Как создать адронный коллайдер в домашних условиях. Большой Адронный Коллайдер (БАК или LHC)

Вы уже наверное в курсе, что ученые Европейского центра ядерных исследований (ЦЕРН) обнаружили признаки существования так называемой "божественной частицы" - бозона Хиггса. Давайте посмотрим как это было.

4 июля 2012 учеными из европейского центра ядерных исследований ЦЕРН в Швейцарии обнаружили бозон Хиггса — субатомную частицу, называемую «частицей бога» . Поиски «божественной» частицей велись почти 50 лет. Обнаружить бозон Хиггса удалось во время экспериментов на Большом адронном коллайдере, основные кольца ускорителя которого находятся в 27-километровом подземном тоннеле.



Бозон Хиггса является важнейшим элементом Стандартной модели — физической теории, описывающей взаимодействие всех элементарных частиц: он объясняет наличие такого явления как масса.

Познакомимся поближе с фантастической машиной, стоимостью до 6 млрд долларов, которая обнаружила бозон Хиггса. Добро пожаловать в мир субатомных частиц!

На фотографии: Английский физик-теоретик , член Королевского Общества Эдинбурга Питер В. Хиггс . Это он в 60-е годы предсказал существование бозона Хиггса, который отвечает за массу всех элементарных частиц.

В своих выступлениях Питер заявлял, что если бозон не будет обнаружен, это будет означать, что он и многие другие физики больше не понимают как взаимодействуют элементарные частицы. Частица Хиггса настолько важна, что американский физик, нобелевский лауреат Леон Ледерман назвал ее «частицей бога».

Итак, как уже говорилось, бозон Хиггса был обнаружен во время экспериментов на Большом адронном коллайдере. Он был построен в научно-исследовательском центре Европейского совета ядерных исследований (ЦЕРН) недалеко от Женевы, на границе Швейцарии и Франции. (Фото Anja Niedringhaus | AP):

Большой адронный коллайдер является самой крупной экспериментальной установкой в мире . Это гигантский ускоритель заряженных частиц, предназначенный для разгона протонов и тяжелых ионов. Посмотрим, как он создавался. На фотографии: идет прокладка туннеля под землёй на территории Франции и Швейцарии с длиной окружности почти 27 км, 2000-й год. Глубина нахождения туннеля - от 50 до 175 метров. (Фото Laurent Guiraud | © 2012 CERN):

В строительстве и исследованиях участвовали и участвуют более 10 000 учёных и инженеров из более чем 100 стран, в том числе и из России. На фотографии: идет монтаж торцевого адронного калориметра детектора ATLAS , который как раз и предназначен для поиска бозона Хиггса и «нестандартной физики», в частности темной материи. Всего на Большом адронном коллайдере работают 4 основных и 3 вспомогательных детектора. 12 августа 2003 года. (Фото Maximilien Brice | © 2012 CERN):

Большим коллайдер назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 метров. Объезжать 27-километровый подземный тоннель , предназначенный для размещения кольцевого ускорителя, лучше всего на транспорте, 24 октября 2005 год. (Фото Laurent Guiraud | © 2012 CERN):

Электромагнитный калориметр - прибор, который измеряет энергию частиц. В собранном виде представляет собой стену высотой более 6 метров и 7 метров в ширину. Состоит из 3 300 блоков. (Фото Maximilien Brice | © 2012 CERN):

Идея строительство Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году. На фотографии: кольцевой ускоритель Большого адронного коллайдера, находящейся в подземном тоннеле прямо под Международным женевским аэропортом, 31 мая 2007 года. (Фото Keystone, Martial Trezzini | AP):

Коллайдер называется адронным из-за того, что он ускоряет адроны, то есть тяжелые частицы, состоящие из кварков. 19 октября 2006 года. (Фото Maximilien Brice | © 2012 CERN):

Доставка на место торцевого магнита детектора ATLAS, 29 мая 2007 года. (Фото Claudia Marcelloni | © 2012 CERN):

Основной целью строительства Большого адронного коллайдера было уточнение или опровержение Стандартной модели - теоретической конструкции в физике, формирование которой было завершено в 1960-1970-х годах, описывающей элементарные частицы и три из четырех фундаментальных взаимодействий (кроме гравитационного): сильное, слабое и электромагнитное. Главной задачей Большого адронного коллайдера было экспериментально доказать существование бозона Хиггса. Он был обнаружен 4 июля 2012.

Это составная часть ALICE - одной из шести экспериментальных установок, сооруженных на Большом адронном коллайдере. 3 584 кристаллов вольфрамата свинца. ALICE оптимизирована для изучения столкновений тяжелых ионов. (Фото Maximilien Brice | © 2012 CERN):

Экспериментальная установка ALICE , 2007 год. (Фото Maximilien Brice | © 2012 CERN):

Официальный запуск коллайдера был произведен 10 сентября 2008 года. Данные, поступающие с Большого адронного коллайдера, обрабатываются в 140 дата-центрах, расположенных в 33 странах по всему миру. Ежегодно приходится обрабатывать 15 миллионов гигабайт данных! На фотографии: дата-центр в Женеве, 3 октября 2008 года. (Фото Valentin Flauraud | Reuters):

Детектор ATLAS во время сборки 11 ноября 2005 года. Общие размеры детектора ATLAS: длина - 46 метров, диаметр - 25 метров, общий вес - около 7 000 тонн. На этом детекторе проводят одноименный эксперимент, предназначенный для поиска сверхтяжелых элементарных частиц, в том числе и только что обнаруженного бозона Хиггса. (Фото Maximilien Brice | © 2012 CERN):

Компактный мюонный соленоид - один из двух больших универсальных детекторов элементарных частиц, созданных в Европейском центре ядерных исследований и предназначенный для исследования свойств микромира. Он расположен в подземной пещере внушительных размеров: 53 метров в длину, 27 метров в ширину и 24 метров в высоту. (Фото Maximilien Brice | © 2012 CERN):

Английский физик Питер Хиггс , чьим именем назвали бозон. Рядом с детектором ATLAS, апрель 2008 года. (Фото Claudia Marcelloni | © 2012 CERN):

Наблюдения за бозонами Хиггса не только позволят разобраться в происхождении массы, но и помогут разгадать загадку темной материи. (Фото Michael Hoch | © 2012 CERN):

Сборка Большого адронного коллайдера, 16 июня 2008 года. (Фото Maximilien Brice | © 2012 CERN):

27-километровый подземный тоннель содержит две трубы, которые идут параллельно и пересекаются лишь в местах расположения детекторов.

