Какие поверхности относятся к поверхностям вращения. Тела и поверхности вращения

8.ПОВЕРХНОСТИ ВРАЩЕНИЯ

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения (рис.2.3.45).

Образующая линия может быть плоской или пространственной кривой, а также прямой. Каждая точка, например В(В 1 , В 2), образующей линии l(l 1 , l 2)при вращении вокруг оси i(i 1 , i 2) описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения (рис. 2.3.45). Эти окружности называются параллелями. Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям. Линия, например, m(m 1 , m 2) пересечения поверхности вращения плоскостью ( 1), проходящей через ось, называется меридианом. Все меридианы поверхности вращения конгруэнтны. Меридиан l(l 1 , l 2), который является результатом пересечения поверхности вращения с плоскостью уровня ( 1), называется главным. Проекция главного меридиана на плоскость, которой параллельна плоскость уровня, является очерковой линией соответствующей проекции поверхности вращения. Множество всех параллелей или меридианов представляет собой непрерывный каркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку. Геометрическая часть определителя поверхности вращения состоит из оси вращения i и образующей линии l. Чертеж поверхности вращения будет простейшим, если ось вращения расположить перпендикулярно одной из плоскостей проекций, а в качестве образующей линии взять главный меридиан (рис. 2.3.45, б). Алгоритмическая часть определителя поверхности вращения состоит из операции вращения образующей l вокруг оси i и построения каркаса параллелей необходимой плотности. При проектировании различных инженерных сооружений, машин и механизмов наибольшее распространение получили поверхности, образующиеся вращением прямой линии и кривых второго порядка.

а. Поверхности, образуемые вращением прямой (линейчатые поверхности вращения)

Вращением прямой линии образуются: 1) цилиндр вращения, если прямая l параллельна оси i (рис. 2.3.46); 2)конус вращения, если прямая l пересекает ос i (рис. 2.3.47); 3)однополостный гиперболоид вращения, если прямая l(ВС) скрещивается с осью i (рис. 2.3.48).

Рис. 2.3.46

Поверхность (рис. 2.3.48) имеет две образующие линии l(ВС) и l"(В"С"), наклоненные в разные стороны и пересекающиеся в точке (А), принадлежащей наименьшей параллели. Отрезок ОА является кратчайшим расстоянием между образующей и осью. Таким образом, на поверхности однополостного гиперболоида располагаются два семейства прямолинейных образующих. Все образующие одного семейства - скрещивающиеся прямые.

Рис. 2.3.47

Каждая образующая одного семейства пересекает все образующие другого. Через каждую точку поверхности проходят две образующие разных семейств. Меридианом поверхности является гипербола. Все рассмотренные линейчатые поверхности вращения являются поверхностями второго порядка. Построение проекций точки, принадлежащей каждой из них, можно выполнить при помощи параллели или прямолинейной образующей, проходящих через нее.

Рис. 2.3.48

б. Поверхности, образуемые вращением кривых второго порядка вокруг их осей

1. Сфера образуется вращением окружности вокруг ее диаметра (рис. 2.3.49). 2. Эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси. 3. Параболоид вращения образуется вращением параболы вокруг ее оси.

Рис. 2.3.49

4. Однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси. Эта поверхность образуется также вращением прямой (рис. 2.3.48 справа). 5. Двуполостный гиперболоид вращения образуется вращением гиперболы вокруг ее действительной оси. При вращении асимптот гиперболы образуется конус вращения, который называется асимптотическим по отношению к поверхности гиперболоида. Все рассмотренные поверхности вращения являются поверхностями второго порядка. Построение проекции точки, принадлежащей каждой из них, можно выполнить при помощи параллели, проходящей через эту точку. в. Поверхности, образуемые вращением кривых второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости Существует теорема: "При вращении плоской или пространственной алгебраической кривой n-го порядка вокруг произвольной оси образуется алгебраическая поверхность вращения, имеющая в общем случае порядок 2n". Из этой теоремы следует, что при вращении кривой второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости, образуется поверхность четвертого порядка. Наиболее распространенной поверхностью четвертого порядка является тор.

Рис. 2.3.50

Тором называется поверхность, образованная вращением окружности вокруг оси, принадлежащей плоскости окружности, но не проходящей через ее центр. При этом ось вращения может пересекать окружность, касаться ее и располагаться вне окружности. В первых двух случаях тор называется закрытым, в последнем - открытым, или кольцом. На рис. 2.3.50 изображены проекции тора-кольца. Являясь поверхностью четвертого порядка, тор пересекается произвольной прямой в четырех точках, произвольной плоскостью по кривой четвертого порядка.

Рис. 2.3.50,1(анимационный) Эта кривая распадается на две окружности (параллели), если плоскость перпендикулярна оси тора (плоскость на рис. 2.3.50), на две окружности (меридиан), если плоскость проходит через ось тора(плоскости Г и Г" на рис. 2.3.50), на две окружности, если плоскость проходит через центр тора и касается его меридиана (плоскость). Проекции точки, например М, принадлежащей поверхности тора, можно построить при помощи параллели (рис. 2.3.50). На рис. 2.3.51 показана динамическая сцена формообразования поверхности тора.

Линия пересечения двух поверхностей второго порядка в общем случае представляет собой алгебраическую кривую четвертого порядка. В частных случаях она может распадаться на линии низших порядков, сумма порядков которых равна четырем: а) на четыре прямые - 1 + 1 + 1 + 1 (рис. 4.56, a). Общие образующие m, m", n, n", по которым пересекаются два цилиндра с параллельными осями, являются частями распавшейся кривой;

б) на две прямые и кривую второго порядка - 1 + 1 +2 (рис. 4.56, б); в) на прямую и кривую третьего порядка - 1 + 3; г) на две кривые второго порядка - 2+2 (рис. 4.57, 4.58, 4.59). Признаки распадения кривой четвертого порядка на две кривые второго порядка сформулированы в следующих теоремах: Теорема 1 . Если две поверхности второго порядка пересекаются по одной плоской кривой (1 - 5 - 2 - 6 на рис. 4.57), то они пересекаются еще по одной кривой, которая тоже будет плоской (3 - 5 - 4 - 6 на рис. 4.57).

