Когда наступает невесомость. Большая энциклопедия нефти и газа

Энциклопедичный YouTube

  • 1 / 5

    В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

    Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя , предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также - процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

    Воздействие на организм человека

    При переходе из условий земной гравитации к условиям невесомости (в первую очередь - при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации .

    При длительном (более недели) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер .

    Первое и самое очевидное последствие невесомости - стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма . Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин) .

    Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности .

    Вес и гравитация

    Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения. Это не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 / ², что всего лишь на 10 % меньше, чем на поверхности Земли . Состояние невесомости на МКС возникает не из-за «отсутствия гравитации», а за счёт движения по круговой орбите с первой космической скоростью , то есть космонавты как бы постоянно «падают вперед» со скоростью 7,9 км/с.

    Невесомость на Земле

    На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолет под воздействием одной лишь силы земного притяжения. Эта траектория является параболой при небольших скоростях движения, из-за чего её иногда ошибочно называют «параболической»; в общем случае траектория представляет собой эллипс или гиперболу.

    Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолет покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе, а нить не была натянута. Для достижения этого эффекта самолёт должен иметь постоянное ускорение g, направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она имеет специальное мягкое покрытие на стенах, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

    Подобное чувство невесомости человек испытывает при полетах рейсами гражданской авиации во время посадки. Однако в целях безопасности полета и из-за большой нагрузки на конструкцию самолета, гражданская авиация сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полета в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомыми с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

    Утверждения, что самолет для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова » - не более чем миф. Тренировки выполняются в слегка модифицированных серийных машинах пассажирского или грузового класса, для которых фигуры высшего пилотажа и подобные режимы полета являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному разрушению несущих конструкций.

    Состояние невесомости можно ощутить в начальный момент

    Cтраница 1


    Состояние невесомости реализуется, например, is лифте, который свободно падает в поле тяготения Земли, или в космическом корабле, движущемся с неработающим двигателем в гравитационном поле. Такое состояние характерно для искусственных спутников и орбитальных космических станций. При невесомости действие на механическую систему гравитационного поля компенсируется силами инерции.  

    Состояние невесомости возникает тогда, когда на тело действует только сила тяжести я поэтому оно движется с ускорением свободного падения. У человека в этом случае отсутствуют внутренние (мышечные) напряжения и поэтому он не чувствует свой вес.  

    Состояние невесомости реализуется, например, в лифте, который свободно падает в поле тяготения Земли, или в космическом корабле, движущемся с неработающим двигателем в гравитационном поле. Такое состояние характерно для искусственных спутников и орбитальных космических станций. При невесомости действие на механическую систему гравитационного поля компенсируется силами инерции.  

    Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения модуля скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением; поэтому в корабле наблюдается явление невесомости.  

    Состояние невесомости достигается в свободном полете. И спутник на орбите, и свободно летящий камень, и подпрыгнувший человек находятся в состоянии невесомости. Груз, подвешенный на нити, в свободном полете невесом и, следовательно, не натягивает нить. Легко изготовить прибор, который дает возможность наблюдать состояние невесомости.  

    Состояние невесомости наступает в баллистических ракетах) и космических кораблях после того, как прекратилась работа двигателей и ракета или космический корабль вышли из плотных слоев атмосферы. Вначале под действием силы тяги реактивных двигателей (см. § 124), направленной вверх, ракета или корабль движутся с большим ускорением а и набирают вертикальную скорость.  

    Состояние невесомости может быть достигнуто различ-йыми способами, хотя оно (вольно или невольно) и ассоциируется с плаванием космонавтов в кабине космического корабля.  

    Почему состояние невесомости на борту орбитальной станции свидетельствует о пропорциональности силы земного тяготения массе притягиваемых тел.  

    Определим состояние невесомости следующим образом: тело Q находится в невесомости, если равнодействующая всех внутренних сил, приложенных к любому элементу, выделенному в теле, равна нулю.  