На фотографии: линейный ускоритель низкоэнергетических частиц Linac2 , расположенный подземном тоннеле. Всего Большой адронный коллайдер имеет шесть главных ускорителей. (Фото Keystone, Martial Trezzin | AP):

Внутренний детектор ATLAS , 23 августа 2006 года. Детектор производит огромное количество информации - около 1 Пбайт = 1 024 Тбайт «сырых» данных в секунду! (Фото Claudia Marcelloni | © 2012 CERN):

В эксперименте ATLAS участвовали около 2 000 ученых и инженеров из 165 лабораторий и университетов из 35 стран, в том числе и из России. (Фото Claudia Marcelloni | © 2012 CERN):

Фантастическая машина - Большой адронный коллайдер. На фотографии: универсальный детектор элементарных частиц - компактный мюонный соленоид . (Фото Maximilien Brice | © 2012 CERN):

В 2009 году стоимость Большого адронного коллайдера оценивалась от 3.2 до 6.4 млрд евро, что делало его самым дорогим научным экспериментом в истории человечества .

На фотографии: один из торцевых калориметров детектора ATLAS, 16 февраля 2007 года. Невероятно большая и сложная конструкция. (Фото Claudia Marcelloni | © 2012 CERN):

Еще одна фотография детектора элементарных частиц - компактного мюонного соленоида , 2007 год.(Фото Maximilien Brice | © 2012 CERN):

Вокруг Большого адронного коллайдера ходило много слухов. Например, что он представляет огромную опасность для человечества, и его запуск может привести к концу света . Поводом стали заявления ученых о том, что в результате столкновений частиц в коллайдере могут якобы образоваться микроскопические черные дыры: после этого появились мнения, что в них может «засосать» всю нашу Землю.

Также, высказывались опасения, что обнаружение бозона Хиггса вызовет бесконтрольный рост массы во Вселенной. Появился даже анекдот: «У физиков есть традиция - один раз в 14 миллиардов лет собираться и запускать адронный коллайдер». Причина слухов оказалась банальной: слова ученых были искажены и неверно интерпретированы журналистами. (Фото Michael Hoch | © 2012 CERN):

Монтаж кольцевого ускорителя в подземном тоннеле, 1 ноября 2007 года. (Фото Maximilien Brice | © 2012 CERN):

Работы внутри пещеры по размещению калориметра (прибора, который измеряет энергию частиц) на детекторе ATLAS, январь 2011 года. (Фото Claudia Marcelloni | © 2012 CERN)

(Фото Claudia Marcelloni/© 2012 CERN):

Еще больше. После окончания сеанса работы в 2012 году коллайдер будет закрыт на долговременный ремонт. Ремонт предположительно будет длиться не менее полутора лет и займёт весь 2013 года. Некоторые ученые из США и Японии предлагают после окончания работы над Большим адронным коллайдером начать работу над новым Очень большим адронным коллайдером.

На фотографии: восемь труб – это магниты, окружающие калориметра. Вся эта огромная конструкция является частью одного из детекторов частиц Большого адронного коллайдера. (Фото Maximilien Brice | © 2012 CERN):

По мнению учёных, обнаруженный бозон Хиггса может пролить свет на происхождение Вселенной и понять, что представляла из себя Вселенная в первые мгновения после Большого Взрыва. (Фото CERN | AP):

Это был рассказ о Большом адронном коллайдере - фантастической машине, стоимостью под 6 млрд. долларов. (Фото Maximilien Brice | © 2012 CERN).

В Европейском центре ядерных исследований (ЦЕРН) в канун его 60-летия побывала Наталия Демина. Она уверена, что после модернизации Большой адронный коллайдер будет готов к новым открытиям .

По туннелю Большого адронного коллайдера на велосипеде я так и не покаталась. Хотя два десятка велосипедов, подвешенных на специальной стойке или прислоненных к стене, явно ждали желающих. Мы как раз были внизу, как вдруг прозвучала сирена. Нашу группу тут же поторопили к лифту, который поднял нас на поверхность, на 90 м вверх. «Если в туннеле начнется пожар, то всё заполнится специальной пеной, в которой можно дышать» , — успокаивал нас сопровождающий, веселый афрошвейцарец Абдилла Абал (Abdillah Abal) . «А вы в ней дышать пробовали?» — спросила я. «Нет!» — ответил он, и все засмеялись.

К зданию, где проходит эксперимент ALICE , через несколько минут приехала пожарная команда. Поиски причины тревоги продолжались около часа — оказалось, что в туннеле сработал датчик уровня кислорода, но вниз нам спуститься уже не дали.


Сам ЦЕРН похож на город, на въезде вас встретит шлагбаум с охранником, который проверит пропуск или бронь в местной гостинице-общежитии. «Раньше было проще , — говорят старожилы. — Всё это появилось только после того, как случилось несколько неприятных инцидентов, в том числе и с зелеными» . Что еще за инциденты? ЦЕРН открыт миру, каждый день на его территорию и в музей («Сфера науки и инноваций») приезжают на экскурсии школьники, студенты и преподаватели, которым рассказывают о прошлом, настоящем и будущем одного из лучших физических центров мира. В ЦЕРНе, кажется, есть всё: и почта, и вкусный недорогой ресторан самообслуживания, и банк, и японская сакура, и русские березы. Почти рай — что для сотрудников, что для посетителей. Но существует и какое-то небольшое количество людей, которым «инциденты» нужны как воздух, и надо уметь этому как-то разумно противостоять.

