Когда слу не имеет решения. Методы решения систем линейных уравнений

Системой m линейных уравнений с n неизвестными называется система вида

где a ij и b i (i =1,…,m ; b =1,…,n ) – некоторые известные числа, а x 1 ,…,x n – неизвестные. В обозначении коэффициентов a ij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы .

Числа, стоящие в правых частях уравнений, b 1 ,…,b m называются свободными членами.

Совокупность n чисел c 1 ,…,c n называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной . В противном случае, т.е. если система не имеет решений, то она называется несовместной .

Рассмотрим способы нахождения решений системы.


МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче A X=B .

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .

Пусть определитель матрицы отличен от нуля |A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A : . Поскольку A -1 A = E и E X = X , то получаем решение матричного уравнения в виде X = A -1 B .

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B .

Примеры. Решить системы уравнений.

ПРАВИЛО КРАМЕРА

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы .

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство . Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A 11 элемента a 11 , 2-ое уравнение – на A 21 и 3-е – на A 31 :

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений


МЕТОД ГАУССА

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x 1 . Для этого второе уравнение разделим на а 21 и умножим на –а 11 , а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а 31 и умножим на –а 11 , а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x 2 . Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x 3 , затем из 2-го уравнения x 2 и, наконец, из 1-го – x 1 .

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.


Таким образом, система имеет бесконечное множество решений.

§1. Системы линейных уравнений.

Система вида

называется системой m линейных уравнений сn неизвестными.

Здесь
- неизвестные,- коэффициенты при неизвестных,
- свободные члены уравнений.

Если все свободные члены уравнений равны нулю, система называется однородной .Решением системы называется совокупность чисел
, при подстановке которых в систему вместо неизвестных все уравнения обращаются в тождества. Система называетсясовместной , если она имеет хотя бы одно решение. Совместная система, имеющая единственное решение, называетсяопределенной . Две системы называютсяэквивалентными , если множества их решений совпадают.

Система (1) может быть представлена в матричной форме с помощью уравнения

(2)

.

§2. Совместность систем линейных уравнений.

Назовем расширенной матрицей системы (1) матрицу

Теорема Кронекера - Капелли . Система (1) совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы:

.

§3. Решение систем n линейных уравнений с n неизвестными.

Рассмотрим неоднородную систему n линейных уравнений сn неизвестными:

(3)

Теорема Крамера .Если главный определитель системы (3)
, то система имеет единственное решение, определяемое по формулам:

т.е.
,

где - определитель, получаемый из определителязаменой-го столбца на столбец свободных членов.

Если
, а хотя бы один из≠0, то система решений не имеет.

Если
, то система имеет бесконечно много решений.

Систему (3) можно решить, используя ее матричную форму записи (2). Если ранг матрицы А равенn , т.е.
, то матрицаА имеет обратную
. Умножив матричное уравнение
на матрицу
слева, получим:

.

Последнее равенство выражает способ решения систем линейных уравнений с помощью обратной матрицы.

Пример. Решить систему уравнений с помощью обратной матрицы.

Решение. Матрица
невырожденная, так как
, значит, существует обратная матрица. Вычислим обратную матрицу:
.


,

Задание . Решить систему методом Крамера.

§4. Решение произвольных систем линейных уравнений.

Пусть дана неоднородная система линейных уравнений вида (1).

Предположим, что система совместна, т.е. выполнено условие теоремы Кронекера-Капелли:
. Если ранг матрицы
(числу неизвестных), то система имеет единственное решение. Если
, то система имеет бесконечно много решений. Поясним.

Пусть ранг матрицы r (A )= r < n . Поскольку
, то существует некоторый ненулевой минор порядкаr . Назовем его базисным минором. Неизвестные, коэффициенты которых образуют базисный минор, назовем базисными переменными. Остальные неизвестные назовем свободными переменными. Переставим уравнения и перенумеруем переменные так, чтобы этот минор располагался в левом верхнем углу матрицы системы:

.