    В состоянии невесомости и на путях к этому сб-стоянию общая картина поведения жидкости совершенно меняется из-за изменения соотношения между силами поверхностного натяжения и инерционными силами.  

    При состоянии невесомости все точки тела имеют равные уско-рения.  

    В состоянии невесомости тело, находящееся под действием сил веса, сохраняет внутри космического корабля состояние равновесия или покоя относительно системы координат, связанной с космическим кораблем. Ясно, что при этом частицы тела освобождаются от взаимодействий и совершают движение относительно приближенно инерциальной системы отсчета вместе с кораблем как свободные материальные точки.  

    В состоянии невесомости ось ротора при условии (7.9.13) описывает в подшипниках линейчатую двухполосную коническую поверхность. При этом режиме возникают кромочные контакты цапф и подшипников, в результате чего происходит развальцовывание подшипников со стороны их наружных торцовых поверхностей.  

    В состоянии невесомости приобретают существенное значение силы взаимодействия между телами, которые в обычных условиях играют второстепенную роль из-за их малости по сравнению с весом.  

    Горение свечи на Земле (слева) и в невесомости (справа)

    Невесо́мость - состояние, в котором отсутствует сила взаимодействия тела с опорой или подвесом (вес тела), возникающая в связи с гравитационным притяжением или действием других массовых сил (в частности, силы инерции, возникающей при ускоренном движении тела).

    Иногда в качестве синонома названия этого явления используется термин микрогравитация , что неверно (создаётся впечатление, что гравитация отсутствует или пренебрежительно мала).

    Причины

    Состояние невесомости имеет место, когда действующие на тело внешние силы являются только массовыми (силы тяготения), либо поле этих массовых сил локально однородно, то есть силы поля сообщают всем частицам тела в каждом его положении одинаковые по модулю и направлению ускорения (что при движении в поле тяготения Земли практически имеет место, если размеры тела малы по сравнению с радиусом Земли), либо начальные скорости всех частиц тела по модулю и направлению одинаковы (тело движется поступательно).

    Например, космический аппарат и все находящиеся в нём тела, получив соответствующую начальную скорость, движутся под действием сил тяготения вдоль своих орбит практически с одинаковыми ускорениями, как свободные; ни сами тела, ни их частицы взаимных давлений друг на друга не оказывают, то есть находятся в состоянии невесомости. При этом по отношению к кабине аппарата находящееся в нём тело может в любом месте оставаться в покое (свободно "висеть" в пространстве). Хотя силы тяготения при невесомости действуют на все частицы тела, но нет внешних поверхностных сил, которые могли бы вызывать взаимные давления частиц друг на друга.

    Таким образом, любое тело, размеры которого малы по сравнению с земным радиусом, совершающее свободное поступательное движение в поле тяготения Земли, будет, при отсутствии других внешних сил, находиться в состоянии невесомости. Аналогичным будет результат для движения в поле тяготения любых других небесных тел.

    История

    Изменение веса шарика при его свободном падении в жидкости было отмечено ещё Лейбницем . В 1892-1893 гг. несколько опытов, демонстрирующих возникновение невесомости при свободном падении, поставил профессор МГУ Н. А. Любимов , например, маятник , выведенный из положения равновесия при свободном падении не качался .

    Особенности деятельности человека и работы техники

    В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

    Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя , предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также - процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

    Воздействие на организм человека

    При переходе из условий наличия веса тела у поверхности Земли к условиям невесомости (в первую очередь - при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации .

    При длительном (более недели) пребывании человека в космосе отсутствие веса тела начинает вызывать в организме определённые вредные изменения .

    Первое и самое очевидное последствие невесомости - стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма . Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин) .

    Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности .

    Вес и гравитация

    Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения, но это вовсе не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 / ², что всего лишь на 10 % меньше, чем на поверхности Земли . Состояние невесомости на МКС возникает не из-за «отсутствия гравитации», а за счёт движения по круговой орбите с первой космической скоростью , то есть космонавты как бы постоянно «падают вперёд» со скоростью 7,9 км/с.

    Невесомость на Земле

    Траектория маневра для достижения невесомости

    На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолёт под воздействием одной лишь силы земного притяжения. Эта траектория при небольших скоростях движения получается параболой , из-за чего её иногда ошибочно называют «параболической». В общем случае траектория представляет собой эллипс или гиперболу.

    Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолёт покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе без натяжения нити. Для достижения этого эффекта самолёт должен иметь постоянное ускорение равное g и направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она представляет собой полностью обитую мягким покрытием пассажирскую кабину без кресел, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

    Подобное чувство невесомости (частичной) человек испытывает при полётах рейсами гражданской авиации во время посадки. Однако в целях безопасности полёта и из-за большой нагрузки на конструкцию самолёта, любой рейсовый самолёт сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полёта в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его немного отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомыми с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

    Утверждения, что самолёт для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова » - не более чем миф. Тренировки выполняются в слегка модифицированных серийных пассажирских или грузовых самолётах, для которых фигуры высшего пилотажа и подобные режимы полёта являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному износу несущих конструкций.

    Мы привыкли к тому, что все предметы вокруг нас имеют вес. Происходит это потому, что сила гравитации притягивает их к Земле. Даже если мы летим в самолёте или прыгаем с парашютом, вес никуда от нас не девается. Но что же произойдёт, если вес всё же исчезнет, когда это бывает и какие интересные явления наблюдаются в условиях невесомости? Обо всём этом — в данном посте.

    Закон всемирного тяготения, открытый ещё Ньютоном, гласит, что все тела, имеющие массу, притягиваются друг к другу. Для тел с маленькой массой такое притяжение практически не заметно, но если тело имеет большую массу, такую, как наша планета Земля (а её масса в килограммах выражается 25-значным числом), то притяжение становится заметным. Поэтому все предметы притягиваются к Земле — если их поднять, они падают вниз, а когда упадут, сила тяжести прижимает их к поверхности. Это и приводит к тому, что всё на Земле имеет вес, даже воздух прижимается к Земле силой тяжести и своим весом давит на всё, что находится на её поверхности.

    Когда вес может исчезнуть? Либо тогда, когда сила тяжести вообще не действует на тело, либо тогда, когда она действует, но телу ничто не мешает свободно падать. Хотя с удалением от Земли сила притяжения к ней уменьшается, даже на высоте в сотни и тысячи километров она остаётся ещё большой, поэтому избавиться от силы тяжести непросто. А вот оказаться в состоянии свободного падения вполне возможно.

    Например, можно оказаться в состоянии невесомости, если оказаться в самолёте, движущемся по специальной траектории — так же, как тело, которому не мешало бы сопротивление воздуха.

    Выглядит всё это так:

    Конечно, долго по такой траектории самолёт двигаться не может, т. к. врежется в землю. Поэтому с длительным пребыванием в условиях невесомости сталкиваются только космонавты, живущие на орбитальной станции. И им приходится привыкать к тому, что многие привычные нам явления в условиях невесомости происходят совсем не так, как на Земле.

    1) В невесомости можно легко перемещать тяжёлые предметы и перемещаться самому, приложив лишь небольшое усилие. Правда, по этой же причине любые предметы нужно специально закреплять, чтобы они не летали по орбитальной станции, а на время сна космонавты забираются в специальные мешки, прикреплённые к стене.

    Для того, чтобы научиться двигаться в невесомости, нужно время, и у новичков это получается не сразу. «Они толкаются со всей силы и ударяются головой, путаются в проводах и прочее, так что это источник бесконечного веселья» — сказал на эту тему один из американских астронавтов.