Само 27-километровое кольцо находится на глубине 50-150 м на территории как Франции, так и Швейцарии. Из центра Женевы в ЦЕРН можно приехать на обычном городском трамвае всего 20-30 минут. Граница между двумя странами почти незаметна, и пока мне не сказали: «Смотри, вот граница» , я бы ее не заметила. Машины и пешеходы едут не останавливаясь. Я и сама ходила туда-сюда, от гостиницы в ЦЕРН, смеясь про себя, что иду на ужин из Франции в Швейцарию.

До приезда в ЦЕРН я не знала о той роли, которую сыграла в строительстве коллайдера российская оборонка, оставшаяся еще со времен СССР. Так, для адронного торцевого калориметра детектора CMS надо было сделать большой объем специальных пластин из латуни. Где взять латунь? Выяснилось, что на Севере, на наших военно-морских предприятиях, скопилось много стреляных гильз, вот их и переплавили.

«В свое время, когда американцы грозили СССР “звездными войнами”, академик Велихов предложил разместить на орбите лазерное оружие. Для лазеров нужны были специальные кристаллы , — рассказал мне Владимир Гаврилов, руководитель эксперимента CMS от Института теоретической и экспериментальной физики (ИТЭФ) . — Для этого проекта было построено несколько заводов. Но потом всё это обвалилось, заводам стало нечего делать. Оказалось, что завод в Богородицке Тульской области может делать кристаллы, которые нужны для CMS» .


ЭКСПЕРИМЕНТЫ ATLAS И CMS

На Большом адронном коллайдере проходит четыре больших эксперимента (ATLAS , CMS , ALICE и LHCb ) и три малых (LHCf , MoEDAL и TOTEM ). Поток данных с четырех больших экспериментов составляет 15 петабайт (15 млн Гбайт) в год, что потребовало бы для записи 20-километровую стопку CD-дисков. Честь открытия бозона Хиггса принадлежит совместно ATLAS и CMS , в составе этих коллабораций много ученых из России. Всего за 60 лет в ЦЕРНе поработало больше тысячи российских специалистов. Детектор ATLAS не может не поражать воображение : 35 м в высоту, 33 м в ширину и почти 50 м в длину. Николай Зимин, сотрудник Объединенного института ядерных исследований в Дубне и этого эксперимента, много лет работающий в ЦЕРНе, сравнил детектор с гигантской матрешкой. «Каждый из верхних слоев детекторов окружает предыдущий, стараясь максимально перекрыть телесный угол. В идеале нужно сделать так, чтобы все вылетающие частицы можно было поймать и чтобы в детекторе были минимизированы “мертвые зоны”» , — подчеркивает он. Каждая из детекторных подсистем, «слои детектора», регистрирует те или иные частицы, рождающиеся при столкновении протонных пучков.

Сколько всего «матрешек» в большой «матрешке-детекторе»? Четыре большие подсистемы, включая мюонную и систему калориметров. В итоге вылетающая частица пересекает около 50 «слоев регистрации» детектора, каждый из которых собирает ту или иную информацию. Ученые определяют траекторию движения этих частиц в пространстве, их заряды, скорости, массу и энергию.

Протонные пучки сталкиваются только в тех местах, которые окружены детекторами, в других же местах коллайдера они летят по параллельным трубам.

Ускоренные и запущенные в Большой адронный коллайдер пучки крутятся в течение 10 часов, за это время они проходят путь в 10 млрд км, что достаточно для путешествия до Нептуна и обратно. Путешествующие с почти световой скоростью протоны делают по 27-километровому кольцу 11 245 оборотов в секунду!

Выходящие из инжектора протоны пропускаются через целый каскад ускорителей, пока не попадут в большое кольцо. «ЦЕРНу, в отличие от российских центров, удалось каждый свой рекордный для своего времени ускоритель использовать как предускоритель для следующего» , — отмечает Николай Зимин . Началось всё с Протонного синхротрона (PS, 1959) , потом был Суперпротонный синхротрон (SPS, 1976) , потом Большой электрон-позитронный коллайдер (LEP, 1989) . Потом LEP «вырезали» из туннеля, чтобы сэкономить деньги, и на его месте построили Большой адронный коллайдер. «Потом LHC “вырежут”, построят суперLHC, уже есть такие идеи. А может, сразу начнут строить FCC (Future Circular Colliders), и появится уже 100-километровый коллайдер на 50 ТэВ» , — продолжает свой рассказ Зимин .

«Почему здесь всё так хорошо организовано с точки зрения безопасности? Потому что внизу много опасностей. Во-первых, само по себе подземелье на 100-метровой глубине. Во-вторых, там очень много криогенной техники, ATLAS работает с двумя магнитными полями. Одно из них образовано центральным сверхпроводящим соленоидом, который надо охлаждать. Второе — самыми крупными в мире магнитными тороидами. Это 25-метровые бублики в одном направлении и 6-метровые — в другом. В каждом из них циркулирует ток в 20 кА. И их тоже надо охлаждать жидким гелием. Запасенной энергии магнитного поля у нас 1,6 ГДж, так что если что-то случится, то последствия разрушения детектора могут быть катастрофическими. В пучковой камере детектора высокий вакуум, и если он нарушится, то может получиться взрыв» , — говорит Николай Зимин .

«Здесь одно из самых пустых (в смысле вакуума) мест в Солнечной системе и одно из самых холодных во Вселенной: 1,9 К (-271,3 °C). Одновременно — одно из самых горячих мест в Галактике» , — так любят говорить в ЦЕРНе, и всё это не преувеличение. На БАКе — крупнейшая система охлаждения в мире, она необходима для поддержания 27-километрового кольца в состоянии сверхпроводимости. В трубах, по которым летят пучки протонов, создан ультравысокий вакуум в 10-12 атмосферы, чтобы избежать столкновений с молекулами газа.



