Какие химические свойства характерны для кислорода. Кислород: химические свойства элемента

С момента появления химии человечеству стало понятно, что все вокруг состоит из вещества, в состав которого входят химические элементы. Многообразие веществ обеспечивается различными соединениями простых элементов. На сегодня открыто и внесено в периодическую таблицу Д. Менделеева 118 химических элементов. Среди них стоит выделить ряд ведущих, наличие которых определило появление органической жизни на Земле. В этот перечень входят: азот, углерод, кислород, водород, сера и фосфор.

Кислород: история открытия

Все эти элементы, а также ряд других, способствовали развитию эволюции жизни на нашей планете в том виде, в котором мы сейчас наблюдаем. Среди всех компонентов именно кислорода в природе больше остальных элементов.

Кислород как отдельный элемент был открыт 1 августа 1774 года В ходе эксперимента по получению воздуха из окалины ртути путём нагревания при помощи обычной линзы он обнаружил, что свеча горит необычно ярким пламенем.

Долгое время Пристли пытался найти этому разумное объяснение. На тот момент этому явлению было дано название «второй воздух». Несколько ранее изобретатель подводной лодки К. Дреббель в начале XVII века выделил кислород и использовал его для дыхания в своём изобретении. Но его опыты не оказали влияния на понимание того, какую роль играет кислород в природе энергообмена живых организмов. Однако учёным, официально открывшим кислород, признан французский химик Антуан Лоран Лавуазье. Он повторил эксперимент Пристли и понял, что образующийся газ является отдельным элементом.

Кислород взаимодействует практически со всеми простыми и кроме инертных газов и благородных металлов.

Нахождение кислорода в природе

Среди всех элементов нашей планеты наибольшую долю занимает кислород. Распространение кислорода в природе весьма разнообразно. Он присутствует как в связанном виде, так и в свободном. Как правило, являясь сильным окислителем, он пребывает в связанном состоянии. Нахождение кислорода в природе как отдельного несвязанного элемента зафиксировано только в атмосфере планеты.

Содержится в виде газа и представляет собой соединение двух атомов кислорода. Составляет около 21 % от общего объёма атмосферы.

Кислород в воздухе, кроме обычной своей формы, имеет изотропную форму в виде озона. состоит из трёх атомов кислорода. Голубой цвет неба непосредственно связан с наличием этого соединения в верхних слоях атмосферы. Благодаря озону, жёсткое коротковолновое излучение от нашего Солнца поглощается и не попадает на поверхность.

В случае отсутствия озонового слоя органическая жизнь была бы уничтожена, подобно поджаренной еде в микроволновой печи.

В гидросфере нашей планеты этот элемент находится в связанном виде с двумя и образует воду. Доля содержания кислорода в океанах, морях, реках и подземных водах оценивается около 86- 89 %, с учётом растворенных солей.

В земной коре кислород находится в связанном виде и является наиболее распространённым элементом. Его доля составляет около 47 %. Нахождение кислорода в природе не ограничивается оболочками планеты, этот элемент входит в состав всех органических существ. Его доля в среднем достигает 67 % от общей массы всех элементов.

Кислород - основа жизни

Из-за высокой окислительной активности кислород достаточно легко соединяется с большинством элементов и веществ, образуя оксиды. Высокая окислительная способность элемента обеспечивает всем известный процесс горения. Кислород также участвует в процессах медленного окисления.

Роль кислорода в природе как сильного окислителя незаменима в процессе жизнедеятельности живых организмов. Благодаря этому химическому процессу происходит окисление веществ с выделением энергии. Её живые организмы используют для своей жизнедеятельности.

Растения - источник кислорода в атмосфере

На начальном этапе образования атмосферы на нашей планете существующий кислород находился в связанном состоянии, в виде двуокиси углерода (углекислый газ). Со временем появились растения, способные поглощать углекислый газ.

Данный процесс стал возможен благодаря возникновению фотосинтеза. Со временем, в ходе жизнедеятельности растений, за миллионы лет в атмосфере Земли накопилось большое количество свободного кислорода.

По мнению учёных, в прошлом его массовая доля достигала порядка 30 %, в полтора раза больше, чем сейчас. Растения, как в прошлом, так и сейчас, существенно повлияли на круговорот кислорода в природе, обеспечив тем самым разнообразную флору и фауну нашей планеты.

