4. Как найти угол между прямыми, заданными общими уравнениями прямой или уравнениями с угловым коэффициентом?

3.5. Как найти координаты середины отрезка и длину этого отрезка?

4. Уравнение плоскости. Прикладные задачи.

4.1. Какие виды уравнения плоскости Вы знаете (уметь записывать и интерпретировать по записи)?

4.2. Как исследовать на параллельность – перпендикулярность прямые в пространстве?

4.3. Как найти расстояние от точки до плоскости и угол между плоскостям?.

4.4. Как исследовать взаимное расположение прямой и плоскости в пространстве?

4.5. Виды уравнения прямой в пространстве: общее, каноническое, параметрическое, проходящей через две данные точки.

4.6. Как найти угол между прямыми и расстояние между точками в пространстве?

5. Линии второго порядка.

5.1. Эллипс: определение, фокусы, вершины, большая и малая оси, фокальные радиусы, эксцентриситет, уравнения директрис, простейшие (или канонические) уравнения эллипса; чертеж.

5.2. Гипербола: определение, фокусы, вершины, действительная и мнимая оси, фокальные радиусы, эксцентриситет, уравнения директрис, простейшие (или канонические) уравнения гиперболы; чертеж.

5.3. Парабола: определение, фокус, директриса, вершина, параметр, ось симметрии, простейшие (или канонические) уравнения параболы; чертеж.

Примечание к 4.1, 4.2, 4.3: Для каждой линии 2го порядка уметь описывать построение.


ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ

1.Даны точки: , где N – номер студента по списку.

3) найти расстояние от точки М до плоскости Р.

4. Построить линию второго порядка, заданную своим каноническим уравнением:

.


ЛИТЕРАТУРА

1. Высшая математика для экономистов - Учебник для вузов под ред. Н.Ш. Кремер и др., - Москва, ЮНИТИ, 2003.

2. Барковський В.В., Барковська Н.В. - Вища математика для економістів – Київ, ЦУЛ, 2002.

3. Суворов И.Ф. - Курс высшей математики. - М., Высшая школа, 1967.

4. Тарасов Н.П. - Курс высшей математики для техникумов. - М.; Наука, 1969.

5. Зайцев И.Л. - Элементы высшей математики для техникумов. - М.; Наука, 1965.

6. Валуцэ Н.Н., Дилигул Г.Д. - Математика для техникумов. - М.; Наука, 1990.

7. Шипачев В.С. - Высшая математика. Учебник для вузов – М.: Высшая школа, 2003.

Лекции по алгебре и геометрии. Семестр 1.

Лекция 17. Парабола.

Глава 17. Парабола.

п.1. Основные определения.

Определение. Параболой называется ГМТ плоскости равноудаленных от одной фиксированной точки плоскости, называемой фокусом, и одной фиксированной прямой, называемой директрисой.

Определение. Расстояние от произвольной точки М плоскости до фокуса параболы называется фокальным радиусом точки М.

Обозначения: F– фокус параболы,r– фокальный радиус точки М,d– расстояние от точки М до директрисыD.

По определению параболы, точка М является точкой параболы тогда и только тогда, когда
.

По определению параболы, его фокус и директриса есть фиксированные объекты, поэтому расстояние от фокуса до директрисы есть величина постоянная для данной параболы.

Определение. Расстояние от фокуса параболы до ее директрисы называется фокальным параметром параболы.

Обозначение:
.

Введем на данной плоскости систему координат, которую мы будем называть канонической для параболы.

Определение. Ось, проведенная через фокус параболы перпендикулярно директрисе называется фокальной осью параболы.

Построим каноническую для параболы ПДСК, см. рис.2.

В качестве оси абсцисс выбираем фокальную ось, направление на которой выбираем от директрисы к фокусу.

Ось ординат проводим через середину отрезка FNперпендикулярно фокальной оси. Тогда фокус имеет координаты
.

п.2. Каноническое уравнение параболы.

Теорема. В канонической для параболы системе координат уравнение параболы имеет вид:

. (1)

Доказательство. Доказательство проведем в два этапа. На первом этапе мы докажем, что координаты любой точки, лежащей на параболе удовлетворяют уравнению (1). На втором этапе мы докажем, что любое решение уравнения (1) дает координаты точки, лежащей на параболе. Отсюда будет следовать, что уравнению (1) удовлетворяют координаты тех и только тех точек координатной плоскости, которые лежат на параболе.

Отсюда и из определения уравнения кривой будет следовать, что уравнение (1) является уравнением параболы.