    2) Жидкости в невесомости принимают шарообразную форму. Воду не получится, как мы привыкли на Земле, хранить в открытой посуде, вылить из чайника и налить в чашку, даже вымыть руки не получится привычным для нас способом.

    3) Пламя в условиях невесомости очень слабое и со временем затухает. Если в обычных условиях зажечь свечу, она будет гореть ярко, пока не сгорит. Но происходит это потому, что нагретый воздух становится легче и поднимается вверх, освобождая место для свежего воздуха, насыщенного кислородом. В невесомости конвекции воздуха не наблюдается и со временем кислород вокруг пламени выгорает и горение прекращается.

    Горение свечи в обычных условиях и в невесомости (справа)

    Но постоянный приток кислорода нужен не только для горения, но и для дыхания. Поэтому если космонавт неподвижен (например, спит), то в отсеке должен работать вентилятор, чтобы перемешивать воздух.

    4) В невесомости можно получать уникальные материалы, которые трудно или вообще невозможно получить в земных условиях. Например, сверхчистые вещества, новые композиционные материалы, большие правильные кристаллы и даже лекарства. Если бы удалось снизить стоимость доставки грузов на орбиту и обратно, это решило бы многие технологические проблемы.

    5) В невесомости на борту орбитальной станции были впервые обнаружены некоторые ранее неизвестные эффекты. Например, образование структур, напоминающих кристаллические, в плазме, или «эффект Джанибекова» — когда вращающийся предмет через определённые промежутки времени внезапно меняет ось вращения на 180 градусов.

    Эффект Джанибекова:

    6) Невесомость оказывает существенное влияние на человека и живые организмы. Хотя к жизни в невесомости можно приспособиться, сделать это не так просто. Оказавшись в состоянии невесомости впервые, человек теряет ориентацию в пространстве, возникает головокружение, т. к. вестибулярный аппарат перестаёт нормально работать. Другие изменения в организме включают перераспределение жидкости в организме, из-за чего отекает лицо и закладывает нос, из-за пропадания нагрузки на позвоночник увеличивается рост, а при длительном пребывании в невесомости атрофируются мышцы и теряют прочность кости. Чтобы уменьшить негативные изменения, космонавтам приходится регулярно выполнять специальные упражнения.

    После возвращения на Землю космонавтам приходится вновь приспосабливаться к прежним условиям не только физически, но и психологически. Они могут, например, по привычке оставить стакан в воздухе, забыв, что он упадёт.

    «Физика невесомости». Как работают законы физики в условиях невесомости, рассказывают космонавты на МКС:

    Более подробно о том, что это такое и где его можно ощутить, и пойдёт речь в этой статье.

    Статическая

    Существуют два типа невесомости. Это статическая — наблюдается при удалении от объекта с большой массой. Например, тело, улетевшее на значительное расстояние от планеты. Следует при этом понимать, что его вес полностью не исчезает.

    Дело в том, что гравитация от массивных объектов, таких как планеты и звезды, хоть и уменьшается с расстоянием, но полностью не исчезает. Действие её распространяется бесконечно далеко во все уголки Вселенной, обратно пропорционально квадрату расстояния. Это следует из определения невесомости.

    Таким образом, выйти из зоны действия гравитационного поля невозможно.

    Динамическая

    Другой тип невесомости — это динамическая. Ее постоянно испытывают космонавты и лётчики. Нивелировать действие гравитационного поля массивного объекта можно путем свободного падения на него. Для этого необходимо, чтобы объект набрал определённую скорость и стал спутником.

    Набрав необходимую скорость, спутник начинает переходить в состояние постоянного свободного падения. Предметы внутри него будут находиться в состоянии невесомости. Такая скорость называется первой космической.

    Для планеты Земля, например, скорость составляет порядка 8 километров в секунду. Для Солнца — уже 640. Все зависит от массы объекта и его плотности. В таких где плотность достигает сотни миллионов тонн на кубический сантиметр — космическая скорость приближается к скорости света.