Значение кислорода в природе не просто огромно, а первостепенно. Система метаболизма животного мира чётко опирается на наличие кислорода в атмосфере. При его отсутствии жизнь становится невозможной в том виде, в котором мы знаем. Среди обитателей планеты останутся только анаэробные (способные жить без наличия кислорода) организмы.

Интенсивный в природе обеспечен тем, что он находится в трёх агрегатных состояниях в объединении с другими элементами. Будучи сильным окислителем, он очень легко переходит из свободной формы в связанную. И только благодаря растениям, которые путём фотосинтеза расщепляют углекислый газ, он имеется в свободной форме.

Процесс дыхания животных и насекомых основан на получении несвязанного кислорода для окислительно-восстановительных реакций с последующим получением энергии для обеспечения жизнедеятельности организма. Нахождение кислорода в природе, связанного и свободного, обеспечивает полноценную жизнедеятельность всего живого на планете.

Эволюция и «химия» планеты

Эволюция жизни на планете опиралась на особенности состава атмосферы Земли, состава минералов и наличия воды в жидком состоянии.

Химический состав коры, атмосферы и наличие воды стали основой зарождения жизни на планете и определили направление эволюции живых организмов.

Опираясь на имеющуюся «химию» планеты, эволюция пришла к углеродной органической жизни на основе воды как растворителя химических веществ, а также использовании кислорода как окислителя с целью получения энергии.

Иная эволюция

На данном этапе современная наука не опровергает возможность жизни в иных средах, отличных от земных условий, где за основу построения органической молекулы может быть взят кремний или мышьяк. А среда жидкости, как растворителя, может представлять собой смесь жидкого аммиака с гелием. Что касается атмосферы, то она может быть представлена в виде газообразного водорода с примесью гелия и других газов.

Какие метаболические процессы могут быть при таких условиях, современная наука пока не в состоянии смоделировать. Однако такое направление эволюции жизни вполне допустимо. Как доказывает время, человечество постоянно сталкивается с расширением границ нашего понимания окружающего мира и жизни в нем.

ОПРЕДЕЛЕНИЕ

Кислород – элемент второго периода VIA группы Периодической системы химических элементов Д.И. Менделеева, с атомным номером 8. Символ – О.

Атомная масса – 16 а.е.м. Молекула кислорода двухатомна и имеет формулу – О 2

Кислород относится к семейству p-элементов. Электронная конфигурация атома кислорода 1s 2 2s 2 2p 4 . В своих соединениях кислород способен проявлять несколько степеней окисления: «-2», «-1» (в пероксидах), «+2» (F 2 O). Для кислорода характерно проявление явления аллотропии – существования в виде нескольких простых веществ – аллотропных модификаций. Аллотропные модификации кислорода – кислород O 2 и озон O 3 .

Химические свойства кислорода

Кислород является сильным окислителем, т.к. для завершения внешнего электронного уровня ему не хватает всего 2-х электронов, и он легко их присоединяет. По химической активности кислород уступает только фтору. Кислород образует соединения со всеми элементами кроме гелия, неона и аргона. Непосредственно кислород нее вступает в реакции взаимодействия с галогенами, серебром, золотом и платиной (их соединения получают косвенным путем). Почти все реакции с участием кислорода – экзотермические. Характерная особенность многих реакций соединения с кислородом — выделение большого количества теплоты и света. Такие процессы называют горением.

Взаимодействие кислорода с металлами. Со щелочными металлами (кроме лития) кислород образует пероксиды или надпероксиды, с остальными – оксиды. Например:

4Li + O 2 = 2Li 2 O;

2Na + O 2 = Na 2 O 2 ;

K + O 2 = KO 2 ;

2Ca + O 2 = 2CaO;

4Al + 3O 2 = 2Al 2 O 3 ;

2Cu + O 2 = 2CuO;

3Fe + 2O 2 = Fe 3 O 4 .