1) Пусть точка М(х, у) является точкой параболы, т.е.

.

Воспользуемся формулой расстояния между двумя точками на координатной плоскости и найдем по этой формуле фокальный радиус данной точки М:

.

Из рисунка 2 мы видим, что точка параболы не может иметь отрицательной абсциссы, т.к. в этом случае
. Поэтому
и
. Отсюда получаем равенство

.

Возведем обе части равенства в квадрат:

и после сокращения получаем:

.

2) Пусть теперь пара чисел (х, у) удовлетворяет уравнению (1) и пусть М(х, у) – соответствующая точка на координатной плоскости Оху.

Тогда подставляем равенство (1) в выражение для фокального радиуса точки М:

, откуда, по определению параболы, следует, что точка М(х, у) лежит на параболе.

Здесь мы воспользовались тем, что из равенства (1) следует, что
и, следовательно,
.

Теорема доказана.

Определение. Уравнение (1) называется каноническим уравнением параболы.

Определение. Начало канонической для параболы системы координат называется вершиной параболы.

п.3. Свойства параболы.

Теорема. (Свойства параболы.)

1. В канонической для параболы системе координат, в полосе

нет точек параболы.

2. В канонической для параболы системе координат вершина параболы О(0; 0) лежит на параболе.

3. Парабола является кривой, симметричной относительно фокальной оси.

Доказательство. 1, 2) Сразу же следует из канонического уравнения параболы.

3) Пусть М(х, у) – произвольная точка параболы. Тогда ее координаты удовлетворяют уравнению (1). Но тогда координаты точки
также удовлетворяют уравнению (1), и, следовательно, эта точка также является точкой параболы, откуда и следует утверждение теоремы.

Теорема доказана.

п.4. Построение параболы.

В силу симметрии достаточно построить параболу в первой четверти, где она является графиком функции

,

а затем отобразить полученный график симметрично относительно оси абсцисс.

Строим график этой функции, учитывая, что данная функция является возрастающей на промежутке
.

п.5. Фокальный параметр гиперболы.

Теорема. Фокальный параметр параболы равен длине перпендикуляра к ее оси симметрии, восстановленного в фокусе параболы до пересечения с параболой.

Доказательство. Так как точка
является точкой пересечения параболы
с перпендикуляром
(см. рис.3), то ее координаты удовлетворяют уравнению параболы:

.

Отсюда находим
, откуда и следует утверждение теоремы.

Теорема доказана.

п.6. Единое определение эллипса, гиперболы и параболы.

Используя доказанные свойства эллипса и гиперболы, и определение параболы можно дать единое для всех трех кривых определение.

Определение. ГМТ плоскости, для которых отношение расстояния до одной фиксированной точки плоскости, называемой фокусом, к расстоянию до одной фиксированной прямой, называемой директрисой, есть величина постоянная, называется:

а) эллипсом, если эта постоянная величина меньше 1;

б) гиперболой, если эта постоянная величина больше 1;

в) параболой, если эта постоянная величина равна 1.

Эта постоянная величина, о которой идет речь в определении, называется эксцентриситетом и обозначается , расстояние от данной точки до фокуса есть ее фокальный радиусr, расстояние от данной точки до директрисы обозначается черезd.

Из определения следует, что те точки плоскости, для которых отношение есть величина постоянная образуют эллипс, гиперболу или параболу, взависимости от величины этого отношения.

Если
, то мы получаем эллипс, если
, то мы получаем гиперболу, если
, то мы получаем параболу.

п.7. Касательная к параболе.

Теорема. Пусть
– произвольная точка параболы

.

Тогда уравнение касательной к этой параболе

в точке
имеет вид:

. (2)

Доказательство. Достаточно рассмотреть случай, когда точка касания лежит в первой четверти. Тогда уравнение параболы имеет вид:

и ее можно рассматривать как график функции
.

Воспользуемся уравнением касательной к графику функции
в точке
:

где
– значение производной данной функции в точке
.

Найдем производную функции
и ее значение в точке касания:

,
.

Здесь мы воспользовались тем, что точка касания
является точкой параболы и поэтому ее координаты удовлетворяют уравнению параболы, т.е.

.

Подставляем найденное значение производной в уравнение касательной:

,

откуда получаем:

.

Так как точка
принадлежит параболе, то ее координаты удовлетворяют ее уравнению, т.е.
, откуда получаем

или
.

Отсюда следует

.

Теорема доказана.

п.8. Зеркальное свойство параболы.

Теорема. Касательная к параболе образует равные углы с ее осью симметрии и с фокальным радиусом точки касания.

