Какие частицы исследует камера вильсона. Как в домашних условиях увидеть субатомные частицы

Этот прибор был сконструирован в 1911 г. английским физиком Ч.Вильсоном. Он основан на способности быстро летящих частиц ионизировать молекулы вещества, находящегося в парообразном состоянии.

Схема камеры Вильсона изображена на рис. 22.2.

Рабочий объем камеры 1 заполнен воздухом или другим газом и содержит в себе насыщенный пар воды или спирта. При быстром передвижении поршня 2 вниз пар или газ в объеме 1 адиабатно расширяется и охлаждается, при этом пар становится перенасыщенным. Когда через объем камеры пролетает заряженная частица, то на своем пути она создает ионы, на которых при расширении объема 1 образуются капельки сконденсировавшегося пара. Таким образом, частица оставляет за собой видимый след (трек) в виде узкой полоски тумана. Этот трек можно наблюдать или сфотографировать.

Альфа-частицы вызывают сильную ионизацию газа и поэтому оставляют в камере Вильсона жирные следы. Бета-частицы после себя оставляют очень тонкие треки (рис. 22.3).

Гамма-кванты могут быть обнаружены с помощью камеры Вильсона по фотоэлектронам, которые они выбивают из молекул газа, заполняющего рабочий объем камеры.

Камеру Вильсона часто помещают в сильное магнитное поле, что позволяет по искривлению треков частиц определять их энергию и знак заряда, а по толщине треков - заряд и массу частиц.

Газоразрядные счетчики

В исследованиях по ядерной физике часто используют счетчики заряженных частиц, которые служат для регистрации отдельных частиц. Рассмотрим принцип действия одного из видов счетчиков - пропорционального

(рис. 22.4).

Счетчик состоит из наполненного газом цилиндра 1, в который введены два электрода: анод 3 представляет собой тонкую металлическую нить, оба ее конца укреплены на изоляторах. Катод 2 выполнен в виде токопроводящего металлического слоя, нанесенного на внутреннюю поверхность цилиндра.

Между катодом и анодом прикладывается напряжение порядка нескольких сотен вольт, вследствие чего внутри счетчика создается электрическое поле. При попадании в счетчик частица ионизует молекулы газа и в электрическом поле между катодом и анодом возникает направленное движение ионов, т. е. происходит газовый разряд. Разрядный ток создает большое падение напряжения на сопротивлении R н , и напряжение между электродами сильно уменьшается, поэтому разряд прекращается. После прекращения тока между катодом и анодом вновь восстанавливается большое напряжение и счетчик готов к регистрации, следующей частицы. Импульс напряжения, возникающий на сопротивлении R н , усиливается и регистрируется специальным счетным устройством. Пропорциональными счетчики называют потому, что сила тока газового разряда, возникающего после прохождения ионизирующей частицы, пропорциональна числу образованных ею ионов.

Одна из разновидностей пропорциональных счетчиков была предложена Э. Резерфордом и Г.Гейгером в 1908 г. Впоследствии в 1928 г. счетчик был усовершенствован Э. Мюллером и получил название счетчика Гейгера-Мюллера.

Радиоактивность - это испускание ядрами некоторых элементов различных частиц, сопровождающееся переходом ядра в другое состояние и изменением его параметров .

Явление радиоактивности было открыто опытным путем французским ученым Анри Беккерелем в 1896 г. для солей урана. Беккерель заметил, что соли урана, засвечивают завернутую во много слоев фотобумагу невидимым проникающим излучением.

Атомным прибором огромной важности явилась ионизационная камера, сконструированная английским физиком . Это знаменитое изобретение принесло Вильсону Нобелевскую премию 1937 г., а созданная им камера Вильсона навсегда увековечила имя своего создателя. Камера возникла из наблюдения, сделанного в 1897 г., заключающегося в том, что ионы являются центрами конденсации водяных паров. Основываясь на этом наблюдении, Г. А. Вильсон предложил метод определения заряда электрона, из которого, как мы видели, развились методы Милликена. Статья Чарлза Томаса Риса Вильсона , описывающая это наблюдение, называлась "Конденсация водяного пара в присутствии обеспыленного воздуха и других газов". В истории лаборатории Кавендиша, вышедшей в 1910 г., Д. Д. Томсон , бывший в это время руководителем лаборатории, писал об открытии Вильсона: "Мы должны теперь рассмотреть замечательную серию исследований Ч. Т. Р. Вильсона об условиях конденсации воды в обеспыленных газах, насыщенных водяным паром. Эти исследования не только значительно увеличили наши знания по исследуемой проблеме, но и открыли новый и поразительный метод исследования свойств ионизационного газа".