Взаимодействие кислорода с неметаллами. Взаимодействие кислорода с неметаллами протекает при нагревании; все реакции экзотермичны, за исключением взаимодействия с азотом (реакция эндотермическая, происходит при 3000С в электрической дуге, в природе – при грозовом разряде). Например:

4P + 5O 2 = 2P 2 O 5 ;

С + O 2 = СО 2 ;

2Н 2 + O 2 = 2Н 2 О;

N 2 + O 2 ↔ 2NO – Q.

Взаимодействие со сложными неорганическими веществами. При горении сложных веществ в избытке кислорода образуются оксиды соответствующих элементов:

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O (t);

4NH 3 + 3O 2 = 2N 2 + 6H 2 O (t);

4NH 3 + 5O 2 = 4NO + 6H 2 O (t, kat);

2PH 3 + 4O 2 = 2H 3 PO 4 (t);

SiH 4 + 2O 2 = SiO 2 + 2H 2 O;

4FeS 2 +11O 2 = 2Fe 2 O 3 +8 SO 2 (t).

Кислород способен окислять оксиды и гидроксиды до соединений с более высокой степенью окисления:

2CO + O 2 = 2CO 2 (t);

2SO 2 + O 2 = 2SO 3 (t, V 2 O 5);

2NO + O 2 = 2NO 2 ;

4FeO + O 2 = 2Fe 2 O 3 (t).

Взаимодействие со сложными органическими веществами. Практически все органические вещества горят, окисляясь кислородом воздуха до углекислого газа и воды:

CH 4 + 2O 2 = CO 2 +H 2 O.

Кроме реакций горения (полное окисление) возможны также реакции неполного или каталитического окисления, в этом случае продуктами реакции могут быть спирты, альдегиды, кетоны, карбоновые кислоты и другие вещества:

Окисление углеводов, белков и жиров служит источником энергии в живом организме.

Физические свойства кислорода

Кислород – самый распространенный элемент на земле (47% по массе). В воздухе содержание кислорода составляет 21% по объему. Кислород – составная часть воды, минералов, органических веществ. В растительных и животных тканях содержится 50 -85 % кислорода в виде различных соединений.

В свободном состоянии кислород представляет собой газ без цвета, вкуса и запаха, плохо растворимый в воде (в 100 л воды при 20С растворяется 3 л кислорода. Жидкий кислород голубого цвета, обладает парамагнитными свойствами (втягивается в магнитное поле).

Получение кислорода

Различают промышленные и лабораторные способы получения кислорода. Так, в промышленности кислород получают перегонкой жидкого воздуха, а к основным лабораторным способам получения кислорода относят реакции термического разложения сложных веществ:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

4K 2 Cr 2 O 7 = 4K 2 CrO 4 + 2Cr 2 O 3 +3 O 2

2KNO 3 = 2KNO 2 + O 2

2KClO 3 = 2KCl +3 O 2

Примеры решения задач

ПРИМЕР 1

Задание При разложении 95 г оксида ртути (II) образовалось 4,48 л кислорода (н.у.). Вычислите долю разложившегося оксида ртути (II) (в мас. %).
Решение Запишем уравнение реакции разложения оксида ртути (II):

2HgO = 2Hg + O 2 .

Зная объем выделившегося кислорода, найдем его количество вещества:

моль.

Согласно уравнению реакции n(HgO):n(O 2) = 2:1, следовательно,

n(HgO) = 2×n(O 2) = 0,4 моль.

Вычислим массу разложившегося оксида. Количество вещества связано с массой вещества соотношением:

Молярная масса (молекулярная масса одного моль) оксида ртути (II), рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 217 г/моль. Тогда масса оксида ртути (II) равна:

m (HgO) = n (HgO) ×M (HgO) = 0,4×217 = 86,8 г.

Определим массовую долю разложившегося оксида:

Кислород образует пероксиды со степенью окисления −1.
— Например, пероксиды получаются при сгорании щелочных металлов в кислороде:
2Na + O 2 → Na 2 O 2

— Некоторые окислы поглощают кислород:
2BaO + O 2 → 2BaO 2

— По принципам горения, разработанным А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется перекись водорода:
H 2 + O 2 → H 2 O 2

Надпероксиды имеют степень окисления −1/2, то есть один электрон на два атома кислорода (ион O 2 -). Получают взаимодействием пероксидов с кислородом при повышенных давлениям и температуре:
Na 2 O 2 + O 2 → 2NaO 2