Первые r строк линейно независимы, остальные выражаются через них. Следовательно, эти строки (уравнения) можно отбросить. Получим:

Дадим свободным переменным произвольные числовые значения: . Оставим в левой части только базисные переменные, свободные перенесем в правую часть.

Получили систему r линейных уравнений сr неизвестными, определитель которой отличен от 0. Она имеет единственное решение.

Эта система называется общим решением системы линейных уравнений (1). Иначе: выражение базисных переменных через свободные называется общим решением системы. Из него можно получить бесконечное множествочастных решений , придавая свободным переменным произвольные значения. Частное решение, полученное из общего при нулевых значениях свободных переменных называетсябазисным решением . Число различных базисных решений не превосходит
. Базисное решение с неотрицательными компонентами называетсяопорным решением системы.

Пример .

,r =2.

Переменные
- базисные,
- свободные.

Сложим уравнения; выразим
через
:

- общее решение.

- частное решение при
.

- базисное решение, опорное.

§5. Метод Гаусса.

Метод Гаусса - это универсальный метод исследования и решения произвольных систем линейных уравнений. Он состоит в приведении системы к диагональному (или треугольному) виду путем последовательного исключения неизвестных с помощью элементарных преобразований, не нарушающих эквивалентности систем. Переменная считается исключенной, если она содержится только в одном уравнении системы с коэффициентом 1.

Элементарными преобразованиями системы являются:

Умножение уравнения на число, отличное от нуля;

Сложение уравнения, умноженного на любое число, с другим уравнением;

Перестановка уравнений;

Отбрасывание уравнения 0 = 0.

Элементарные преобразования можно совершать не над уравнениями, а над расширенными матрицами получающихся эквивалентных систем.

Пример .

Решение. Выпишем расширенную матрицу системы:

.

Выполняя элементарные преобразования, приведем левую часть матрицы к единичному виду: на главной диагонали будем создавать единицы, а вне ее - нули.









Замечание . Если при выполнении элементарных преобразований получено уравнение вида 0= к (где к 0), то система несовместна.

Решение систем линейных уравнений методом последовательного исключения неизвестных можно оформлять в виде таблицы .

Левый столбец таблицы содержит информацию об исключенных (базисных) переменных. Остальные столбцы содержат коэффициенты при неизвестных и свободные члены уравнений.

В исходную таблицу записывают расширенную матрицу системы. Далее приступают к выполнению преобразований Жордана:

1. Выбирают переменную , которая станет базисной. Соответствующий столбец называют ключевым. Выбирают уравнение, в котором эта переменная останется, будучи исключенной из других уравнений. Соответствующую строку таблицы называют ключевой. Коэффициент, стоящий на пересечении ключевой строки и ключевого столбца, называют ключевым.

2. Элементы ключевой строки делят на ключевой элемент.

3. Ключевой столбец заполняют нулями.

4. Остальные элементы вычисляют по правилу прямоугольника. Составляют прямоугольник, в противоположных вершинах которого находятся ключевой элемент и пересчитываемый элемент; из произведения элементов, стоящих на диагонали прямоугольника с ключевым элементом, вычитают произведение элементов другой диагонали, полученную разность делят на ключевой элемент.

Пример . Найти общее решение и базисное решение системы уравнений:

Решение.

Общее решение системы:

Базисное решение:
.

Перейти от одного базиса системы к другому позволяет преобразование однократного замещения: вместо одной из основных переменных в базис вводят одну из свободных переменных. Для этого в столбце свободной переменной выбирают ключевой элемент и выполняют преобразования по указанному выше алгоритму.

§6. Нахождение опорных решений

Опорным решением системы линейных уравнений называется базисное решение, не содержащее отрицательных компонент.

Опорные решения системы находят методом Гаусса при выполнении следующих условий.

1. В исходной системе все свободные члены должны быть неотрицательны:
.

2. Ключевой элемент выбирают среди положительных коэффициентов.

3. Если при переменной, вводимой в базис, имеется несколько положительных коэффициентов, то в качестве ключевой строки берется та, в которой отношение свободного члена к положительному коэффициенту будет наименьшим.