Примечание. Плоская кривая, принадлежащая поверхности второго порядка, является кривой второго порядка. Теорема 2. Если две поверхности второго порядка имеют касание в двух точках (1 и 2 на рис. 4.58), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания. Сфера, имеющая двойное касание с поверхностью второго порядка (рис. 4.59), может быть использована для нахождения круговых сечений тех поверхностей второго порядка, которые их имеют. Пусть требуется найти круговые сечения эллиптического цилиндра (рис. 4.59). Проведем сферу с центром на оси цилиндра и диаметром, равным длине отрезка /1 - 2/ - большой оси эллипса. Эта сфера будет касаться двух образующих цилиндра в точках 1 и 2. Линия пересечения со сферой распадается на две окружности, расположенные в профильно проецирующих плоскостях и". Полученные окружности определяют два семейства круговых сечений эллиптического цилиндра.Теорема 3 (теорема Монжа ). Если две поверхности второго порядка описаны около третьей или вписаны в не<(рис. 4.60), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения линий касания (прямая 5 - 6). Теорема Монжа является частным случаем теоремы 2. Построение проекций указанных выше кривых второго порядка (рис. 4.58, 4.58, 4.59, 4.60) ясно из чертежей.

Заканчивая рассмотрение второй позиционной задачи на пересечение поверхностей, приведем несколько динамических сцен, демонстрирующих процесс взаимного пересечения поверхностей. На рис.4.61 показано пересечение поверхностей сферы и эллиптическогo цилиндра. На рис. 4.62 сфера пересекается с пирамидой, а на рис. 4.63 показано пересечение двух кривых поверхностей.

Поверхности вращения – поверхности, образованные вращением произвольной образующей вокруг неподвижной оси (рис. 51, а). Направляющей поверхности вращения является окружность постоянного (цилиндр) или переменного радиуса (конус, сфера). Нормальное – перпендикулярное оси вращения сечение любой поверхности вращения, представляет собой окружность с центром на ее оси.

Рис. 51. Поверхность вращения: а – основные линии на поверхности вращения; б – представление поверхности вращения в виде сети

Направляющие называют также параллелями поверхности вращения. Плоскости параллелей перпендикулярны к оси поверхности. Наибольшую из параллелей называют экватором поверхности, наименьшую – горлом. Плоскости, проходящие через ось поверхности вращения, называют меридиональными, а линии, по которым они пересекают поверхность – меридианами. Поверхность вращения можно представить параллелями или меридианами поверхности, а также сетью, состоящей из параллелей и меридианов (рис. 51, б).

Поверхность вращения называют закрытой, если меридиональное сечение поверхности является замкнутой кривой линией, пересекающей ось поверхности в двух точках.

При вращении вокруг оси плоской или пространственной алгебраической кривой n-го порядка образуется алгебраическая поверхность вращения, в общем случае, 2n–го порядка. Если кривая второго порядка вращается вокруг своей оси, то она образует поверхность второго порядка.

В зависимости от вида образующей различают:

Торовые поверхности – поверхности, образованные вращением окружности или дуги окружности:




Рис. 52. Торовые поверхности: а – сфера; b – открытый тор (кольцо); c – закрытый тор; d – глобоид

  • Сфера образуется вращением окружности вокруг оси, проходящей через ее центр (рис. 52, а).
  • Тор образуется вращением окружности вокруг оси, лежащей в плоскости этой окружности и не проходящей через ее центр (тор является поверхностью четвертого порядка). Различают открытый тор , образованный вращением окружности вокруг оси, которая не пересекает образующую (рис. 52, б) и закрытый тор , образованный вращением окружности вокруг оси, которая пересекает образующую окружность или касается ее (рис. 52, в).
  • Глобоид образуется вращением окружности достаточно большого радиуса вокруг оси, которая не пересекает образующую (рис. 52, г).

Эллипсоид вращения образуется вращением эллипса вокруг его оси. Если за ось вращения принята большая ось эллипса, эллипсоид вращения называют вытянутым (рис. 53. а), если малая – сжатым или сфероидом (рис. 53, б). Земной шар, например, по форме близок к сфероиду



Рис. 53. Поверхности вращения: а – вытянутый эллипсоид; б – сфероид

Параболоид вращения образуется вращением параболы вокруг ее оси (рис. 54). Параболоиды вращения используются в качестве отражающей поверхности в прожекторах и фарах автомобилей для получения параллельного светового пучка.


Рис. 54. Параболоид вращения

Гиперболоид вращения образуется вращением гиперболы. Различают однополостный гиперболоид (рис. 55, а), образованный вращением гиперболы вокруг ее мнимой оси, и двуполостный гиперболоид (рис. 55, б), образованный вращением гиперболы вокруг ее действительной оси.

Теорема.

Расстояние от точки до прямой , заданной точкой и направляющим вектором может быть найдено по формуле

.

А расстояние между двумя скрещивающимися прямыми находится по формуле

.

Поверхностью вращения называется поверхность, которая вместе с каждой своей точкой содержит всю окружность, полученную вращением этой точки вокруг некоторой фиксированной прямой . Прямая , вокруг которой производится вращение, называется осью вращения . Вращение точки вокруг оси происходит в плоскости, перпендикулярной оси. В сечении поверхности вращения плоскостями, перпендикулярными оси вращения, получаются окружности, которые называются параллелями . Плоскости, проходящие через ось вращения, пересекают поверхность вращения по линиям, называемым меридианами .

Теорема. В прямоугольной системе координат уравнение

есть уравнение поверхности вращения, образованной вращением вокруг оси линии, заданной уравнениями

.

Цилиндрической поверхностью или цилиндром называется поверхность, которая вместе с каждой точкой содержит всю прямую, проходящую через точку , параллельно данному ненулевому вектору . Прямые, параллельные вектору и принадлежащие цилиндрической поверхности, называются образующими этой поверхности.