Озониды содержат ион O 3 - со степенью окисления −1/3. Получают действием озона на гидроксиды щелочных металлов:
КОН(тв.) + О 3 → КО 3 + КОН + O 2

Ион диоксигенил O 2 + имеет степень окисления +1/2. Получают по реакции:
PtF 6 + O 2 → O 2 PtF 6

Фториды кислорода
Дифторид кислорода , OF 2 степень окисления +2, получают пропусканием фтора через раствор щелочи:
2F 2 + 2NaOH → OF 2 + 2NaF + H 2 O

Монофторид кислорода (Диоксидифторид ), O 2 F 2 , нестабилен, степень окисления +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C.

Пропуская тлеющий разряд через смесь фтора с кислородом при определенных давлении и температуре получаются смеси высших фторидов кислорода O 3 F 2 , О 4 F 2 , О 5 F 2 и О 6 F 2 .
Кислород поддерживает процессы дыхания, горения, гниения. В свободном виде элемент существует в двух аллотропных модификациях:O 2 и O 3 (озон).

Применение кислорода

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров — устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали связан с применением кислорода.

Сварка и резка металлов

Кислород в баллонах широко используется для газопламенной резки и сварки металлов.

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

В медицине

Кислород используется для обогащения дыхательных газовых смесей при нарушении дыхания, для лечения астмы, в виде кислородных коктейлей, кислородных подушек и т. д.

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948 , как пропеллент и упаковочный газ.

Биологическая роль кислорода

Живые существа дышат кислородом воздуха. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном. Радиоактивный изотоп кислорода 15 O применяется для исследований скорости кровотока, лёгочной вентиляции.

Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, перекись водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода. Супероксид (супероксидный радикал), перекись водорода и гидроксильный радикал могут образовываться в клетках и тканях организма человека и животных и вызывают оксидативный стресс.

Изотопы кислорода

Кислород имеет три устойчивых изотопа: 16 О, 17 О и 18 О, среднее содержание которых составляет соответственно 99,759 %, 0,037% и 0,204% от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее легкого из них 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов. А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Имеются радиоактивные изотопы 11 О, 13 О, 14 О (период полураспада 74 сек), 15 О (Т 1/2 =2,1 мин), 19 О (Т 1/2 =29,4 сек), 20 О (противоречивые данные по периоду полураспада от 10 мин до 150 лет).

Дополнительная информация

Соединения кислорода
Жидкий кислород
Озон

Кислород, Oxygenium, O (8)
Открытие кислорода (Oxygen, франц. Oxygene, нем. Sauerstoff) ознаменовало начало современного периода развития химии. С глубокой древности было известно, что для горения необходим воздух, однако многие века процесс горения оставался непонятным. Лишь в XVII в. Майов и Бойль независимо друг от друга высказали мысль, что в воздухе содержится некоторая субстанция, которая поддерживает горение, но эта вполне рациональная гипотеза не получила тогда развития, так как представление о горении, как о процессе соединения горящего тела с некой составной частью воздуха, казалось в то время противоречащим столь очевидному акту, как то, что при горении имеет место разложение горящего тела на элементарные составные части. Именно на этой основе на рубеже XVII в. возникла теория флогистона, созданная Бехером и Шталем. С наступлением химико-аналитического периода развития химии (вторая половина XVIII в.) и возникновением «пневматической химии» — одной из главных ветвей химико-аналитического направления — горение, а также дыхание вновь привлекли к себе внимание исследователей. Открытие различных газов и установление их важной роли в химических процессах явилось одним из главных стимулов для систематических исследований процессов горения веществ, предпринятых Лавуазье. Кислород был открыт в начале 70-х годов XVIII в.

Первое сообщение об этом открытии было сделано Пристлеем на заседании Английского королевского общества в 1775 г. Пристлей, нагревая красную окись ртути большим зажигательным стеклом, получил газ, в котором свеча горела более ярко, чем в обычном воздухе, а тлеющая лучина вспыхивала. Пристлей определил некоторые свойства нового газа и назвал его дефлогистированным воздухом (daphlogisticated air). Однако двумя годами ранее Пристлея (1772) Шееле тоже получал кислород разложением окиси ртути и другими способами. Шееле назвал этот газ огненным воздухом (Feuerluft). Сообщение же о своем открытии Шееле смог сделать лишь в 1777 г.

