Как убедиться что вокруг заряженного тела существует. Электрическое поле

Как известно, характерная особенность проводников заключается в том, что в них всегда имеется большое количество подвижных носителей зарядов, т. е. свободных электронов или ионов.

Внутри проводника эти носители зарядов, вообще говоря, движутся хаотически. Однако если в проводнике есть электрическое поле, то на хаотическое движение носителей накладывается их упорядоченное перемещение в сторону действия электрических сил. Это направленное перемещение подвижных носителей зарядов в проводнике под действием поля всегда происходит так, что поле внутри проводника ослабляется. Поскольку число подвижных носителей зарядов в проводнике велико металла содержится порядка свободных электронов), их перемещение под действием поля происходит до тех пор, пока поле внутри проводника не исчезнет совсем. Выясним подробнее, как это происходит.

Пусть металлический проводник, состоящий из двух плотно прижатых друг к другу частей, помещен во внешнее электрическое поле Е (рис. 15.13). На свободные электроны в этом проводнике действуют силы поля направленные влево, т. е. противоположно вектору напряженности поля. (Объясните, почему.) В результате смещения электронов под действием этих сил на правом конце проводника возникает избыток положительных зарядов, а на левом - избыток электронов. Поэтому между концами проводника возникает внутреннее поле (поле смещенных зарядов), которое на рис. 15.13 изображено пунктирными линиями. Внутри

проводника это поле направлено навстречу внешнему и на каждый оставшийся внутри проводника свободный электрон действует с силой направленной вправо.

Сначала сила больше силы и их равнодействующая направлена влево. Поэтому электроны внутри проводника продолжают смещаться влево, а внутреннее поле постепенно усиливается. Когда на левом конце проводника скопится достаточно много свободных электронов (они составляют все же ничтожную долю от их общего числа), сила сравняется с силой и их равнодействующая будет равна нулю. После этого оставшиеся внутри проводника свободные электроны будут двигаться уже только хаотически. Это и означает, что напряженность поля внутри проводника равна нулю, т. е. что поле внутри проводника исчезло.

Итак, когда проводник попадает в электрическое поле, то он электризуется так, что на одном его конце возникает положительный заряд, а на другом - такой же по величине отрицательный заряд. Такая электризация называется электростатической индукцией или электризацией влиянием. Отметим, что в этом случае перераспределяются только собственные заряды проводника. Поэтому, если такой проводник удалить из поля, его положительные и отрицательные заряды вновь равномерно распределятся по всему объему проводника и все его части станут электрически нейтральными.

Легко убедиться, что на противоположных концах проводника, наэлектризованного влиянием, действительно имеются равные количества зарядов противоположного знака. Разделим этот проводник на две части (рис. 15.13) и затем удалим их из поля. Соединив каждую из частей проводника с отдельным электроскопом, мы убедимся, что они заряжены. (Подумайте, как можно показать, что эти заряды имеют противоположные знаки.) Если снова соединить обе части так, чтобы они составляли один проводник, то мы обнаружим, что заряды нейтрализуются. Значит, до соединения заряды на обеих частях проводника были одинаковы по величине и противоположны по знаку.

Время, в течение которого происходит электризация проводника влиянием, настолько мало, что равновесие зарядов на проводнике возникает практически мгновенно. При этом напряженность, а значит, и разность потенциалов внутри проводника всюду становятся равными нулю. Тогда для любых двух точек внутри проводника справедливо соотношение

Следовательно, при равновесии зарядов на проводнике потенциал всех его точек одинаков. Это относится и к проводнику, наэлектризованному соприкосновением с заряженным телом. Возьмем проводящий шар и поместим в точку М на его поверхности заряд (рис. 15.14). Тогда в проводнике на короткое время возникает поле, а в точке М - избыток заряда. Под действием сил этого поля

заряд равномерно распределяется по всей поверхности шара, что приводит к исчезновению поля внутри проводника.

Итак, независимо от того, каким способом наэлектризован проводник, при равновесии зарядов поля внутри проводника нет, а потенциал всех точек проводника одинаков (как внутри, так и на поверхности проводника). В то же время поле вне наэлектризованного проводника, конечно, существует, а его линии напряженности нормальны (перпендикулярны) к поверхности проводника. Это видно из следующих рассуждений. Если бы линия напряженности была где-либо наклонна к поверхности проводника (рис. 15.15), то силу действующую на заряд в этой точке поверхности, можно было разложить на составляющие Тогда под действием силы направленной вдоль поверхности, заряды двигались бы по поверхности проводника, чего при равновесии зарядов не должно быть. Следовательно, при равновесии зарядов на проводнике его поверхность является эквипотенциальной поверхностью.

Если поле внутри заряженного проводника отсутствует, то объемная плотность зарядов в нем (количество электричества в единице объема) всюду должна равняться нулю.