Томсон был прав, назвав новый метод "поразительным", однако вряд ли он в то время, когда писал эти строки, представлял себе все могущество этого метода. В работах 1897 г. Вильсон показал, что центрами конденсации в обеспыленном воздухе являются ионы, производимые рентгеновскими или беккерелевыми лучами. При этом для образования капель на отрицательных ионах требовалось внезапное расширение до 1,252 первоначального объема, для образования же капель на положительных ионах требовалось расширение до 1,375 первоначального объема. Через год-два после того, как Томсон написал выше процитированные строки, Вильсон сделал сообщение (1911), в котором описал "метод обнаружения путей ионизирующих частиц во влажных газах, основанный на конденсации пара на ионах, непосредственно после образования этих ионов".

Первые результаты не удовлетворили Вильсона и в 1912 г. он окончательно нашел конструкцию прибора, получившего позже название камеры Вильсона.

Приведем первые вильсоновские фотографии с его пояснениями.

"Эти рисунки представляют собою снимки с фотографий облачков, конденсировавшихся на ионах, которые освобождаются при прохождении лучей разного рода сквозь влажный газ. В последующем 1 обозначает плотность воздуха перед расширением (по отношению к насыщенному водяным паром воздуху при 15° С и 760 мм рт. ст. ), 2 - плотность после расширения, v 2 / v 1 - величину расширения, V - разность потенциалов между крышкой и дном ионизационной камеры в вольтах, М - увеличение фотографического аппарата. Во всех случаях крышка камеры была положительна, так что отрицательные ионы двигались вверх, положительные же - вниз.

Ионизация α-лучами.

Ось фотографической камеры вертикальна; горизонтальный слой глубиной в 2 см освещается ртутной искрой.

Рис. 1 (табл. I). α-лучи радия. Одни из α-частиц прошли сквозь воздух до расширения, другие - после него.

1 = 0,98, v 2 / v 1 = 1,36, 2 = 0,72, V = 40 в, М = 1 / 2,18 .

Рис. 2 (табл. I). α-лучи радия. Все α-частицы прошли сквозь воздух после расширения.

1 = 0,97, v 2 / v 1 = 1,33, 2 = 0,73, V = 40 в, М = 1,05.

Рис. 3 (табл. I). α-лучи радия. Увеличение части рис. 2.

1 = 0,97, v 2 / v 1 = 1,33, 2 = 0,73, V = 40 в, М = 2,57.

Рис. 4 (табл. I). α-лучи радиевой эманации и активного осадка.

1 = 1,00, v 2 / v 1 = 1,36, 2 = 0,74, V = 40 в, М = 1 / 124 .

Рис. 5 (табл. I). Полный путь α-частицы, выброшенной радиевой эманацией.

Это удивительное и относительно простое устройство представляет собой один из самых ранних способов детектирования треков заряженных субатомных частиц и, соответственно, приборов для исследования радиации. Удивительна она тем, что объект микромира (альфа-частица, или даже электрон) способен оставить видимый невооружённым глазом след в макромире. Этакий мост между в норме плохо пересекающимися областями реальности.

Принцип действия туманной камеры достаточно несложен для понимания. Переохлаждённый пар летучего вещества, желательно с низкой температурой плавления (традиционно используется спирт, ацетон или нечто подобное), образующийся над охлаждённой до нужной температуры поверхностью, конденсируется на ионах, оставляемых высокоэнергетической заряженной частицей, которая в результате оставляет туманный след (трек). Камера Вильсона, в отличие от туманной, работает за счёт адиабатического расширения пара, без принудительного охлаждения рабочего тела.

Есть несколько способов сделать туманную камеру дома, без применения сложных криогенных установок, герметичных камер и тому подобного. В целом они сводятся к двум: с использованием холодных расходных материалов (сухой лёд или жидкий азот) или термоэлектрическим способом при помощи элементов Пельтье. Напомню, что элемент Пельтье это такая плоская квадратная штука, которая, при подаче на неё определённых тока и напряжения, начинает греться с одной стороны и охлаждаться с другой, достигая разницы температур в 50-70 градусов (разные Пельтье в зависимости от условий работы и качества изготовления работают по-разному).