Цилиндрическая поверхность может быть образована следующим образом. Пусть - некоторая линия, а - ненулевой вектор. Поверхность, образованная всеми прямыми, каждая из которых проходит через некоторую точку линии параллельно вектору , будет цилиндрической. В этом случае линия называется направляющей это поверхности.

Если прямоугольная система координат выбрана так, что образующие цилиндрической поверхности второго порядка были параллельны оси , а направляющая в системе имела каноническое уравнение, то цилиндрические поверхности определяются следующим образом.

- эллиптический цилиндр;

- гиперболический цилиндр;

- параболический цилиндр;

-цилиндр, распавшийся на пару пересекающихся по оси плоскостей;

- цилиндр, распавшийся на пару параллельных плоскостей;

- цилиндр, представляющий собой пару слившихся плоскостей.

Эти уравнения называются каноническими уравнениями соответствующих цилиндрических поверхностей второго порядка.

Если в каноническом уравнении эллиптического цилиндра , то направляющей цилиндра служит окружность , лежащая в плоскости . В этом случае поверхность является цилиндром вращения .

Конической поверхностью или конусом с вершиной в точке называется поверхность, которая обладает тем свойством, что вместе с каждой своей точкой , отличной от точки , эта поверхность содержит прямую .



Прямые проходящие через вершину конуса и лежащие на нем, называются образующими этого конуса.

Рассмотрим в пространстве линию и точку , не лежащую на линии . Поверхность, образованная всеми прямыми, каждая из которых проходит через точку и через некоторую точку линии , является конической поверхностью с вершиной .

В этом случае линия называется направляющей .

Рассмотрим коническую поверхность с вершиной в начале прямоугольной системы координат , направляющая которой служит эллипс :

.

Найдем уравнение этой поверхности. Пусть точка , отличная от точки , принадлежит конусу . Тогда прямая пересечет направляющую в некоторой точке . Так как и векторы и коллинеарны, то найдется такое вещественное число , что , или в координатах:

Отсюда находим

.

Подставив полученные выражения в первое из равенств, после несложных преобразований найдем:

.

Итак, координаты любой точки конуса удовлетворяют этому уравнению. Нетрудно убедиться также, что если точка не принадлежит конусу, то ее координаты не удовлетворяют этому уравнению.

Таким образом, мы получили уравнение второй степени, поэтому конус называется конусом второго порядка. А само уравнение называется каноническим уравнением конической поверхности второго порядка .

В случае, когда направляющая конической поверхности второго порядка является окружностью, то есть когда , уравнение принимает вид

.

Поверхность, определяемая этим уравнением в прямоугольной системе координат, называется круговой конической поверхностью или круговым конусом.


Практические занятия:

Тема 1:

Тема 2:

Тема 3:

Тема 4:

Тема 5:

Тема 6:

Тема 7:

Тема 8:

Тема 9:

Тема 10:

Тема 11.

Тема 12.

Тема 13.

Тема 14.

Тема 15.

Самостоятельная работа студентов:

Тема 1: Бинарные операции на множестве. Понятие группы, кольца и поля. Примеры. Поле комплексных чисел. № 101 – 113, 17 – 18 б. ; № 2.8, 2.10, 2.13, 2.15-2.21, 18-20 б.

Тема 2: Операции над комплексными числами. Алгебраическая и тригонометрическая форма комплексного числа. № 118 – 119, 136 – 140, 19 -20 б., № 2.22 – 2.23, 2.26 – 2.28, 2.46-2.50 , 20 – 23 б.

Тема 3: Перестановки и подстановки. Группа подстановок. Циклические подстановки. № 219 -221, 223, № 410 / 28 – 29, 55 -56 б. № 3.2 – 3.6, 3.38 / 26 – 27, 33 б

Тема 4: Матрицы и действия над ними. Определители второго и третьего порядка. № 235 – 240, 243 – 245, 231-232 /31-32 б., № 3.24-3.27, 3.30(1,2)/29-30б.

Тема 5: Определители и их свойства. Миноры и алгебраические дополнения. Определители n-го порядка № 231–232, 266–267, 273–280, № 374, 31, 35–37, 48 б., № 442 / 61 б. , № 3.30–3.31 / 30–31 б., № 4.24–4.28 / 44-45 б.

Тема 6: Обратная матрица и методы ее вычисления. Матричные уравнения. № 400, 410–411 / 55–56 б. , № 3.38–3.40 / 33–34 б.

Тема 7: Системы линейных уравнений. Арифметическое n-мерное векторное пространство. Метод Гаусса. Правило Крамера. № 443– 447 / 62 – 64 б. , № 4.18–4.19, 4.64 / 41 – 43, 51 б.

Тема 8: Многочлены от одной переменной НОД многочленов. Корни многочленов. Формулы Виета. Основная теорема алгебры и ее следствие. № 400– 402 / 53 – 54 б. , № 443–447, 449 / 62 – 64 б. № 3.55-3.59, 4.18 - 4.19, 4.64 /36-37, 41-43, 51 б.

Тема 9: Векторы. Базис векторного пространства. № 650, 167, 173 /89, 22 – 23 б. , № 11.59, 11.60, 11.65, 11.74 – 11.77, 11.81 – 11.86 / 123 – 125 б.

Тема 10: Скалярное, векторное и смешанное произведение векторов. 104, 114, 117, 118, 124, 424, 428, 445(1,3,6), 446(1,3), 454, 462, 468(1,3), 473, 487(1), 489(1,3) .

Тема 11. Прямая линия на плоскости. Различные виды уравнений на плоскости. Расстояние от точки до плоскости. Взаимное расположение двух прямых. 279(а, в), 282(а, в), 289(а, в), 294(а), 552, 553.

Тема 12. Кривые второго порядка. Эллипс, гипербола, парабола. Вывод канонических уравнений. 376, 379, 392, 403, 477(а, в), 479, 486, 507(а), 515, 558(1,3), 559(1,3), 564(1, 3), 567, 584(1), 585(1), 598, 600(1).