Действительно, если бы в каком-либо малом объеме проводника находился заряд то вокруг этого объема существовало бы электрическое поле.

В теории поля доказано, что при равновесии весь избыточный заряд наэлектризованного проводника расположен на его поверхности. Это означает, что всю внутреннюю часть этого проводника можно удалить и в расположении зарядов на его поверхности ничего не изменится. Например, если одинаково наэлектризовать два равных по размерам уединенных металлических шара, один из которых сплошной, а другой полый, то поля вокруг шаров будут одинаковы. На опыте это впервые доказал М. Фарадей.

Итак, если полый проводник поместить в электрическое поле или наэлектризовать соприкосновением с заряженным телом, то

при равновесии зарядов поле внутри полости существовать не будет. На этом основана электростатическая защита. Если какой-либо прибор поместить в металлический футляр, то внешние электрические поля проникать внутрь футляра не будут, т. е. работа и показания такого прибора не будут зависеть от наличия и изменения внешних электрических полей.

Выясним теперь, как располагаются заряды по внешней поверхности проводника. Возьмем металлическую сетку на двух изолирующих ручках, к которой приклеены бумажные листочки (рис. 15.16). Если зарядить сетку и затем растянуть ее (рис. 15.16, а), то листочки с обеих сторон сетки разойдутся. Если же согнуть сетку кольцом, то отклоняются только листочки с внешней стороны сетки (рис. 15.16, б). Придавая сетке различный изгиб, можно убедиться, что заряды располагаются только на выпуклой стороне поверхности, причем в тех местах, где поверхность больше искривлена (меньше радиус кривизны), скапливается больше зарядов.

Итак, заряд распределяется равномерно только по поверхности проводника сферической формы. При произвольной форме проводника поверхностная плотность зарядов а, а значит, и напряженность поля вблизи поверхности проводника больше там, где больше кривизна поверхности. Особенно велика плотность зарядов на выступах и на остриях проводника (рис. 15.17). В этом можно убедиться, касаясь пробником различных точек наэлектризованного проводника, а затем электроскопа. Наэлектризованный проводник, имеющий заострения или снабженный острием, быстро теряет свой заряд. Поэтому проводник, на котором заряд необходимо сохранять долгое время, не должен иметь заострений.

(Подумайте, почему стержень электроскопа заканчивается шариком.)

Электрическое поле - особая форма поля, существующая вокруг тел или частиц, обладающих электрическим зарядом, а также в свободном виде в электромагнитных волнах. Электрическое поле непосредственно невидимо, но может наблюдаться по его действию и с помощью приборов. Основным действием электрического поля является ускорение тел или частиц, обладающих электрическим зарядом.

Электрическое поле можно рассматривать как математическую модель, описывающую значение величины напряженности электрического поля в данной точке пространства. Дуглас Джанколи писал так: «cледует подчеркнуть, что поле не является некой разновидностью вещества; правильнее сказать, это чрезвычайно полезная концепция… Вопрос о «реальности» и существовании электрического поля на самом деле - это философский, скорее даже метафизический вопрос. В физике представление о поле оказалось чрезвычайно полезным - это одно из величайших достижений человеческого разума.»

Электрическое поле является одной из составляющих единого электромагнитного поля и проявлением электромагнитного взаимодействия.

Физические свойства электрического поля

В настоящее время наука ещё не достигла понимания физической сущности таких полей, как электрическое, магнитное и гравитационное, а также их взаимодействия друг с другом. Пока еще только описаны результаты их механического воздействия на заряженные тела, а также существует теория электромагнитной волны, описываемая Уравнениями Максвелла.

Эффект поля - Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.

Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляюшая силы Лоренца).

Наблюдение электрического поля в быту

Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Натрите какой-нибудь диэлектрик о шерсть или что-нибудь подобное, например, пластиковую ручку о собственные волосы. На ручке создастся заряд, а вокруг - электрическое поле. Заряженная ручка будет притягивать к себе мелкие обрывки бумаги. Если натирать о шерсть предмет бо́льшей ширины, например, резиновую ленту, то в темноте можно будет видеть мелкие искры, возникающие вследствие электрических разрядов.

Электрическое поле часто возникает возле телевизионного экрана при включении или выключении телеприёмника. Это поле можно почувствовать по его действию на волоски на руках или лице.

Электрическое поле – это одна из теоретических концепций, объясняющих явления взаимодействия меж заряженными телами. Субстанцию нельзя пощупать, но можно доказать существование, что и было сделано в ходе сотен натурных экспериментов.

Взаимодействие заряженных тел

Привыкли считать устаревшие теории утопией, между тем мужи науки вовсе не глупые. Сегодня смешно звучит учение Франклина об электрической жидкости, видный физик Эпинус посвятил целый трактат. Закон Кулона открыт экспериментально на основе крутильных весов, аналогичными методами пользовался Георг Ом при выводе известного . Но что лежит за всем этим?