РЕСПУБЛИКИ КОЛЛАБОРАЦИЙ

Работа на Большом адронном коллайдере проходит в условиях постоянной научной конкуренции между коллаборациями. Но бозон Хиггса был открыт одновременно и группой ATLAS, и группой CMS . Владимир Гаврилов (CMS) подчеркивает важность того, что две независимые коллаборации работали над этой задачей одновременно. «Заявление о том, что нашли бозон Хиггса, прозвучало только после того, как обе коллаборации выдали результаты, полученные совершенно разными путями, но указывающие примерно на одни и те же параметры с возможной для двух детекторов точностью. Сейчас эта точность увеличивается, и согласие между результатами еще лучше» . «ЦЕРН и коллаборации — это разные вещи. ЦЕРН — это лаборатория, она дает вам ускоритель, а коллаборации — это отдельные государства ученых со своей конституцей, своими финансами, менеджментом. И люди, которые работают на детекторах, на 90% не сотрудники ЦЕРНа, а сотрудники институтов, их работу оплачивают государства-участники и институты, и ЦЕРН входит в коллаборацию на тех же основаниях, что и прочие институты» , — поясняет Олег Федин из Петербургского института ядерной физики .

БУДУЩЕЕ БОЛЬШОГО АДРОННОГО КОЛЛАЙДЕРА

Уже полтора года коллайдер не работает , инженеры и техники проверяют и заменяют оборудование. «Мы собираемся запустить первые пучки в январе 2015 года. Когда придут первые интересные результаты, я не знаю. Энергия коллайдера будет увеличена почти вдвое — от 7 до 13 ТэВ, — это, по сути, новая машина» , — сообщил нам генеральный директор ЦЕРНа Рольф-Дитер Хойер (Rolf-Dieter Heuer) .

Чего ждет Рольф Хойер от пуска БАКа после модернизации? «Я мечтаю о том, что здесь, на БАКе, нам удастся найти следы частиц темной материи. Это будет замечательно. Но это только мечта! Я не могу гарантировать, что мы это найдем. И, разумеется, мы можем открыть какие-то новые вещи. С одной стороны, есть Стандартная модель — она поразительно хорошо описывает мир. Но ничего не объясняет. Слишком много параметров введено вручную. Стандартная модель — это фантастика. Но вне Стандартной модели — еще большая фантастика» .

В канун 60-летия ЦЕРНа Рольф Хойер отмечает, что все эти годы научный центр жил под девизом: «60 лет науки для мира». По его словам, «ЦЕРН не то чтобы игнорировал, но старался держаться как можно дальше от любых политических вопросов. С самого основания ЦЕРНа, когда между Западом и Востоком было разделение, представители с обеих сторон могли работать здесь вместе. Сегодня у нас работают ученые из Израиля и Палестины, Индии и Пакистана… Мы стараемся держаться вне политики, мы стараемся работать как представители человечества, как нормальные люди» .

В статье использована брошюра LHC The guide. Электронная версия — на сайте

(или БАК) - на данный момент самый большой и мощный ускоритель частиц в мире. Эта махина была запущена в 2008 году, но долго работала на пониженных мощностях. Разберемся, что это такое и зачем нужен большой адронный коллайдер.

История, мифы и факты

Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных страхах и ужасах, связанных с запуском коллайдера.

Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:

Вся Вселенная, конечно, в самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.

А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.

Адроны делятся на барионы и мезоны. Чтобы было проще, скажем, что из барионов состоит почти все известное нам вещество. Упростим еще больше и скажем, что барионы - это нуклоны (протоны и нейтроны, составляющие атомное ядро).

Как работает большой адронный коллайдер

Масштаб очень впечатляет. Коллайдер представляет собой кольцевой туннель, залегающий под землей на глубине ста метров. Длина большого адронного коллайдера составялет 26 659 метров. Протоны, разогнанные до скоростей близких к скорости света, пролетают в подземном круге по территории Франции и Швейцарии. Если говорить точно, то глубина залегания туннеля лежит в пределах от 50 до 175 метров. Для фокусировки и удержания пучков летящих протонов используются сверхпроводящие магниты, их общая длина составляет около 22 километров, а работают они при температуре -271 градусов по Цельсию.

В составе коллайдера 4 гигантских детектора: ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.

Результаты работы большого адронного коллайдера.

Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».

Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц , получены первые данные столкновений на рекордных энергиях , показано отсутствие асимметрии протонов и антипротонов , обнаружены необычные корреляции протонов . Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.

И это при том, что коллайдер еще не разогнали до его максимальной мощности. Сейчас максимальная энергия большого адронного коллайдера – 13 ТэВ (тера электрон-Вольт). Однако, после соответствующей подготовки протоны планируют разогнать до 14 ТэВ . Для сравнения, в ускорителях- предшественниках БАК максимально полученные энергии не превышали 1 ТэВ . Так разгонять частицы мог американский ускоритель Тэватрон из штата Иллинойс. Энергия, достигнутая в коллайдере - далеко не самая Большая в мире. Так, энергия космических лучей, зафиксированных на Земле, превышает энергию частицы, разогнанной в коллайдере в миллиард раз! Так что, опасность большого адронного коллайдера минимальна. Вполне вероятно, что после того, как все ответы будут получены с помощью БАК, человечеству придется строить еще один коллайдер по-мощнее.

Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут . Обращайтесь за помощью, и пусть учеба приносит радость!

Словосочетание «Большой адронный коллайдер» настолько глубоко осело в массмедиа, что о данной установке знает подавляющее количество людей, в числе которых и те, чья деятельность никоим образом не связано с физикой элементарных частиц, и с наукой вообще.

Действительно, столь масштабный и дорогой проект не мог обойти стороной СМИ – кольцевая установка длиной почти в 27 километров, ценою в десяток миллиардов долларов, с которой работает несколько тысяч научных сотрудников со всего мира. Немалую лепту в популярность коллайдера внесла так называемая «частица Бога» или бозон Хиггса, который был успешно разрекламирован, и за который Питер Хиггс получил нобелевскую премию по физике в 2013-м году.

Прежде всего следует отметить, что Большой адронный коллаейдер не строился с нуля, а возник на месте своего предшественника — Большого электрон-позитронного коллайдера (Large Electron-Positron collider или LEP). Работа над 27-микилометровом тоннелем началась в 1983-м году, где в дальнейшем планировалось расположить ускоритель, который будет осуществлять столкновение электроном и позитронов. В 1988-м году кольцевой тоннель сомкнулся, при этом рабочие подошли к проведению тоннеля столь тщательно, что расхождение между двумя концами тоннеля составило всего 1 сантиметр.