Тема 13. Плоскость в пространстве. Различные виды уравнения плоскости. Расстояние от точки до плоскости. Взаимное расположение двух плоскостей. 756, 758(а, в), 764(а, в), 765(а, в), 767(а, в), 794(а, в), 796(а, в), 798, 713, 715, 718(1), 719(1), 728(1, 3), 730(1), 733(1, 3).

Тема 14. Прямая линия в пространстве. Различные виды уравнения. Взаимное расположение двух прямых. 1058(а), 1059(а, в), 1060(а), 1066(а), 1068(а), 1113(а), 1116(а), 1122(а) , 624(1, 3), 625(1,3), 630(1), 632, 645(1).

Тема 15. Поверхности 2-го порядка. Поверхности вращения. Цилиндрические поверхности. Конические поверхности. 1252, 1254(а, в), 1256 , 769, 770(1), 771, 775(1).

Рис. 3.15

Поверхности вращения имеют весьма широкое применение во всех областях техники. Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии 1 вокруг неподвижной прямой i - оси вращения поверхности (рис.3.15). На чертеже поверхность вращения задается своим очерком. Очерком поверхности называются линии, которые ограничивают области ее проекций. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно, линия пересечения поверхности вращения плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями (рис. 3.15). Параллель наибольшего радиуса называют экватором, наименьшего - горлом. Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Меридиан, лежащий в плоскости, параллельной плоскости проекций, называют главным меридианом. В практике выполнения чертежей наиболее часто встречаются следующие поверхности вращения: цилиндрическая, коническая, сферическая, торовая.

Рис. 3.16

Цилиндрическую поверхность вращения . В качестве направляющей а следует взять окружность, а в качестве прямой b - ось i (рис.3.16). Тогда получим, что образующая l , параллельная оси i , вращается вокруг последней. Если ось вращения перпендикулярна горизонтальной плоскости проекций, то на П 1 цилиндрическая поверхность проецируется в окружность, а на П 3 - в прямоугольник. Главным меридианом цилиндрической поверхности являются две параллельные прямые.

Рис 3.17

Коническую поверхность вращения получим, вращая прямолинейную образующую l вокруг оси i . При этом образующая l пересекает ось i в точке S , называемой вершиной конуса (рис.3.17). Главным меридианом конической поверхности являются две пересекающиеся прямые. Если в качестве образующей взять отрезок прямой, а ось конуса перпендикулярной П 1 , то на П 1 коническая поверхность проецируется в круг, а на П 2 - в треугольник.



Сферическая поверхность образуется за счет вращения окружности вокруг оси, проходящей через центр окружности и лежащей в ее плоскости (рис.3.18). Экватор и меридианы сферической поверхности являются равными между собой окружностями. Поэтому при ортогональном проецировании на любую плоскость сферическая поверхность проецируется в круги.

Рис. 3.18 При вращении окружности вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, образуется поверхность, называемая торовой (рис.3.19).

Рис. 3.19

11.ПОЗИЦИОННЫЕ ЗАДАЧИ.ПРИНАДЛЕЖНОСТЬ ТОЧКИ, ЛИНИИ ПОВЕРХНОСТИ.ТЕОРЕМА МОНЖА. Под позиционными подразумеваются задачи, решение которых позволяет получить ответ о принадлежности элемента (точки) или подмножества (линии) множеству (поверхности). К позиционным относятся также задачи на определение общих элементов, принадлежащих различным геометрическим фигурам. Первая группа задач может быть объединена под общим названием задачи на принадлежность. К ним, в частности, относятся задачи на определение:1) принадлежности точки линии;2) принадлежности точки поверхности;3) принадлежности линии поверхности.Ко второй группе относятся задачи на пересечение. Эта группа содержит также три типа задач:1) на пересечение линии с линией;2) на пересечение поверхности с поверхностью;3) на пересечение линии с поверхностью. Принадлежность точки поверхности . Основное положение при решении задач для этого варианта принадлежности следующее: точка принадлежит поверхности, если она принадлежит какой-либо линии этой поверхности . В этом случае линии надо выбирать наиболее простыми, чтобы легче было построить проекции такой линии, затем использовать то обстоятельство, что проекции точки, лежащие на поверхности, должны принадлежать одноименным проекциям линии этой поверхности. Пример решение этой задачи показан на рисунке . Здесь есть два пути решения, поскольку можно провести две простейших линии, принадлежащих конической поверхности. В первом случае - проводится прямая линия - образующая конической поверхности S1 так, чтобы она проходила через какую-либо заданную проекцию точки С. Тем самым предполагаем, что точка С принадлежит образующей S1 конической поверхности, а следовательно - самой конической поверхности. В этом случае одноименные проекции точки С должны лежать на соответствующих проекциях этой образующей.Другая простейшая линия - окружность с диаметром 1-2 (радиус этой окружности - отсчитывается от оси конуса до очерковой образующей). Этот факт известен еще из школьного курса геометрии: при пересечении кругового конуса плоскостью, параллельной его основанию, или перпендикулярной к его оси, в сечении будет получаться окружность. Второй способ решения позволяет найти недостающую проекцию точки С, заданной своей фронтальной проекцией, принадлежащей поверхности конуса и совпадающей на чертеже с осью вращения конуса, без построения третьей проекции. Всегда следует иметь в виду, видима или не видима точка, лежащая на поверхности конуса (в случае, если она не видна, соответствующая проекция точки будет заключена в скобки). Очевидно, что в нашей задаче точка С принадлежит поверхности, поскольку проекции точки принадлежат одноимённым проекциям линий, использованных для решения как при первом, так и при втором способе решения. Принадлежность линии поверхности. Основное положение: линия принадлежит поверхности, если все точки линии принадлежат заданной поверхности . Это означает, что в данном случае принадлежности должна быть несколько раз решена задача о принадлежности точки поверхности. Торема Монжа :если две поверхности второго порядка описаны около третьей или вписаны в неё, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения окружности касания.