Должны признаться, электрическое поле попросту является очередной теорией, не уступающей франклиновой жидкости. Сегодня известно о субстанции два факта:

Изложенные факты заложили базис современного представления о взаимодействиях в природе, выступают опорой теории близкодействия. Помимо нее учеными выдвигались другие предположения о сути наблюдаемого явления. Теория близкодействия подразумевает мгновенное распространение сил без участия эфира. Поскольку явления пощупать труднее, нежели электрическое поле, многие философы окрестили подобные взгляды идеалистическими. В нашей стране они успешно критиковались советской властью, поскольку, как известно, большевики недолюбливали Бога, клевали по каждому удобному случаю идею существования чего-либо, «зависимого от наших представлений и поступков» (попутно изучая сверхвозможности Джуны).

Франклин объяснял положительные, отрицательные заряды тел избытком, недостаточностью электрической жидкости.

Характеристики электрического поля

Электрическое поле описывается векторной величиной – напряженностью. Стрелка, направление которой совпадает с силой, действующей в точке на единичный положительный заряд, длина пропорциональна модулю силы. Физики находят удобным пользоваться потенциалом. Величина скалярная, проще представить на примере температуры: в каждой точке пространства некоторое значение. Под электрическим потенциалом понимают работу, совершаемую для перемещения единичного заряда из точки нулевого потенциала в данную точку.

Поле, описываемое указанным выше способом, называется безвихревым. Иногда именуют потенциальным. Функция потенциала электрического поля непрерывная, изменяется плавно по протяженности пространства. В результате выделим точки равного потенциала, складывающие поверхности. Для единичного заряда сфера: дальше объект, слабее поле (закон Кулона). Поверхности называют эквипотенциальными.

Для понимания уравнений Максвелла заимейте представление о нескольких характеристиках векторного поля:

  • Градиентом электрического потенциала называется вектор, направление совпадает с наискорейшим ростом параметра поля. Значение тем больше, чем быстрее изменяется величина. Направлен градиент от меньшего значения потенциала к большему:
  1. Градиент перпендикулярен эквипотенциальной поверхности.
  2. Градиент тем больше, чем ближе расположение эквипотенциальных поверхностей, отличающихся друг от друга на заданную величину потенциала электрического поля.
  3. Градиент потенциала, взятый с обратным знаком, является напряженностью электрического поля.

Электрический потенциал. Градиент «взбирается в гору»

  • Дивергенция является скалярной величиной, вычисляемой для вектора напряженности электрического поля. Является аналогом градиента (для векторов), показывает скорость изменения величины. Необходимость во введении дополнительной характеристики: векторное поле лишено градиента. Следовательно, для описания требуется некий аналог – дивергенция. Параметр в математической записи схож с градиентом, обозначается греческой буквой набла, применяется для векторных величин.
  • Ротор векторного поля именуется вихрем. Физически величина равна нулю при равномерном изменении параметра. Если ротор отличен от нуля, возникают замкнутые изгибы линий. У потенциальных полей точечных зарядов по определению вихрь отсутствует. Не обязательно линии напряжённости в этом случае прямолинейны. Просто изменяются плавно, не образуя вихрей. Поле с ненулевым ротором часто называют соленоидальным. Часто применяется синоним – вихревое.
  • Полный поток вектора представлен интегралом по поверхности произведения напряженности электрического поля на элементарную площадь. Предел величины при стремлении емкости тела к нулю представляет собой дивергенцию поля. Понятие предела изучается старшими классами средней школы, ученик может составить некоторое представление на предмет обсуждения.

Уравнения Максвелла описывают изменяющееся во времени электрическое поле и показывают, что в таких случаях возникает волна. Принято считать, одна из формул указывает отсутствие в природе обособленных магнитных зарядов (полюсов). Иногда в литературе встретим особый оператор – лапласиан. Обозначается как квадрат набла, вычисляется для векторных величин, представляет дивергенцией градиента поля.

Пользуясь означенными величинами, математики и физики рассчитывают электрические и магнитные поля. Например, доказано: скалярный потенциал может быть только у безвихревого поля (точечных зарядов). Придуманы другие аксиомы. Вихревое поле ротора лишено дивергенции.

Подобные аксиомы легко положим в основу описания процессов, происходящих в реальных существующих устройствах. Антигравитационный, вечный двигатель были бы неплохим подспорьем экономике. Если реализовать на практике теорию Эйнштейна никому не удалось, наработки Николы Тесла исследуются энтузиастами. Отсутствуют ротор, дивергенция.