В 1775 г. Лавуазье выступил перед Парижской академией наук с сообщением, что ему удалось получить «наиболее чистую часть воздуха, который нас окружает», и описал свойства этой части воздуха. Вначале Лавуазье называл этот «воздух» эмпирейным, жизненным (Air empireal, Air vital) основанием жизненного воздуха (Base де l"air vital). Почти одновременное открытие кислорода несколькими учеными в разных странах вызвало споры о приоритете. Особенно настойчиво признания себя первооткрывателем добивался Пристлей. По существу споры эти не окончились до сих пор. Подробное изучение свойств кислорода и его роли в процессах горения и образования окислов привело Лавуазье к неправильному выводу о том, что этот газ представляет собой кислотообразующее начало. В 1779 г. Лавуазье в соответствии с этим выводом ввел для кислорода новое название — кислото образующий принцип (principe acidifiant ou principe oxygine). Фигурирующее в этом сложном названии слово oxygine Лавуазье произвел от греч.- кислота и «я произвожу».

ОПРЕДЕЛЕНИЕ

Кислород - восьмой по счету элемент Периодической таблицы. Относится к неметаллам. Расположен во втором периоде VI группы A подгруппы.

Порядковый номер равен 8. Заряд ядра равен +8. Атомный вес - 15,999а.е.м. В природе встречаются три изотопа кислорода: 16 O, 17 O и 18 O, из которых наиболее распространенным является 16 O (99,762 %).

Электронное строение атома кислорода

Атом кислорода имеет две оболочки, как и все элементы, расположенные во втором периоде. Номер группы -VI (халькогены) - свидетельствует о том, что на внешнем электронном уровне атома азота находится 6 валентных электронов. Обладает высокой окислительной способностью (выше только у фтора).

Рис. 1. Схематичное изображение строения атома кислорода.

Электронная конфигурация основного состояния записывается следующим образом:

1s 2 2s 2 2p 4 .

Кислород - элемент p-семейства. Энергетическая диаграмма для валентных электронов в невозбужденном состоянии выглядит следующим образом:

У кислорода есть 2 пары спаренных электронов и два неспаренных электрона. Во всех своих соединениях кислород проявляет валентность II.

Рис. 2. Пространственное изображение строения атома кислорода.

Примеры решения задач

ПРИМЕР 1

Урок по химии 8 класс

Тема: Кислород, его общая характеристика. Нахождение в природе. Получение кислорода и его физические свойства.

Цель урока: продолжить формирование понятий «химический элемент», «простое вещество», «химическая реакция». Сформировать представления о способах получения кислорода в лаборатории. Ввести понятие о катализаторе, физических свойствах, характеризовать элемент по таблице Д.И. Менделеева. Совершенствовать навыки владения интерактивной доской.

Основные понятия . Катализаторы.

Планируемые результаты обучения

Предметные. Уметь различать понятия «химический элемент», «простое вещество» на примере кислорода. Уметь характеризовать физические свойства и способы собирания кислорода.

Метапредметные . Развивать умения работать по плану, формулировать, аргументировать, организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками.

Личностные. Формировать ответственное отношение к учению, готовность к самообразованию.

Основные виды деятельности учащихся. Описывать химический элемент по предложенному плану. Описывать химические реакции, наблюдаемые в ходе демонстрационного эксперимента. Участвовать в совместном обсуждении результатов. Делать выводы из результатов опытов.

Демонстрации . Получение кислорода из пероксида водорода.

Ход урока

    Изучение нового материала.

1. Фронтальная беседа:

Какой газ поддерживает дыхание и горение?

Какие сведения о кислороде вам уже известны из курсов природоведения, ботаники?

В состав каких веществ входит кислород? (вода, песок, горные породы, минералы, белки, жиры, углеводы).

Общая характеристика химического элемента кислорода:

    Химический знак (О).

    Относительная атомная масса (16).

    Валентность (II).

    Химическая формула простого вещества (О2).

    Относительная молекулярная масса простого вещества (32).

Дайте характеристику элементу №8, исходя из его положения в периодической таблице химических элементов Д.И. Менделеева. (порядковый номер – 8, атомная масса – 16, IV – номер группы, номер периода - 2).