Поскольку сухой лёд мне искать было лень, а жидкий азот потребовал бы довольно кропотливой дозировки для достижения нужного диапазона температур, выбраны были Пельтье. В свою очередь, с ними имеются два способа достижения нужных температур в -50 — -70*С. Самый простой — соединение двух элементов последовательно, когда один из элементов посажен на радиатор горячей стороной, а холодной стороной охлаждает горячую сторону второго. При использовании водяного охлаждения этот метод довольно успешно работает, но я бы не рекомендовал его кроме как для первичной пробы сил: слишком нестабильны эффекты туманной камеры. Другой способ — это качественное охлаждение радиатора, и использование одиночного элемента Пельтье. Если охладить его горячую сторону ниже нуля по Цельсию, например, при помощи фреонового холодильника, то на холодной стороне будут достигнуты искомые -60*. Собственно, такое решение и было применено.

Конструктивно сама туманная камера — это просто прозрачный корпус с подвешенным источником паров чистого спирта (чистота довольно критична) — смоченной в нём тряпочкой. Внизу корпуса расположен покрашенный чёрной краской элемент Пельтье на фреоново охлаждаемом радиаторе (конструкция фреонового холодильника — тема для другой записи). Около Пельтье или рядом с ним распологается источник альфа-частиц (в данном случае — Pu-239 из радиоизотопного детектора дыма). После охлаждения системы до рабочей температуры, при боковой подсветке поверхности Пельте становятся видны треки от альфа-частиц. Лучшая видимость достигается при подсветке лазером, разложенным в линию специальной насадкой, как и было сделано здесь: такая подсветка не освещает поверхность Пельтье, но освещает туманные треки, что делает их очень контрастными и хорошо заметными. Но обычный фонарик тоже вполне работает.

Для качественной работы камеры очень желательно поставить неподалёку от рабочей зоны источник статического электричества (или просто микромощный высоковольтный постоянный источник киловольт на 10-20). Он собирает избыточные ионы из камеры, позволяя образовываться новым частицам.

Каждый трек соответствует строго одной частице. Не все частицы их оставляют, но каждый оставленный — несомненный след пролёта.


Такая вот забавная игрушка, связь между миром элементарных частиц и макромиром.

Юрий Романов

“Это самый оригинальный и замечательный инструмент в истории науки”
(Эрнест Резерфорд)

14 февраля 1869 года , 145 лет назад, на ферме близ Эдинбурга (Шотландия) родился Чарльз Томсон Риз Вильсон. Учился он в одной из частных школ Манчестера, затем в тамошнем университете и мечтал стать врачом. Завершать образование он отправился в Кембридж, и тут вектор его интересов резко изменил направление. Его заинтересовали естественные науки.

В конце лета 1894 года Вильсон приехал в Шотландию и совершил восхождение на Бен-Невис, самую высокую из местных гор. Это была не научная экспедиция, Вильсон был спортсмен, альпинист и решил прогуляться по родным местам. С этой прогулки, как мы теперь можем судить, и началась новая жизнь Вильсона-учёного. Там, на вершине, он был просто очарован великолепной игрой света в окружающих его облаках; он любовался цветными гало вокруг теней, отбрасываемых скалами. В общем, там, на вершине Бен-Невис, ему страшно захотелось все увиденные им явления воспроизвести в лаборатории. Физика атмосферы - вот как теперь называется его новое увлечение.

Нобелевская премия 1927 года. Частицы в тумане

В 1895 году Чарльз Вильсон, будучи аспирантом в Кембриджской лаборатории Дж. Дж. Томпсона, начинает цикл экспериментов, чтобы понять процессы образования облаков. Он придумывает аппарат в виде прозрачного цилиндра, дно у которого может перемещаться. Быстрое движение поршня вниз приводило к увеличению объёма камеры и падению давления и температуры в ней. При этом сквозь прозрачное окно цилиндра Вильсон наблюдал в камере сгущающийся туман. Явление это было уже хорошо известно: на мельчайших частичках пыли конденсировалась влага, ничего нового, всё как обычно… Почему Вильсон решил повторить этот опыт, наполнив свой аппарат максимально очищенным от пыли воздухом, - вот где загадка. Что-то подсказывала интуиция учёного? Или просто решил убедиться, что в «обеспыленном» воздухе конденсации не будет, да и закрыть этот вопрос?