12.СЕЧЕНИЯ КОНУСА ВРАЩЕНИЯ ПРОЕЦИРУЮЩИМИ ПЛОСКОСТЯМИ .При пересечении поверхностей тел проецирующими плоскостями, одна проекция сечения совпадает с проекцией проецирующей плоскости. Конус может иметь в сечении пять различных фигур. Треугольник - если секущая плоскость пересекает конус через вершину по двум образующим.Окружность - если плоскость пересекает конус параллельно основанию (перпендикулярно оси).Эллипс - если плоскость пересекает все образующие под некоторым углом. Параболу - если плоскость параллельна одной из образующих конуса. Гиперболу - если плоскость параллельна оси или двум образующим конуса. Сечение поверхности плоскостью представляет собой плоскую фигуру, ограниченную замкнутой линией, все точки которой принадлежат как секущей плоскости, так и поверхности. При пересечении плоскостью многогранника в сечении получается многоугольник с вершинами, расположенными на ребрах многогранника. Пример . Построить проекции линии пересечения L поверхности прямого кругового конуса ω плоскостью β. Решение . В сечении получается парабола, вершина которой спроецируется в точку А (А′, А′′). Точки A, D, E линии пересечения являются экстремальными. На рис. построение искомой линии пересечения осуществлено с помощью горизонтальных плоскостей уровня αi, которые пересекают поверхность конуса ω по параллелям рi , а плоскость β - по отрезкам фронтально проецирующих прямых. Линия пересечения L полностью видима на плоскостях.

№13.Соосные поверхности. Метод концентрических сфер.

При построении линии пересечения поверхностей особенности пересечения соосных поверхностей вращения позволяют в качестве вспомогательных поверхностей-посредников использовать сферы, соосные с данными поверхностями. К соосным поверхностям вращения относятся поверхности, имеющие общую ось вращения. На рис. 134 изображены соосные цилиндр и сфера (рис. 134, а), соосные конус и сфера (рис. 134, б) и соосные цилиндр и конус (рис. 134, в)

Соосные поверхности вращения всегда пересекаются по окружностям, плоскости которых перпендикулярны оси вращения. Этих общих для обеих поверхностей окружностей столько, сколько существует точек пересечения очерковых линий поверхностей. Поверхности на рис. 134 пересекаются по окружностям, создаваемым точками 1 и 2 пересечения их главных меридианов. Вспомогательная сфера-посредник пересекает каждую из заданных поверхностей по окружности, в пересечении которых получаются точки, принадлежащие и другой поверхности, а значит, и линии пересечения. Если оси поверхностей пересекаются, то вспомогательные сферы проводят из одного центра-точки пересечения осей. Линию пересечения поверхностей в этом случае строят способом вспомогательных концентрических сфер. При построении линии пересечения поверхностей для использования способа вспомогательных концентрических сфер необходимо выполнение следующих условий:1) пересечение поверхностей вращения;2) оси поверхностей - пересекающиеся прямые - параллельны одной из плоскостей проекций, т. е. имеется общая плоскость симметрии;3) нельзя использовать способ вспомогательных секущих плоскостей, так как они не дают графически простых линий на поверхностях. Обычно способ вспомогательных сфер используется в сочетании со способом вспомогательных секущих плоскостей. На рис. 135 построена линия пересечения двух конических поверхностей вращения с пересекающимися во фронтальной плоскости уровня Ф (Ф1) осями вращения. Значит, главные меридианы этих поверхностей пересекаются и дают в своем пересечении точки видимости линии пересечения относительно плоскости П2 или самую высокую А и самую низкую В точки. В пересечении горизонтального меридиана h и параллели h", лежащих в одной вспомогательной секущей плоскости Г(Г2), определены точки видимости С и D линии пересечения относительно плоскости П1. Использовать вспомогательные секущие плоскости для построения дополнительных точек линии пересечения нецелесообразно, так как плоскости, параллельные Ф, будут пересекать обе поверхности по гиперболам, а плоскости, параллельные Г, будут давать в пересечении поверхностей окружности и гиперболы. Вспомогательные горизонтально или фронтально проецирующие плоскости, проведенные через вершину одной из поверхностей, будут пересекать их по образующим и эллипсам. В данном примере выполнены условия, позволяющие применение вспомогательных сфер для построения точек линии пересечения. Оси поверхностей вращения пересекаются в точке О (О1; О2), которая является центром вспомогательных сфер, радиус сферы изменяется в пределах Rmin < R < Rmах- Радиус максимальной сферы определяется расстоянием от центра О наиболее удаленной точки В (Rmax = О2В2), а радиус минимальной сферы определяется как радиус сферы, касающейся одной поверхности (по окружности h2) и пересекающей другую (по окружности h3).Плоскости этих окружностей перпендикулярны осям вращения поверхностей. В пересечении этих окружностей получаем точки Е и F, принадлежащие линии пересечения поверхностей:

h22 ^ h32 = E2(F2); Е2Е1 || А2А1; Е2Е1 ^ h21 =E1; F2F ^ h1 = F1 Промежуточная сфера радиуса R пересекает поверхности по окружностям h4 и h5, в пересечении которых находятся точки Ми N:h42 ^ h52 = M2(N2); M2M1 || А2А1, М2М1 ^ h41 = М1; N2N1 ^ h41 = N1 Соединяя одноименные проекции построенных точек с учетом их видимости, получаем проекции линии пересечения поверхностей.

№14. построение линии пересечения поверхностей, если хотя бы одна из них проецирующая. Характерные точки линии пересечения.