Замечание 1 . Если в процессе исключения неизвестных появится уравнение, в котором все коэффициенты неположительны, а свободный член
, то система не имеет неотрицательных решений.

Замечание 2 . Если в столбцах коэффициентов при свободных переменных нет ни одного положительного элемента, то переход к другому опорному решению невозможен.

Пример.

Рассмотрим вначале случай, когда число уравнений равно числу переменных, т.е. m = n. Тогда матрица системы - квадратная, а ее определитель называют определителем системы.

Метод обратной матрицы

Рассмотрим в общем виде систему уравнений АХ = В с невырожденной квадратной матрицей А. В этом случае существует обратная матрица А -1 . Домножим слева обе части на А -1 . Получим А -1 АХ = А -1 В. Отсюда ЕХ = А -1 В и

Последнее равенство представляет собой матричную формулу для нахождения решения таких систем уравнений. Использование этой формулы получило название метода обратной матрицы

Например, решим этим методом следующую систему:

;

В конце решения системы можно сделать проверку, подставив найденные значения в уравнения системы. При этом они должны обратиться в верные равенства.

Для рассмотренного примера проведем проверку:

Метод решения систем линейных уравнений с квадратной матрицей по формулам Крамера

Пусть n= 2:

Если обе части первого уравнения умножить на a 22 , а обе части второго – на (-a 12), и затем сложить полученные уравнения, то мы исключим из системы переменнуюx 2 . Аналогично можно исключить переменнуюx 1 (умножив обе части первого уравнения на (-a 21), а обе части второго – наa 11). В результате получим систему:

Выражение в скобках есть определитель системы

Обозначим

Тогда система примет вид:

Из полученной системы следует, что если определитель системы 0, то система будет совместной и определенной. Ее единственное решение можно вычислить по формулам:

Если = 0, а 1 0 и/или 2 0, то уравнения системы примут вид 0*х 1 = 2 и/или0*х 1 = 2 . В этом случае система будет несовместной.

В случае, когда = 1 = 2 = 0, система будет совместной и неопределенной (будет иметь бесконечное множество решений), так как примет вид:

Теорема Крамера (доказательство опустим). Если определитель матрицы системыnуравненийне равен нулю, то система имеет единственное решение, определяемое по формулам:

,

где  j - определитель матрицы, получаемой из матрицы А заменой j-го столбца столбцом свободных членов.

Вышеприведенные формулы называют формулами Крамера .

В качестве примера решим этим методом систему, которую до этого решали методом обратной матрицы:

Недостатки рассмотренных методов:

1) существенная трудоемкость (вычисление определителей и нахождение обратной матрицы);

2) ограниченная область применения (для систем с квадратной матрицей).

Реальных экономические ситуации чаще моделируются системами, в которых число уравнений и переменных довольно значительное, причем уравнений больше, чем переменных Поэтому на практике более распространен следующий метод.

Метод Гаусса (метод последовательного исключения переменных)

Этот метод используется для решения системы m линейных уравнений с n переменными в общем виде. Его суть заключается в применении к расширенной матрице системы равносильных преобразований, с помощью которых система уравнений преобразуется к виду, когда ее решения становится легко найти (если они есть).

Это такой вид, в котором левая верхняя часть матрицы системы будет представлять собой ступенчатую матрицу. Этого добиваются с помощью тех же приемов, с помощью которых получали ступенчатую матрицу с целью определения ранга. При этом применяют к расширенной матрице элементарные преобразования, которые позволят получить равносильную систему уравнений. После этого расширенная матрица примет вид:

Получение такой матрицы называют прямым ходом метода Гаусса.

Нахождение из соответствующей системы уравнений значений переменных называют обратным ходом метода Гаусса. Рассмотрим его.

Отметим, что последние (m – r) уравнений примут вид:

Если хотя бы одно из чисел
не равно нулю, то соответствующее равенство будет ложным, а вся система несовместной.

Поэтому для любой совместной системы
. В этом случае последние (m – r) уравнений при любых значениях переменных будут тождествами 0 = 0, и их можно не принимать во внимание при решении системы (просто отбросить соответствующие строки).