Краткая история развития электрического поля

За постановкой теории последовали многочисленные работы по применению электрического и электромагнитного полей на практике, самой известной из которых в России считают опыт Попова по передачи информации через эфир. Возник ряд вопросов. Стройная теория Максвелла бессильна объяснить явления, наблюдающихся при прохождении электромагнитных волн через ионизированные среды. Планк выдвинул предположение: лучистая энергия испускается дозированными порциями, названными впоследствии квантами. Дифракцию отдельных электронов, любезно демонстрируемую Ютуб в англоязычном варианте, открыли в 1949 году советские физики. Частица одновременно проявляла волновые свойства.

Это говорит нам: современные представление об электрическом поле постоянном и переменном, далеки совершенству. Многие знают Эйнштейна, бессильны объяснить, что отрыл физик. Теория относительности 1915 года связывает электрическое, магнитное поля и тяготение. Правда, формул в виде закона представлено не было. Сегодня известно: существуют частицы, движущееся быстрее, распространения света. Очередной камень в огород.

Системы единиц претерпевали постоянное изменение. Изначально введенная СГС, базирующаяся на наработках Гаусса, не удобна. Первые буквы обозначают базисные единицы: сантиметр, грамм, секунда. Электромагнитные величины добавлены к СГС в 1874 году Максвеллом и Томсоном. СССР в 1948 году страной стала использовать МКС (метр, килограмм, секунда). Конец баталиям положило введение в 60-х годах XX века системы СИ (ГОСТ 9867), где напряженности электрического поля измеряется в В/м.

Использование электрического поля

В конденсаторах происходит накопление электрического заряда. Следовательно, меж обкладками образуется поле. Поскольку емкость напрямую зависит от величины вектора напряженности, с целью повышения параметра пространство заполняется диэлектриком.

Косвенным образом электрические поля применяются кинескопами, люстрами Чижевского, потенциал сетки управляет движением лучей электронных ламп. Несмотря на отсутствие стройной теории, эффекты электрического поля лежат в основе многих изображений.

Вокруг заряда или заряженного тела в пространстве возникает электрическое поле. В этом поле на любой за­ряд действует электростатическая сила Кулона. Полем называет­ся форма материи, передающая силовые взаимодействия между макроскопическими телами или частицами, вхо­дящими в состав вещества. В электростатическом поле осуществ­ляется силовое взаимодействие заряженных тел. Электростатическое поле - стационарное электрическое поле, является частным случаем электрического поля, созданного непод­вижными зарядами.

Электрическое поле характеризуется в каждой точке пространства двумя характеристиками: силовой - вектором электрической на­пряженности и энергетической – потенциалом , являющимся скалярной величиной. Напряженностью данной точки электриче­ского поля называется векторная физическая величина, численно равная и совпадающая по направлению с силой , действующей со стороны поля на единичный положительный заряд , поме­щенный в рассматриваемую точку поля:

Силовой линией электрического поля называется линия, касательные к которой в каждой точке определяют направления векторов напряженности соответствующих точек электрического поля. Число 0силовых линий, проходящих через единицу площа­ди, нормальной к этим линиям, численно равно величине вектора на­пряженности электрического поля в центре этой площади. Линии напряженности электростатического поля начинаются на положительном заряде и уходят в бесконечность для поля, создаваемого этим зарядом. Для поля создаваемого отрицательным зарядом, силовые линии приходят из бесконечности к заряду.

Потенциалом электростатического поля в данной точке называется скалярная величина, численно равная потенциальной энергии единичного положительного заряда, помещенного данную точку поля:

Работа, которая совершается силами электростатического поля при пе0ремещении точечного электрического заряда , равна произведению этого заряда на разность потенциалов между на­чальной и конечной точками пути:

где и - потенциалы начальной и конечной точек поля при перемещении заряда.

Напряженность связана с потенциалом электростатического поля соотношением:

Градиент потенциала, указывает направление наиболее быстрого изменения потенциала при перемещении в направлении, перпен­дикулярном к поверхности равного потенциала.

Напряженность поля численно равна изменению потен­циала на единицу длины , отсчитанному в направлении, перпендикулярном к поверхности равного потенциала, и направ­лена в сторону его убывания (знак минус):

Геометрическое место точек электрического поля, потенциалы которых одинаковы, называется эквипотенциальной поверхностью или поверхностью рав­ного потенциала. Вектор напряженности каждой точки электриче­ского поля нормален к эквипотенциальной по­верхности, проведен­ной через эту точку. На рис. 1 графически изо­бражено электрическое поле, образованное положительным точечным зарядом и отрицательно заряженной плоскостью Р .

Сплошные линии эквипотенциальные поверхности с потенциалами , , и т.д., пунктирные липни - силовые ли­нии поля, их направление показано стрелкой.



Понравилась статья? Поделитесь с друзьями!