Ускоритель проработал до конца 2000-го года, когда достиг своего пика – энергии в 209 ГэВ. После этого начался его демонтаж. За одиннадцать лет своей работы LEP принес физике ряд открытий, в числе которых – открытие W и Z бозонов и их дальнейшие исследования. На основе результатов этих исследований был сделан вывод о сходстве механизмов электромагнитного и слабого взаимодействий, вследствие чего начались теоретические работы по объединению этих взаимодействий в электрослабое.

В 2001-м году на месте электрон-позитронного ускорителя началась постройка Большого адронного коллайдера. Строительство нового ускорителя завершилось в конце 2007-го года. Он располагался на месте LEP – на границе между Францией и Швейцарией, в долине Женевского озера (в 15 км от Женевы), на глубине ста метров. В августе 2008-го года начались испытания коллайдера, а 10-го сентября произошел официальный запуск БАКа. Как и в случае с предыдущим ускорителем, строительство и работа с установкой возглавляется Европейской организацией по ядерным исследованиям – ЦЕРН.

ЦЕРН

Вкратце стоит сказать об организации CERN (Conseil Européenne pour la Recherche Nucléaire). Данная организация выступает в роли крупнейшей мировой лаборатории в области физики высоких энергий. Включает три тысячи постоянных сотрудников, и еще несколько тысяч исследователей и ученых из 80 стран принимают участие в проектах ЦЕРНа.

На данный момент участниками проекта является 22 страны: Бельгия, Дания, Франция, Германия, Греция, Италия, Нидерланды, Норвегия, Швеция, Швейцария, Великобритания – учредители, Австрия, Испания, Португалия, Финляндия, Польша, Венгрия, Чехия, Словакия, Болгария и Румыния – присоединившиеся. Однако, как уже было сказано выше – еще несколько десятков стран так или иначе принимают участие в работе организации, и в частности – на Большом адронном коллайдере.

Как работает Большой адронный коллайдер?

Что такое Большой адронный коллайдер и как он работает – основные вопросы, интересующие общественность. Рассмотрим эти вопросы далее.

Коллайдер (collider) – в переводе с английского означает «тот, кто сталкивает». Задача такой установки состоит в столкновении частиц. В случае с адроннмы коллайдером, в роли частиц выступают адроны – частицы, участвующие в сильном взаимодействии. Таковыми являются протоны.

Получение протонов

Долгий путь протонов берет свое начало в дуоплазматроне – первой ступени ускорителя, куда поступает водород в виде газа. Дуоплазматрон представляет собой разрядную камеру, где через газ проводится электрический разряд. Так водород, состоящий всего из одного электрона и одного протона, теряет свой электрон. Таким образом образуется плазма – вещество, состоящее из заряженных частиц – протонов. Конечно, получить чистую протонную плазму сложно, поэтому далее образованная плазма, включающая также облако молекулярных ионов и электронов, проходит фильтрацию для выделения облака протонов. Под действием магнитов протонная плазма сбивается в пучок.

Предварительный разгон частиц

Новообразованный пучок протонов начинает свой путь в линейном ускорителе LINAC 2, который представляет собой 30-тиметровое кольцо, последовательно увешенное несколькими полыми цилиндрическими электродами (проводниками). Создаваемое внутри ускорителя электростатическое поле градуировано таким образом, что частицы между полыми цилиндрами всегда испытывают ускоряющую силу в направлении следующего электрода. Не углубляясь целиком в механизм разгона протонов на данном этапе, отметим лишь, что на выходе с LINAC 2 физики получают пучок протонов с энергией 50 МэВ, которые уже достигают 31% скорости света. Примечательно, что при этом масса частиц возрастает на 5%.

К 2019-2020-му году планируется замена LINAC 2 на LINAC 4, который будет разгонять протоны до 160 МэВ.

Стоит отметить, что на коллайдере также разгоняют ионы свинца, которые позволят изучить кварк-глюонную плазму. Их разгоняют в кольце LINAC 3, аналогичном LINAC 2. В дальнейшем также планируются эксперименты с аргоном и ксеноном.

Далее пакеты протонов поступают в протон-синхронный бустер (PSB). Он состоит из четырех наложенных колец диаметром 50 метров, в которых располагаются электромагнитные резонаторы. Создаваемое ими электромагнитное поле имеет высокую напряженность, и проходящая через него частица получает ускорение в результате разности потенциалов поля. Так спустя всего 1,2 секунды частицы разгоняются в PSB до 91% скорости света и достигают энергии в 1,4 ГэВ, после чего поступают в протонный-синхротрон (PS). Диаметр PS составляет 628 метров и оснащен 27 магнитами, направляющими пучок частиц по круговой орбите. Здесь частиц протоны достигают 26 ГэВ.

Предпоследним кольцом для разгона протонов служит Суперпротонный-синхротрон (SPS), длина окружности которого достигает 7 километров. Будучи оснащенным 1317-ю магнитами SPS разгоняет частицы до энергии в 450 ГэВ. Спустя примерно 20 минут пучок протонов попадает в основное кольцо – Большой адронный коллайдер (LHC).

Разгон и столкновение частиц в LHC

Переходы между кольцами ускорителей происходят посредством электромагнитных полей, создаваемых мощными магнитами. Основное кольцо коллайдеро состоит из двух параллельных линий, в которых частицы движутся по кольцевой орбите в противоположном направлении. За сохранение круговой траектории частиц и направление их в точки столкновения отвечают около 10 000 магнитов, масса некоторых из них достигает 27 тонн. Во избежание перегрева магнитов используется контур гелия-4, по которому протекает примерно 96 тонн вещества при температуре -271,25 ° С (1,9 К). Протоны достигают энергии в 6,5 ТэВ (то есть энергия столкновения – 13 ТэВ), при этом их скорость на 11 км/ч меньше скорости света. Таким образом за секунду пучок протонов проходит большое кольцо коллайдера 11 000 раз. Прежде, чем произойдет столкновение частиц, они будут циркулировать по кольцу от 5 до 24 часов.

Столкновение частиц происходит в четырех точках основного кольца LHC, в которых располагаются четыре детектора: ATLAS, CMS, ALICE и LHCb.