Так или иначе, но опыт дал неожиданный результат: в чистом воздухе туман всё равно образуется. Почему? Что в этом случае может являться центрами конденсации? Много лет спустя Вильсон так описывал эмоциональное состояние, в котором находился в те дни: «Я был очень возбуждён, ведь почти сразу же я наткнулся на нечто, обещающее быть значительно более интересным, чем те оптические явления, ради которых я всё это начинал». Вильсон делает гениальное предположение, что влага конденсируется на ионах - заряженных частицах, каким-то образом возникающих в воздухе.

Чтобы проверить эту догадку, Вильсон берёт взаймы у профессора Томпсона одну из его драгоценных рентгеновских трубок (ему пришлось постоянно бороться со страхом повредить или ненароком разбить прибор). Изучением ионизирующих свойств рентгеновских лучей в это время как раз и занимался Томпсон, ставший поэтому заинтересованным участником опытов своего аспиранта. Вот как он описывал творческие муки молодого Вильсона: «Создание туманной камеры [так назывался этот прибор до момента присвоения ему имени изобретателя. - Ю. Р. ] оказалось чрезвычайно трудоёмким процессом. Для неё потребовалось несколько очень сложных стеклянных деталей, которые Вильсон изготовил сам, освоив профессию стеклодува. Пол лаборатории был устлан осколками, колбы лопались вновь и вновь. Вильсон не расстраивался, начинал всё сначала, только приговаривал, пристраивая к аппарату очередную колбу: “Милая, милая, ты же потерпишь немного?”»

Прибор, который нам знаком как «камера Вильсона» и который на 40 лет станет самым важным инструментом в арсенале физики элементарных частиц, был изготовлен в 1910 году. Через год ему удаётся сделать первые фотографии туманных треков (следов) заряженных частиц, пролетавших через камеру. В 1959-м, в возрасте 90 лет, он не забыл эти события и описал их такими словами: «Я до сих пор хорошо помню моё восхищение от полученных результатов. Эти следы были великолепны. Они напоминали волоски или огоньки, возникающие то тут, то там… Это было потрясающе».

В 1927 году ему присуждают Нобелевскую премию по физике «за метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара». Заниматься дальнейшими усовершенствованиями своей камеры он не стал: проблемы электрофизики атмосферы его интересовали значительно больше. В конце жизни он переселился с семьёй в деревушку Карлопс. Бывший депутат парламента Тэм Дэлиелл, проживавший с ним по соседству, так вспоминает первую встречу с Вильсоном: «Шёл дождь. В мою дверь постучали, я открыл. На пороге стоял сосед, и он спросил, не хочу ли я прийти к нему выпить чашечку чаю. Пока он занимался чайником, я заметил на стене фотографию, которая заставила меня замереть. На ней были 15 мужчин и одна женщина. Альберт Эйнштейн, Мария Кюри и все великие физики того времени. Среди них был мужчина, он был моложе на 40 лет, чем сейчас, но это был пригласивший меня на чай сосед. Я чуть не упал. Оказывается, он и есть тот самый великий Вильсон, который помог человечеству вступить в ядерный век».

Нобелевская премия 1948 года. Туман под контролем

Принципиально улучшить камеру Вильсона удалось Патрику Мейнарду Стюарту барону Блэкетту. Кадровый офицер ВМФ принимал участие в боях Первой мировой войны на Фолклендских островах и в Ютландии. После войны ушёл в отставку и занялся физикой под руководством Эрнеста Резерфорда в Кембридже.

Позднее он добьётся замечательных научных результатов и сделает несколько выдающихся открытий, но всё это - тема отдельного разговора. Сейчас важно другое. В 1932 году, работая с молодым итальянским физиком Джузеппе Очиалини (на фото ниже), он разработал изящную комбинацию камеры Вильсона и двух счётчиков Гейгера - Мюллера, один из которых помещался над камерой, а второй - под нею. Специальная электронная схема запускала камеру Вильсона в работу, только если оба счётчика срабатывали одновременно.