    Невесомость на Земле

    Оказывается, испытать состояние невесомости можно, не покидая пределы планеты. Правда, на очень короткий период. Например, пассажир автомобиля, едущего по выгнутому мосту, испытает невесомость на некоторое время в верхней части выпуклости моста.

    Пассажиры, едущие в общественном транспорте по ухабистой дороге, постоянно испытывают действие невесомости каждый раз, как автобус наезжает на яму или кочку. На короткий промежуток времени они находятся в состоянии свободного падения.

    Развлечение

    В последнее время в сфере индустрии развлечений появились специальные полигоны, где все желающие могут испытать невесомость.

    Пройдя медицинскую комиссию и заплатив определённую сумму денег, можно попасть на борт самолёта, который летит по волнообразной траектории, и во время пике люди на протяжении полминуты могут испытать необычное чувство невесомости.

    Пилот самолёта через селекторную связь сообщает о начале действия невесомости. Это необходимо в целях безопасности. Дело в том, что после свободного падения самолёт стремительно набирает высоту. При этом люди, находящиеся на борту, испытывают диаметрально противоположный эффект — перегрузку.

    Порой эта величина достигает трёхкратного значения ускорения свободного падения. Иными словами, вес тела в невесомости будет в три раза больше естественного. При падении с высоты нескольких метров с такой массой тела можно очень легко получить травму.

    Для этих целей на борту самолёта в отделении для невесомости сидят специально обученные инструкторы. В их задачу входит вовремя опускать на пол самолёта тех людей, которые не успели уложиться в данный временной интервал.

    Серия взлётов и падений происходит с периодичностью до двадцати раз за один полет самолёта.

    В России, например, для желающих ощутить невесомость есть специальная центрифуга, которая находится в центре подготовки космонавтов и пилотов. Опять же, после медкомиссии и денежного взноса в размере порядка 55 тыс. рублей человек может ощутить на себе действие невесомости.

    Влияние на организм человека

    По определению, невесомость абсолютно безвредна для организма человека. Сложности начинаются, когда она длится несколько суток, недель или месяцев.

    В большинстве случаев это касается только обитателей космических станций. Космонавты, долгое время находящиеся на борту аппаратов, начинают испытывать существенный дискомфорт. В первую очередь это связано с вестибулярным механизмом.

    На Земле, в привычных условиях, отолиты вестибулярного аппарата давят на нервные окончания, таким образом подсказывая нашему мозгу, где верх и низ, ориентируя тело человека в пространстве.

    Вес и невесомость

    Совсем другое дело, когда тело ничего не весит. Все процессы в нем протекают иначе. Из-за отсутствия давления отолитов наступает нарушение ориентации в пространстве. Понятие «верх» и «низ» в космосе полностью исчезает. Вредит организму человека также отсутствие физической нагрузки. В таком состоянии мышечная ткань атрофируется, если не предпринимать никаких мер. С её деградацией страдает и костная ткань. При отсутствии нагрузки в кости тела поступает меньше фосфора.

    Возникают сложности с питанием и глотанием жидкостей. Все жидкости при этом стремятся принять сферическую форму, что очень затрудняет повседневные вещи. Даже обычный насморк в условиях невесомости может оказаться очень тяжёлым испытанием для организма из-за того, что мокроты не выводятся под действием силы тяжести, а образуют сферические капли.

    Для поддержания необходимого тонуса космонавты постоянно тренируются по несколько часов в день. При отходе ко сну привязывают себя специальными ремешками, чтобы не получить травму во время сна.

    Для питания космонавтов разработана специальная пища в тюбиках и хлеб, который не крошится.

    Прежде, чем длительное время испытывать невесомость, человек должен ощутить её действие на земле, чтобы выяснить, как в дальнейшем будет на него воздействовать отсутствие силы тяжести.



Понравилась статья? Поделитесь с друзьями!