Детекторы Большого адронного коллайдера

ATLAS (A Toroidal LHC ApparatuS)

— является одним из двух детекторов общего назначения на Большом адронном коллайдере (LHC). Он исследует широкий спектр физики: от поиска бозона Хиггса до частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент CMS, ATLAS использует иные технические решения и другую конструкцию магнитной системы.

Пучки частиц из LHC сталкиваются в центре детектора ATLAS, образуя встречные обломки в виде новых частиц, которые вылетают из точки столкновения во всех направлениях. Шесть различных детектирующих подсистем, расположенных в слоях вокруг точки столкновения, записывают пути, импульс и энергию частиц, позволяя их индивидуально идентифицировать. Огромная система магнитов искривляет пути заряженных частиц, так что их импульсы можно измерить.

Взаимодействия в детекторе ATLAS создают огромный поток данных. Чтобы обработать эти данные, ATLAS использует расширенную «триггерную» систему, позволяющую сообщать детектору, какие события записывать, а какие игнорировать. Затем для анализа зарегистрированных событий столкновения используются сложные системы сбора данных и вычисления.

Детектор имеет высоту 46 метров и ширину – 25 метров, при этом его масса составляет 7 000 тонн. Эти параметры делает ATLAS самым большим детектором частиц, когда-либо созданным. Он находится в тоннеле на глубине в 100 м вблизи главного объекта ЦЕРН, недалеко от деревни Мейрин в Швейцарии. Установка состоит из 4 основных компонентов:

  • Внутренний детектор имеет цилиндрическую форму, внутреннее кольцо находится всего в нескольких сантиметрах от оси проходящего пучка частиц, а внешнее кольцо имеет диаметр в 2,1 метра и длину 6,2 метра. Он состоит из трех различных систем датчиков, погруженных в магнитное поле. Внутренний детектор измеряет направление, импульс и заряд электрически заряженных частиц, образующихся при каждом протон-протонном столкновении. Основные элементы внутреннего детектора: пиксельный детектор (Pixel Detector), полупроводниковая система слежения (Semi-Conductor Tracker, SCT) и трековый детектор переходного излучения (Transition radiation tracker, TRT).

  • Калориметры измеряют энергию, которую частица теряет, когда проходит через детектор. Он поглощает частицы, возникающие при столкновении, тем самым фиксирую их энергию. Калориметры состоят из слоев «поглощающего» материала с высокой плотностью — свинца, чередующегося со слоями «активной среды» — жидкого аргона. Электромагнитные калориметры измеряют энергию электронов и фотонов при взаимодействии с веществом. Адронные калориметры измеряют энергию адронов при взаимодействии с атомными ядрами. Калориметры могут останавливать большинство известных частиц, кроме мюонов и нейтрино.

LAr (Liquid Argon Calorimeter) — калориметр ATLAS

  • Мюонный спектрометр – состоит из 4000 индивидуальных мюонных камер, использующих четыре различные технологи, позволяющие, идентифицировать мюоны и измерить их импульсы. Мюоны обычно проходят через внутренний детектор и калориметр, а потому требуется наличие мюонного спектрометра.

  • Магнитная система ATLAS изгибает частицы вокруг различных слоев детекторных систем, что упрощает отслеживание треков частиц.

В эксперименте ATLAS (февраль 2012 г.) работают более 3 000 ученых из 174 институтов из 38 стран.

CMS (Compact Muon Solenoid)

— является детектором общего назначения на Большом адронном коллайдере (LHC). Как и ATLAS, имеет широкую физическую программу, начиная от изучения стандартной модели (включая бозон Хиггса) до поиска частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент ATLAS, CMS использует иные технические решения и другую конструкцию магнитной системы.

Детектор CMS построен вокруг огромного магнита соленоида. Представляет собой цилиндрическую катушку сверхпроводящего кабеля, которая генерирует поле в 4 тесла, примерно в 100 000 раз превышающее магнитное поле Земли. Поле ограничено стальным «хамутом», который является массивнейшим компонентом детектора, масса которого — 14 000 тонн. Полный детектор имеет длину — 21 м, ширину — 15 м и высоту — 15 м. Установка состоит из 4 основных компонентов:

  • Магнит соленоида – крупнейший магнит в мире, который служит для изгиба траектории заряженных частиц, вылетающих из точки столкновения. Искажение траектории позволяет различить положительно и отрицательно заряженные частицы (т.к. они изгибаются в противоположных направлениях), а также измерить импульс, величина которого зависит от кривизны траектории. Огромные размеры соленоида позволяют расположить трекер и калориметры внутри катушки.
  • Кремниевый трекер — состоит из 75 миллионов отдельных электронных датчиков, расположенных в концентрических слоях. Когда заряженная частица пролетает через слои трекера, она передает часть энергии каждому слою, объединение этих точек столкновения частицы с различными слоями позволяет в дальнейшем определить ее траекторию.
  • Калориметры – электронный и адронный см. калориметры ATLAS.
  • Саб-детекторы – позволяют детектировать мюоны. Представлены 1 400 мюонными камерами, которые слоями располагаются вне катушки, чередуясь с металлическими пластинами «хамута».

Эксперимент CMS является одним из крупнейших международных научных исследований в истории, в котором принимают участие 4300 человек: физики в области элементарных частиц, инженеры и техники, студенты и вспомогательный персонал из 182 институтов, 42 стран (февраль 2014 года).

ALICE (A Large Ion Collider Experiment)

— представляет собой детектор тяжелых ионов на кольцах большого адронного коллайдера (LHC). Он предназначен для изучения физики сильно взаимодействующего вещества при экстремальных плотностях энергии, где образуется фаза вещества, называемая кварк-глюонной плазмой.

Вся обычная материя в сегодняшней вселенной состоит из атомов. Каждый атом содержит ядро, состоящее из протонов и нейтронов (кроме водорода, не имеющего нейтронов), окруженного облаком электронов. Протоны и нейтроны, в свою очередь, состоят из кварков, связанных вместе с другими частицами, называемыми глюонами. Никакой кварк никогда не наблюдался изолированно: кварки, а также глюоны, по-видимому, постоянно связаны вместе и ограничены внутри составных частиц, таких как протоны и нейтроны. Это называется конфайнментом.