Прежде чем приступить к построению линии пересечения поверхностей, необходимо внимательно изучить условие задачи, т.е. какие поверхности пересекаются. Если одна из поверхностей является проецирующей, то решение задачи упрощается, т.к. на одной из проекций линия пересечения совпадает с проекцией поверхности. И задача сводится к нахождению второй проецирующей линии. При решении задачи следует отметить в первую очередь «характерные» точки или «особые». Это:

· Точки на крайних образующих

· Точки, делящие линию на видимую и невидимую часть

· Верхние и нижние точки и др. Далее следует разумно выбрать способ, каким будем пользоваться при построении линии пересечения поверхностей. Мы будем пользоваться двумя способами: 1. вспомогательных секущих плоскостей. 2. вспомогательных секущих сфер. К проецирующим поверхностям относятся: 1) цилиндр, если его ось перпендикулярна плоскости проекций; 2) призма, если ребра призмы перпендикулярны плоскости проекций. Проецирующая поверхность проецируется в линию на плоскость проекций. Все точки и линии, принадлежащие боковой поверхности проецирующего цилиндра или проецирующей призме проецируются в линию на ту плоскость, которой ось цилиндра или ребро призмы перпендикулярно. Линия пересечения поверхностей принадлежит обеим поверхностям одновременно и, если одна из этих поверхностей проецирующая, то для построения линии пересечения можно использовать следующее правило: если одна из пересекающихся поверхностей проецирующая, то одна проекция линии пересечения есть на чертеже в готовом виде и совпадает с проекцией проецирующей поверхности (окружность, в которую проецируется цилиндр или многоугольник, в который проецируется призма). Вторая проекция линии пересечения строится исходя из условия принадлежности точек этой линии другой не проецирующей поверхности.

Рассмотренные особенности характерных точек позволяют легко проверить правильность построения линии пересечения поверхностей, если она построена по произвольно выбранным точкам. В данном случае десяти точек достаточно для проведения плавных проекций линии пересечения. При необходимости может быть построено любое количество промежуточных точек. Построенные точки соединяют плавной линией с учетом особенностей их положения и видимости. Сформулируем общее правило построения линии пересечения поверхностей: выбирают вид вспомогательных поверхностей; строят линии пересечения вспомогательных поверхностей с заданными поверхностями; находят точки пересечения построенных линий и соединяют их между собой. Вспомогательные секущие плоскости выбираем таким образом, чтобы в пересечении с заданными поверхностями получались геометрически простые линии (прямые или окружности). Выбираем вспомогательные секущие плоскости. Чаще всего, в качестве вспомогательных секущих плоскостей выбирают проецирующие плоскости, в частности, плоскости уровня. При этом необходимо учитывать линии пересечения, получаемые на поверхности, в результате пресечения поверхности плоскостью. Так конус является наиболее сложной поверхностью по числу получаемых на нем линий. Только плоскости, проходящие через вершину конуса или перпендикулярные оси конуса, пересекают его соответственно по прямой линии и окружности (геометрически простейшие линии). Плоскость, проходящая параллельно одной образующей пересекает его по параболе, плоскость параллельная оси конуса пересекает его по гиперболе, а плоскость, пересекающая все образующие и наклонные к оси конуса, пересекает его по эллипсу. На сфере, при пересечении ее плоскостью, всегда получается окружность, а если пересекать ее плоскостью уровня, то эта окружность проецируется на плоскости проекции соответственно в прямую линию и окружность. Итак, в качестве вспомогательных плоскостей выбираем горизонтальные плоскости уровня, которые пересекают и конус, и сферу по окружностям (простейшие линии).Некоторые особые случаи пересечения поверхностей В некоторых случаях расположение, форма или соотношения размеров криволинейных поверхностей таковы, что для изображения линии их пресечения никаких сложных построений не требуется. К ним относятся пересечение цилиндров с параллельными образующими, конусов с общей вершиной, соосных поверхностей вращения, поверхностей вращения, описанных вокруг одной сферы.

Рис. 3.15

Поверхности вращения имеют весьма широкое применение во всех областях техники. Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии 1 вокруг неподвижной прямойi - оси вращения поверхности (рис.3.15). На чертеже поверхность вращения задается своим очерком. Очерком поверхности называются линии, которые ограничивают области ее проекций. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно, линия пересечения поверхности вращения плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями (рис. 3.15). Параллель наибольшего радиуса называют экватором, наименьшего - горлом. Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Меридиан, лежащий в плоскости, параллельной плоскости проекций, называют главным меридианом. В практике выполнения чертежей наиболее часто встречаются следующие поверхности вращения: цилиндрическая, коническая, сферическая, торовая.

Рис. 3.16

Цилиндрическую поверхность вращения . В качестве направляющейа следует взять окружность, а в качестве прямойb - осьi (рис.3.16). Тогда получим, что образующаяl , параллельная осиi , вращается вокруг последней. Если ось вращения перпендикулярна горизонтальной плоскости проекций, то наП 1 цилиндрическая поверхность проецируется в окружность, а наП 3 - в прямоугольник. Главным меридианом цилиндрической поверхности являются две параллельные прямые.

Рис 3.17

Коническую поверхность вращения получим, вращая прямолинейную образующуюl вокруг осиi . При этом образующаяl пересекает осьi в точкеS , называемой вершиной конуса (рис.3.17). Главным меридианом конической поверхности являются две пересекающиеся прямые. Если в качестве образующей взять отрезок прямой, а ось конуса перпендикулярнойП 1 , то наП 1 коническая поверхность проецируется в круг, а наП 2 - в треугольник.

Сферическая поверхность образуется за счет вращения окружности вокруг оси, проходящей через центр окружности и лежащей в ее плоскости (рис.3.18). Экватор и меридианы сферической поверхности являются равными между собой окружностями. Поэтому при ортогональном проецировании на любую плоскость сферическая поверхность проецируется в круги.

Рис. 3.18 При вращении окружности вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, образуется поверхность, называемая торовой (рис.3.19).