Благодаря изобретению Блэкетта камера Вильсона приобрела «диаграмму направленности»; её теперь можно было настраивать на фиксацию частиц, прилетающих с заданного направления. Более того, устанавливая порог срабатывания счётчиков Гейгера, оказалось возможным фильтровать наблюдаемые частицы по энергиям. Оба эти фактора привели к колоссальному прогрессу в области исследований космических лучей, астрофизики и физики элементарных частиц в целом. В 1948 году Блэкетт был удостоен Нобелевской премии по физике «за усовершенствование метода камеры Вильсона и сделанные в связи с этим открытия в области ядерной физики и космической радиации».

Нобелевская премия 1960 года. Пузыри и туман

Если в камере Вильсона треки заряженных частиц образовывались за счёт конденсации переохлаждённого пара на ионах, то в приборе, который изобрёл в 1953 году и назвал «пузырьковой камерой» Дональд Артур Глейзер, следы частиц возникали в перегретой жидкости при понижении давления. В этом случае возникал как бы «туман наоборот»: по ходу движения частицы в жидкости образовывались цепочки пузырьков, наполненных паром.

Глейзер провёл множество экспериментов с различными жидкостями, включая даже пиво (сначала он утверждал, что сама идея пузырьковой камеры пришла ему в голову, когда он наблюдал «вскипание» пива при откупоривании бутылки; позже признался, что «пивного вдохновения» не было, но факт остаётся фактом: в первые модели пузырьковой камеры он заливал светлое пиво, и камера отлично работала!)

Пузырьковая камера Глейзера оказалась настолько удачным прибором, что с 60-х годов она полностью вытесняет камеры Вильсона. И Нобелевская премия по физике 1960 года досталась Дональду Глейзеру именно «за изобретение пузырьковой камеры». Эксперименты на ускорителях во всём мире начинают проводиться с использованием всё более крупных криогенных пузырьковых камер, которые превращаются в сложнейшие инженерные комплексы, нафаршированные электроникой.

Сейчас «эпоха тумана и пара» в экспериментальной физике частиц завершается, и на смену пузырьковым камерам приходят новые типы детекторов. Но это уже совсем другая история…

Назначение прибора

Камера Вии́льсона- один из первых в истории приборов для регистрации следов (треков) заряженных частиц. Камеру Вильсона можно назвать “окном” в микромир. Она представляет собой герметически закрытый сосуд, заполненный парами воды или спиртами близкими к насыщению.

Изобретатель прибора

Важным этапом в методике наблюдения следов частиц явилось создание камеры Вильсона

(1912).Она изобретена Ч. Вильсоном в 1912 г. За это изобретениеЧ. Вильсону в 1927 г.

присуждена Нобелевская премия.

Ч.Вильсон

Камера Вильсона.

Стеклянная пластина

Устройство.

Стеклянный

Стеклянная

Черная ткань

Насыщенный

Устройство.

Камера Вильсона. Емкость со стеклянной крышкой и поршнем в нижней части заполнена насыщенными парами воды, спирта или эфира. Когда поршень опускается, то за счет адиабатического расширения пары охлаждаются и становятся пересыщенными. Заряженная частица, проходя сквозь камеру, оставляет на своем пути цепочку ионов. Пар конденсируется на ионах, делая видимым след частицы.

Принцип роботы

Принцип работы камеры Вильсона основан на конденсации пересыщенного пара и образовании видимых капель жидкости на ионах вдоль следа пролетевшей через камеру заряженной частицы. пересыщенного пара Для создания пересыщенного пара происходит быстрое адиабатическое расширение газа с помощью механического поршня. После фотографирования трека, газ в камере снова сжимается, капельки на ионах испаряются. Электрическое поле в камере служит для “очистки” камеры от ионов образовавшихся при предыдущей ионизации газа Вильсона основан на конденсации пересыщенного пара и образовании видимых капель жидкости на ионах вдоль следа пролетевшей через камеру заряженной частицы. После фотографирования трека, газ в камере снова сжимается, капельки на ионах испаряются. Электрическое поле в камере служит для “очистки” камеры от ионов образовавшихся при предыдущей ионизации газа

результате которого образовались ядро кислорода и



Понравилась статья? Поделитесь с друзьями!