Столкновения в LHC создают температуры более чем в 100 000 раз более горячее, чем в центре Солнца. Колллайдер обеспечивает столкновения между свинцовыми ионами, воссоздавая условия, аналогичные тем, которые имели место сразу после Большого Взрыва. В этих экстремальных условиях протоны и нейтроны «расплавляются», освобождая кварки от их связей с глюонами. Это и есть кварк-глюонная плазма.

В эксперименте ALICE используется детектор ALICE массой 10 000 тонн, 26 м в длину, 16 м в высоту и 16 м в ширину. Устройство состоит из трех основных комплектов компонентов: трэкинговых устройств, калориметров и детекторов-идентификаторов частиц. Также его разделяют на 18 модулей. Детектор находится в тоннеле на глубине 56 м под, недалеко от деревни Сент-Денис-Пуйи во Франции.

Эксперимент насчитывает более 1 000 ученых из более чем 100 институтов физики в 30 странах.

LHCb (Large Hadron Collider beauty experiment)

– в рамках эксперимента проводится исследование небольших различий между веществом и антиматерией, изучая тип частицы, называемый «бьюти-кварк» или «b-кварк».

Вместо того, чтобы окружать всю точку столкновения с помощью закрытого детектора, как ATLAS и CMS, эксперимент LHCb использует серию сабдетекторов для обнаружения преимущественно передних частиц — тех, которые были направлены вперед в результате столкновения в одном направлении. Первый сабдетектор установлен близко к точке столкновения, а остальные — один за другим на расстоянии 20 метров.

На LHC создается большое изобилие различных типов кварков, прежде чем они быстро распадаются на другие формы. Чтобы поймать b-кварки, для LHCb были разработаны сложные движущиеся следящие детекторы, расположенные вблизи движения пучка частиц по коллайдеру.

5600-тонный детектор LHCb состоит из прямого спектрометра и плоских детекторов. Это 21 метр в длину, 10 метров в высоту и 13 метров в ширину, он находится на глубине 100 метров под землей. Около 700 ученых из 66 различных институтов и университетов вовлечены в эксперимент LHCb (октябрь 2013 г.).

Другие эксперименты на коллайдере

Помимо вышеперечисленных экспериментов на Большом адронном коллайдере есть другие два эксперимента с установками:

  • LHCf (Large Hadron Collider forward) — изучает частицы, выброшенные вперед после столкновения пучков частиц. Они имитируют космические лучи, исследованием которых и занимаются ученые в рамках эксперимента. Космические лучи — это естественные заряженные частицы из космического пространства, которые постоянно бомбардируют земную атмосферу. Они сталкиваются с ядрами в верхней атмосфере, вызывая каскад частиц, которые достигают уровня земли. Изучение того, как столкновения внутри LHC вызывают подобные каскады частиц, поможет физикам интерпретировать и откалибровать крупномасштабные эксперименты с космическими лучами, которые могут охватывать тысячи километров.

LHCf состоит из двух детекторов, которые расположены вдоль LHC, на расстоянии 140 метров с обеих сторон он точки столкновения ATLAS. Каждый из двух детекторов весит всего 40 килограммов и имеет размеры 30 см в длину, 80 см в высоту и 10 см в ширину. В эксперименте LHCf участвуют 30 ученых из 9 институтов в 5 странах (ноябрь 2012 г.).

  • TOTEM (Total Cross Section, Elastic Scattering and Diffraction Dissociation) – эксперимент с самой длинной установкой на коллайдере. Его задачей является исследование самих протонов, путем точного измерения протонов, возникающих при столкновениях под малыми углами. Эта область известна как «прямое» направление и недоступна другим экспериментам LHC. Детекторы TOTEM распространяются почти на полкилометра вокруг точки взаимодействия CMS. TOTEM имеет почти 3 000 кг оборудования, в том числе четыре ядерных телескопа, а также 26 детекторов типа «римский горшок». Последний тип позволяет расположить детекторы максимально близко к пучку частиц. Эксперимент TOTEM включает около 100 ученых из 16 институтов в 8 странах (август 2014 года).

Зачем нужен Большой адронный коллайдер?

Крупнейшая международная научная установка исследует широкий спектр физических задач:

  • Изучение топ-кварков. Данная частица является не только самым тяжелым кварком, но и самой тяжелой элементарной частицей. Исследование свойств топ-кварка также имеет смысл, потому что он является инструментом для исследования .
  • Поиск и изучение бозона Хиггса. Хотя ЦЕРН утверждает, что бозон Хиггса был уже обнаружен (в 2012-м году), пока о его природе известно совсем немного и дальнейшие исследования могли бы внести большую ясность в механизм его работы.

  • Изучение кварк-глюонной плазмы. При столкновениях ядер свинца на больших скоростях – в коллайдере образуется . Ее исследование может принести результаты, полезные как для ядерной физики (улучшение теории сильных взаимодействий), так и для астрофизики (изучение Вселенной в ее первые моменты существования).
  • Поиск суперсимметрии. Это исследование направлено на опровержение или доказательство «суперсимметрии» — теории, согласно которой любая элементарная частица имеет более тяжелого партнера, называемого «суперчастицей».
  • Исследование фотон-фотонных и фотон-адронных столкновений. Позволит улучшить понимание механизмов процессов подобных столкновений.
  • Проверка экзотических теорий. К этой категории задач относятся самые нетрадиционные – «экзотические», например, поиск параллельных вселенных посредством создания мини-черных дыр.

Кроме этих задач, существует еще множество других, решение которых также позволит человечеству понимать природу и окружающий нас мир на более качественном уровне, что в свою очередь откроет возможности для создания новых технологий.