Нахождение в природе .

Кислород – самый распространенный химический элемент в земной коре (49%). Воздух содержит 21% газа кислорода. Кислород является важной частью органических соединений, имеющих большое значение для живых организмов.

Физические свойства : кислород – бесцветный газ, без вкуса и запаха, малорастворим в воде (в 100 объемах воды – 3,1 объем кислорода). Кислород немного тяжелее воздуха (Мr (О2)=2х16=32, p воздуха=29).

2. Опыты по получению кислорода.

Получение в лаборатории .

Впервые газ кислород был получен в 1774 году англ. ученым Джозефом Пристли. При прокаливании оксида ртути (II) Пристли получил «воздух»:

Ученый решил исследовать действие полученного газа на пламя свечи: под действием этого газа пламя свечи стало ослепительно ярким, в струе полученного газа сгорела железная проволока. Мыши, помещенные в сосуд с этим газом, дышали легко, сам ученый попробовал вдыхать этот газ и отметил, что дышать легко.

В школьной лаборатории этот газ мы получим из перекиси водорода. Для наблюдения физических свойств кислорода повторяем правила техники безопасности.

В пробирку с раствором пероксида водорода помещаем немного оксида марганца (IV) МnO2 , начинается бурная реакция с выделением кислорода. Выделение кислорода подтверждаем тлеющей лучинкой (она вспыхивает и горит). По окончании реакции оксид марганца (IV) оседает на дно, его можно использовать вновь. Следовательно, оксид марганца (IV) ускоряет реакцию разложения пероксида водорода, но сам при этом не расходуется.

Определение:

Вещества, которые ускоряют химические реакции, но сами при этом не расходуются и не входят в состав продуктов реакции, называют катализаторами.

2Н2О2 MnO2 2Н2О+О2

В школьной лаборатории кислород получают еще одним способом:

Нагреванием перманганата калия

2КМnO4=К2MnO4+MnO2+О2

Оксид марганца (IV) ускоряет еще одну реакцию получения кислорода – реакцию разложения при нагревании хлората калия КСlO3 (бертолетовой соли): 2КСlO3 MnO2 2КСl+3О2

3. Работа с учебником:

На с. 75 прочитайте о применении катализаторов в промышленности.

На рис. 25 и рис. 26 показаны способы собирания кислорода. На каких известных вам физических свойствах основаны способы собирания кислорода методом вытеснения воздуха? (кислород тяжелее воздуха: 32 29), методом вытеснения воды? (кислород малорастворим в воде). Как правильно собрать прибор для собирания кислорода методом вытеснения воздуха? (рис. 25) Ответ: пробирка для собирания кислорода должна быть расположена донышком вниз. Как можно обнаружить или доказать наличие в сосуде кислорода? (по вспыхиванию тлеющей лучинки).

с. 75 прочитайте статью учебника «получение в промышленности». На каком физическом свойстве кислорода основан такой метод его получения? (жидкий кислород имеет температуру кипения выше, чем жидкий азот, поэтому азот испарится, а кислород останется).

II. Закрепление знаний, умений.

    Какие вещества называют катализаторами?

    с. 76 тестовые задания.

    Работа в парах. Выберите два правильных ответа:

Химический элемент кислород:

1. бесцветный газ

2. имеет порядковый номер 8 (+)

3. входит в состав воздуха

4. входит в состав воды (+)

5. немного тяжелее воздуха.

4. Простое вещество кислород:

1. имеет атомную массу 16

2. входит в состав воды

3. поддерживает дыхание и горение (+)

4. образуется при разложении пероксида водорода (+).

5. Заполнить таблицу:

Общая характеристика кислорода

Нахождение в природе

Получение

а) в лаборатории

б) в промышленности

Физические свойства

    Вычислить массовую долю химического элемента кислорода в оксиде серы (VI). SO3

W= (nхAr):Mr х 100%

W (О)= (3х16): 80х100%=60%

    Как распознать, в какой колбе находится углекислый газ и кислород? (с помощью тлеющей лучинки: в кислороде она ярко вспыхивает, в углекислом газе - гаснет).



Понравилась статья? Поделитесь с друзьями!