Доказательство. Пусть
– точка касания,– ее фокальный радиус. Обозначим черезNточку пересечения касательной с осью абсцисс. Ордината точкиNравна нулю и точкаNлежит на касательной, следовательно, ее координаты удовлетворяют уравнению касательной. Подставляя координаты точкиNв уравнение касательной, получаем:

,

откуда абсцисса точки Nравна
.

Рассмотрим треугольник
. Докажем, что он равнобедренный.

Действительно,
. Здесь мы воспользовались равенством, полученным при выводе канонического уравнения параболы:

.

В равнобедренном треугольнике углы при основании равны. Отсюда

, ч.т.д.

Теорема доказана.

Замечание. Доказанную теорему можно сформулировать в виде зеркального свойства параболы.

Луч света, выпущенный из фокуса параболы, после отражения от зеркала параболы, идет параллельно оси симметрии параболы.

Действительно, так как угол падения луча на касательную равен углу отражения от нее, то угол между касательной и отраженным лучом равен углу между касательной и осью абсцисс, откуда следует, что отраженный луч параллелен оси абсцисс.

Замечание. Это свойство параболы получило широкое применение в технике. Если параболу вращать вокруг ее оси симметрии, то получим поверхность, которая называется параболоидом вращения. Если выполнить отражающую поверхность в форме параболоида вращения и в фокусе поместить источник света, то отраженные лучи идут параллельно оси симметрии параболоида. Так устроены прожектора и автомобильные фары. Если же в фокусе поместить устройство принимающее электромагнитные колебания (волны), то они отражаясь от поверхности параболоида попадают в это принимающее устройство. По такому принципу работают спутниковые тарелки.

Существует легенда, что в древности один полководец выстроил своих воинов вдоль берега, придав их строю форму параболы. Солнечный свет, отражаясь от начищенных до блеска щитов воинов собирался в пучок (в фокусе построенной параболы). Таким образом были сожжены корабли неприятеля. Некоторые источники приписывают это Архимеду. Так или иначе, но арабы называли параболоид вращения "зажигательным зеркалом".

Кстати, слово "focus" латинское и в переводе означает огонь, очаг. С помощью "зажигательного зеркала" можно в солнечный день разжечь костер и вскипятить воду. Так что становится понятным происхождение этого термина.

Слово "фокус" означает также некоторый трюк или хитрый прием. Раньше цирк назывался балаганом. Так еще балаганные артисты использовали зеркальное свойство эллипса и зажигая свет в одном фокусе эллипса они разжигали что-нибудь лекговоспламеняющее, помещенное в другом его фокусе. Это зрелище также стали называть фокусом. (Читайте замечательную книжку Виленкина Н.Я. "За страницами учебника математики")

п.9. Полярное уравнение эллипса, гиперболы и параболы.

Пусть на плоскости дана точка F, которую мы назовем фокусом и прямаяD, которую мы назовем директрисой. Проведем через фокус прямую перпендикулярную директрисе (фокальная ось) и введем полярную систему координат. Полюс поместим в фокус, а в качестве полярного луча возьмем ту часть прямой, которая не пересекает директрису (см. рис.5).

Пусть точка М лежит на эллипсе, гиперболе или параболе. В дальнейшем будем называть зллипс гиперболу или параболу просто кривой.

Теорема. Пусть
– полярные координаты точки кривой (эллипса, гиперболы или параболы). Тогда

, (3)

где р – фокальный параметр кривой, – эксцентриситет кривой (для параболы полагаем
).

Доказательство. Пусть Q– проекция точки М на фокальную ось кривой, В – на директрису кривой. Пусть полярный уголточки М является тупым, как на рисунке 5. Тогда

,

где по построению,
– расстояние от точки М до директрисы,и

. (4)

С другой стороны, по единому определению эллипса, гиперболы и параболы отношение

(5)

равно эксцентриситету соответствующей кривой для любой точки М на данной кривой. Пусть точка
– точка пересечения кривой с перпендикуляром к фокальной оси, воостановленного в фокусеFи А – ее проекция на директрису. Тогда

, откуда
. Но
, откуда

и, подставляя в равенство (4), получаем

или, учитывая равенство (5),

откуда и следует доказываемое равенство (3).

Заметим, что равенство (4) остается верным и в случае, когда полярный угол точки М является острым, т.к. в этом случае точкаQнаходится правее фокусаFи

Теорема доказана.

Определение. Уравнение (3) называется полярным уравнением эллипса, гиперболы и параболы.



Понравилась статья? Поделитесь с друзьями!