Практическая польза Большого адронного коллайдера и фундаментальной науки

Прежде всего, следует отметить, что фундаментальные исследования привносят вклад в фундаментальную науку. Применением же этих знаний занимается прикладная наука. Сегмент общества, не осведомленный в пользе фундаментальной науки зачастую не воспринимает открытие бозона Хиггса или создание кварк-глюонной плазмы, как нечто значимое. Связь подобных исследований с жизнью рядового человека – неочевидно. Рассмотрим краткий пример с атомной энергетикой:

В 1896-м году французский физик Антуан Анри Беккерель открыл явление радиоактивности. Долгое время считалось, что к ее промышленному использованию человечество перейдет нескоро. Всего за пять лет до запуска первого в истории ядерного реактора великий физик Эрнест Резерфорд, собственно открывший атомное ядро в 1911-м году, говорил, что атомная энергия никогда не найдет своего применения. Переосмыслить свое отношение к энергии, заключенной в ядре атома, специалистам удалось в 1939 году, когда немецкие ученые Лиза Мейтнер и Отто Ган обнаружили, что ядра урана при облучении их нейтронами делятся на две части с выделением огромного количества энергии - ядерной энергии.

И лишь после этого последнего звенья ряда фундаментальных исследований в игру вступила прикладная наука, которая на основе этих открытий изобрела устройство для получения ядерной энергии – атомный реактор. Масштаб открытия можно оценить, ознакомившись с долей выработки электроэнергии атомными реакторами. Так в Украине, например, на АЭС выпадает 56% выработки электроэнергии, а во Франции и вовсе – 76%.

Все новые технологии основываются на тех или иных фундаментальных знаниях. Приведем еще пару кратких примеров:

  • В 1895-м году Вильгельм Конрад Рентген заметил, что под действием рентгеновского излучения фотопластинка затемняется. Сегодня рентгенография – одно из наиболее применяемых исследований в медицине, позволяющая изучить состояние внутренних органов и обнаружить инфекции и опухали.
  • В 1915-м году Альберт Эйнштейн предложил свою . Сегодня эта теория учитывается при работе GPS спутников, которые определяют местоположение объекта с точностью до пары метров. GPS применяется в сотовой связи, картографии, мониторинге транспорта, но в первую очередь – в навигации. Погрешность спутника, не учитывающего ОТО, с момента запуска росла бы на 10 километров в день! И если пешеход может воспользоваться разумом и бумажной картой, то пилоты авиалайнера попадут в затруднительную ситуацию, так как ориентироваться по облакам – невозможно.

Если сегодня практическое применение открытиям, произошедшим на LHC еще не найдено – это не значит, что ученые «возятся на коллайдере зря». Как известно, человек разумный всегда намеревается получить максимум практического применения из имеющихся знаний, а потому знания о природе, накопленные в процессе исследования на БАК, определенно найдут свое применение, рано или поздно. Как уже было продемонстрировано выше – связь фундаментальных открытий и использующих их технологий иногда может быть совсем не очевидна.

Напоследок, отметим так называемые косвенные открытия, которые не ставятся как изначальные цели исследования. Они встречаются довольно часто, так как для совершения фундаментального открытия, обычно, требуется внедрение и использование новых технологий. Так развитие оптики получило толчок от фундаментальных исследований космоса, строящихся на наблюдениях астрономов через телескоп. В случае с ЦЕРН – так возникла повсеместно применяемая технология – Интернет, проект, предложенный Тимом Бернерсом-Ли в 1989-м году для облегчения поиска данных организации ЦЕРН.

Большой адронный коллайдер, работающий в Швейцарии – самый известный ускоритель в мире. Этому немало способствовала шумиха, поднятая мировой общественностью и журналистами вокруг опасности этого научного проекта. Многие полагают, что это единственный коллайдер в мире, но это далеко не так. Кроме закрытого в США теватрона, на данный момент в мире существует пять работающих коллайдеров.

В Америке, в Брукхейвенской лаборатории работает ускоритель РКТИ (релятивистский коллайдер тяжелых ионов), начавший работу в 2000 году. Для его ввода в строй потребовалось вложение 2 миллиардов $. Кроме чисто теоретических экспериментов, физики, работающие на РКТИ (RHIC), разрабатываю вполне практические проекты. Среди них:

  • устройство для диагностирования и лечения рака (используются направленные ускоренные протоны);
  • использование лучей тяжелых ионов для создания фильтров на молекулярном уровне;
  • разработка все более эффективных устройств для аккумулирования энергии, что открывает новые перспективы в использовании солнечной энергии.

Подобный этому, ускоритель тяжелых ионов, строится в России в Дубне. На этом коллайдере NICA российские физики намерены исследовать кварк-глюонную плазму.

Сейчас российские ученые проводят исследования в ИЯФ, где расположены сразу два коллайдера – ВЭПП-4М и ВЭПП-2000. Их бюджет составляет 0,19 млрд. $ - для первого и 0,1 – для второго. Первые испытания на ВЭПП-4М начались еще в 1994 году. Здесь разработана методика измерения массы наблюдаемых элементарных частиц с самой высокой точностью во всем мире. Кроме того, ИЯФ единственный в мире институт, зарабатывающий на фундаментальные исследования в области физики собственными силами. Ученые этого института разрабатывают и продают оборудование для ускорителей другим государствам, желающим иметь свои экспериментальные установки, но не имеющих таких наработок.

В 1999 году был запущен коллайдер Дафне в лаборатории Фраскатти (Италия), стоимость его была примерно 1/5 млрд. дол., а максимальная мощность – 0, 51 ТэВ. Это был один из первых ускорителей высоких энергий, с помощью только одного эксперимента на нем было получено более ста тысяч гиперионов (частиц атома). За это Дафне окрестили фабрикой частиц или ф-фабрикой.

За два года до запуска БАК, в 2006 году Китай запустил собственный коллайдер ВЕРС II, с мощностью 2,5 ТэВ. Стоимость этого строительства была рекордно низкой и составила 0,08 млрд. дол. Но для бюджета этой развивающейся страны такая сума была немалой; правительство Китая выделило эти средства, понимая, что без развития фундаментальных отраслей науки невозможно развитие современной промышленности. Тем более актуально вложение средств в эту область экспериментальной физики в свете истощения природных ресурсов и увеличивающейся потребности в энергоносителях.

Ваш комментарий



Понравилась статья? Поделитесь с друзьями!