Рис. 3.19

11.ПОЗИЦИОННЫЕ ЗАДАЧИ.ПРИНАДЛЕЖНОСТЬ ТОЧКИ, ЛИНИИ ПОВЕРХНОСТИ.ТЕОРЕМА МОНЖА. Под позиционными подразумеваются задачи, решение которых позволяет получить ответ о принадлежности элемента (точки) или подмножества (линии) множеству (поверхности). К позиционным относятся также задачи на определение общих элементов, принадлежащих различным геометрическим фигурам. Первая группа задач может быть объединена под общим названием задачи на принадлежность. К ним, в частности, относятся задачи на определение:1) принадлежности точки линии;2) принадлежности точки поверхности;3) принадлежности линии поверхности.Ко второй группе относятся задачи на пересечение. Эта группа содержит также три типа задач:1) на пересечение линии с линией;2) на пересечение поверхности с поверхностью;3) на пересечение линии с поверхностью.Принадлежность точки поверхности . Основное положение при решении задач для этого варианта принадлежности следующее: точка принадлежит поверхности, если она принадлежит какой-либо линии этой поверхности . В этом случае линии надо выбирать наиболее простыми, чтобы легче было построить проекции такой линии, затем использовать то обстоятельство, что проекции точки, лежащие на поверхности, должны принадлежать одноименным проекциям линии этой поверхности. Пример решение этой задачи показан на рисунке . Здесь есть два пути решения, поскольку можно провести две простейших линии, принадлежащих конической поверхности. В первом случае - проводится прямая линия - образующая конической поверхности S1 так, чтобы она проходила через какую-либо заданную проекцию точки С. Тем самым предполагаем, что точка С принадлежит образующей S1 конической поверхности, а следовательно - самой конической поверхности. В этом случае одноименные проекции точки С должны лежать на соответствующих проекциях этой образующей.Другая простейшая линия - окружность с диаметром 1-2 (радиус этой окружности - отсчитывается от оси конуса до очерковой образующей). Этот факт известен еще из школьного курса геометрии: при пересечении кругового конуса плоскостью, параллельной его основанию, или перпендикулярной к его оси, в сечении будет получаться окружность. Второй способ решения позволяет найти недостающую проекцию точки С, заданной своей фронтальной проекцией, принадлежащей поверхности конуса и совпадающей на чертеже с осью вращения конуса, без построения третьей проекции. Всегда следует иметь в виду, видима или не видима точка, лежащая на поверхности конуса (в случае, если она не видна, соответствующая проекция точки будет заключена в скобки). Очевидно, что в нашей задаче точка С принадлежит поверхности, поскольку проекции точки принадлежат одноимённым проекциям линий, использованных для решения как при первом, так и при втором способе решения.Принадлежность линии поверхности. Основное положение:линия принадлежит поверхности, если все точки линии принадлежат заданной поверхности . Это означает, что в данном случае принадлежности должна быть несколько раз решена задача о принадлежности точки поверхности.Торема Монжа :если две поверхности второго порядка описаны около третьей или вписаны в неё, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения окружности касания.

12.СЕЧЕНИЯ КОНУСА ВРАЩЕНИЯ ПРОЕЦИРУЮЩИМИ ПЛОСКОСТЯМИ . При пересечении поверхностей тел проецирующими плоскостями, одна проекция сечения совпадает с проекцией проецирующей плоскости. Конус может иметь в сечении пять различных фигур.Треугольник - если секущая плоскость пересекает конус через вершину по двум образующим.Окружность - если плоскость пересекает конус параллельно основанию (перпендикулярно оси).Эллипс - если плоскость пересекает все образующие под некоторым углом.Параболу - если плоскость параллельна одной из образующих конуса.Гиперболу - если плоскость параллельна оси или двум образующим конуса.Сечение поверхности плоскостью представляет собой плоскую фигуру, ограниченную замкнутой линией, все точки которой принадлежат как секущей плоскости, так и поверхности. При пересечении плоскостью многогранника в сечении получается многоугольник с вершинами, расположенными на ребрах многогранника.Пример . Построить проекции линии пересечения L поверхности прямого кругового конуса ω плоскостью β.Решение . В сечении получается парабола, вершина которой спроецируется в точку А (А′, А′′). Точки A, D, E линии пересечения являются экстремальными. На рис. построение искомой линии пересечения осуществлено с помощью горизонтальных плоскостей уровня αi, которые пересекают поверхность конуса ω по параллелям рi , а плоскость β - по отрезкам фронтально проецирующих прямых. Линия пересечения L полностью видима на плоскостях.

13.Соосные поверхности. Метод концентрических сфер.

При построении линии пересечения поверхностей особенности пересечения соосных поверхностей вращения позволяют в качестве вспомогательных поверхностей-посредников использовать сферы, соосные с данными поверхностями. К соосным поверхностям вращения относятся поверхности, имеющие общую ось вращения. На рис. 134 изображены соосные цилиндр и сфера (рис. 134, а), соосные конус и сфера (рис. 134, б) и соосные цилиндр и конус (рис. 134, в)

Соосные поверхности вращения всегда пересекаются по окружностям, плоскости которых перпендикулярны оси вращения. Этих общих для обеих поверхностей окружностей столько, сколько существует точек пересечения очерковых линий поверхностей. Поверхности на рис. 134 пересекаются по окружностям, создаваемым точками 1 и 2 пересечения их главных меридианов. Вспомогательная сфера-посредник пересекает каждую из заданных поверхностей по окружности, в пересечении которых получаются точки, принадлежащие и другой поверхности, а значит, и линии пересечения. Если оси поверхностей пересекаются, то вспомогательные сферы проводят из одного центра-точки пересечения осей. Линию пересечения поверхностей в этом случае строят способом вспомогательных концентрических сфер. При построении линии пересечения поверхностей для использования способа вспомогательных концентрических сфер необходимо выполнение следующих условий:1) пересечение поверхностей вращения;2) оси поверхностей - пересекающиеся прямые - параллельны одной из плоскостей проекций, т. е. имеется общая плоскость симметрии;3) нельзя использовать способ вспомогательных секущих плоскостей, так как они не дают графически простых линий на поверхностях. Обычно способ вспомогательных сфер используется в сочетании со способом вспомогательных секущих плоскостей. На рис. 135 построена линия пересечения двух конических поверхностей вращения с пересекающимися во фронтальной плоскости уровня Ф (Ф1) осями вращения. Значит, главные меридианы этих поверхностей пересекаются и дают в своем пересечении точки видимости линии пересечения относительно плоскости П2 или самую высокую А и самую низкую В точки. В пересечении горизонтального меридиана h и параллели h", лежащих в одной вспомогательной секущей плоскости Г(Г2), определены точки видимости С и D линии пересечения относительно плоскости П1. Использовать вспомогательные секущие плоскости для построения дополнительных точек линии пересечения нецелесообразно, так как плоскости, параллельные Ф, будут пересекать обе поверхности по гиперболам, а плоскости, параллельные Г, будут давать в пересечении поверхностей окружности и гиперболы. Вспомогательные горизонтально или фронтально проецирующие плоскости, проведенные через вершину одной из поверхностей, будут пересекать их по образующим и эллипсам. В данном примере выполнены условия, позволяющие применение вспомогательных сфер для построения точек линии пересечения. Оси поверхностей вращения пересекаются в точке О (О1; О2), которая является центром вспомогательных сфер, радиус сферы изменяется в пределах Rmin < R < Rmах- Радиус максимальной сферы определяется расстоянием от центра О наиболее удаленной точки В (Rmax = О2В2), а радиус минимальной сферы определяется как радиус сферы, касающейся одной поверхности (по окружности h2) и пересекающей другую (по окружности h3).Плоскости этих окружностей перпендикулярны осям вращения поверхностей. В пересечении этих окружностей получаем точки Е и F, принадлежащие линии пересечения поверхностей:

h22 ^ h32 = E2(F2); Е2Е1 || А2А1; Е2Е1 ^ h21 =E1; F2F ^ h1 = F1 Промежуточная сфера радиуса R пересекает поверхности по окружностям h4 и h5, в пересечении которых находятся точки Ми N:h42 ^ h52 = M2(N2); M2M1 || А2А1, М2М1 ^ h41 = М1; N2N1 ^ h41 = N1 Соединяя одноименные проекции построенных точек с учетом их видимости, получаем проекции линии пересечения поверхностей.

№14. построение линии пересечения поверхностей, если хотя бы одна из них проецирующая. Характерные точки линии пересечения.

Прежде чем приступить к построению линии пересечения поверхностей, необходимо внимательно изучить условие задачи, т.е. какие поверхности пересекаются. Если одна из поверхностей является проецирующей, то решение задачи упрощается, т.к. на одной из проекций линия пересечения совпадает с проекцией поверхности. И задача сводится к нахождению второй проецирующей линии. При решении задачи следует отметить в первую очередь «характерные» точки или «особые». Это:

· Точки на крайних образующих

· Точки, делящие линию на видимую и невидимую часть

· Верхние и нижние точки и др. Далее следует разумно выбрать способ, каким будем пользоваться при построении линии пересечения поверхностей. Мы будем пользоваться двумя способами: 1. вспомогательных секущих плоскостей. 2. вспомогательных секущих сфер. К проецирующим поверхностям относятся: 1) цилиндр, если его ось перпендикулярна плоскости проекций; 2) призма, если ребра призмы перпендикулярны плоскости проекций. Проецирующая поверхность проецируется в линию на плоскость проекций. Все точки и линии, принадлежащие боковой поверхности проецирующего цилиндра или проецирующей призме проецируются в линию на ту плоскость, которой ось цилиндра или ребро призмы перпендикулярно. Линия пересечения поверхностей принадлежит обеим поверхностям одновременно и, если одна из этих поверхностей проецирующая, то для построения линии пересечения можно использовать следующее правило: если одна из пересекающихся поверхностей проецирующая, то одна проекция линии пересечения есть на чертеже в готовом виде и совпадает с проекцией проецирующей поверхности (окружность, в которую проецируется цилиндр или многоугольник, в который проецируется призма). Вторая проекция линии пересечения строится исходя из условия принадлежности точек этой линии другой не проецирующей поверхности.

Рассмотренные особенности характерных точек позволяют легко проверить правильность построения линии пересечения поверхностей, если она построена по произвольно выбранным точкам. В данном случае десяти точек достаточно для проведения плавных проекций линии пересечения. При необходимости может быть построено любое количество промежуточных точек. Построенные точки соединяют плавной линией с учетом особенностей их положения и видимости. Сформулируем общее правило построения линии пересечения поверхностей: выбирают вид вспомогательных поверхностей; строят линии пересечения вспомогательных поверхностей с заданными поверхностями; находят точки пересечения построенных линий и соединяют их между собой. Вспомогательные секущие плоскости выбираем таким образом, чтобы в пересечении с заданными поверхностями получались геометрически простые линии (прямые или окружности). Выбираем вспомогательные секущие плоскости. Чаще всего, в качестве вспомогательных секущих плоскостей выбирают проецирующие плоскости, в частности, плоскости уровня. При этом необходимо учитывать линии пересечения, получаемые на поверхности, в результате пресечения поверхности плоскостью. Так конус является наиболее сложной поверхностью по числу получаемых на нем линий. Только плоскости, проходящие через вершину конуса или перпендикулярные оси конуса, пересекают его соответственно по прямой линии и окружности (геометрически простейшие линии). Плоскость, проходящая параллельно одной образующей пересекает его по параболе, плоскость параллельная оси конуса пересекает его по гиперболе, а плоскость, пересекающая все образующие и наклонные к оси конуса, пересекает его по эллипсу. На сфере, при пересечении ее плоскостью, всегда получается окружность, а если пересекать ее плоскостью уровня, то эта окружность проецируется на плоскости проекции соответственно в прямую линию и окружность. Итак, в качестве вспомогательных плоскостей выбираем горизонтальные плоскости уровня, которые пересекают и конус, и сферу по окружностям (простейшие линии).Некоторые особые случаи пересечения поверхностей В некоторых случаях расположение, форма или соотношения размеров криволинейных поверхностей таковы, что для изображения линии их пресечения никаких сложных построений не требуется. К ним относятся пересечение цилиндров с параллельными образующими, конусов с общей вершиной, соосных поверхностей вращения, поверхностей вращения, описанных вокруг одной сферы.



Понравилась статья? Поделитесь с друзьями!