После этого система примет вид:

Рассмотрим вначале случай, когда r=n. Тогда система примет вид:

Из последнего уравнения системы можно однозначно найти x r .

Зная x r , из него можно однозначно выразитьx r -1 . Затем из предыдущего уравнения, знаяx r иx r -1 , можно выразитьx r -2 и т.д. доx 1 .

Итак, в этом случае система будет совместной и определенной.

Теперь рассмотрим случай, когда rбазисными (основными), а все остальные –небазисными (неосновными, свободными). Последнее уравнение системы будет иметь вид:

Из этого уравнения можно выразить базисную переменную x r через небазисные:

Предпоследнее уравнение будет иметь вид:

Подставив в него вместо x r полученное выражение, можно будет выразить базисную переменнуюx r -1 через небазисные. И т.д. до переменнойx 1 . Чтобы получить решение системы, можно приравнять небазисные переменные к произвольным значениям и после этого вычислить базисные переменные по полученным формулам. Таким образом, в этом случае система будет совместной и неопределенной (иметь бесконечное множество решений).

Например, решим систему уравнений:

Совокупность базисных переменных будем называть базисом системы. Совокупность столбцов коэффициентов при них тоже будем называтьбазисом (базисными столбцами), илибазисным минором матрицы системы. То решение системы, в котором все небазисные переменные равны нулю, будем называтьбазисным решением .

В предыдущем примере базисным решением будет (4/5; -17/5; 0; 0) (переменные х 3 и х 4 (с 1 и с 2) приравнены к нулю, а базисные переменные х 1 и х 2 рассчитаны через них). Чтобы привести пример небазисного решения, надо приравнять х 3 и х 4 (с 1 и с 2) к произвольным числам, неравным одновременно нулю, и рассчитать через них остальные переменные. Например, при с 1 = 1 и с 2 = 0 получим небазисное решение – (4/5; -12/5; 1; 0). Подстановкой легко убедиться, что оба решения – верные.

Очевидно, что в неопределенной системе небазисных решений может быть бесконечно много. Сколько может быть базисных решений? Каждой строке преобразованной матрицы должна соответствовать одна базисная переменная. Всего в задаче nпеременных, а базисных строк –r. Поэтому число всевозможных наборов базисных переменных не может превысить число сочетаний изnпоr 2 . Оно может быть меньше, чем , потому что не всегда можно преобразовать систему к такому виду, чтобы именно этот набор переменных был базисным.

Что это за вид? Это такой вид, когда матрица, образованная из столбцов коэффициентов при этих переменных, будет ступенчатой, и при этом будет состоять из rстрок. Т.е. ранг матрицы коэффициентов при этих переменных должен быть равенr. Большеrон быть не может, так как число столбцов равноr. Если он окажется меньшеr, то это говорит о линейной зависимости столбцов при переменных. Такие столбцы не могут составить базис.

Рассмотрим, какие еще базисные решения могут быть найдены в рассмотренном выше примере. Для этого рассмотрим всевозможные сочетания из четырех переменных по две базисных. Таких сочетаний будет
, причем одно из них (х 1 и х 2) уже было рассмотрено.

Возьмем переменные х 1 и х 3 . Найдем ранг матрицы коэффициентов при них:

Так как он равен двум, они могут быть базисными. Приравняем небазисные переменные х 2 и х 4 к нулю: х 2 = х 4 = 0. Тогда из формулы х 1 = 4/5 – (1/5)*х 4 следует, что х 1 = 4/5, а из формулы х 2 = -17/5 + х 3 - - (7/5)*х 4 = -17/5 + х 3 следует, что х 3 = х 2 +17/5 = 17/5. Таким образом, мы получим базисное решение (4/5; 0; 17/5; 0).

Аналогично можно получить базисные решения для базисных переменных х 1 и х 4 – (9/7; 0; 0; -17/7); х 2 и х 4 – (0; -9; 0; 4); х 3 и х 4 – (0; 0; 9; 4).

Переменные х 2 и х 3 в этом примере нельзя взять в качестве базисных, так как ранг соответствующей матрицы равен единице, т.е. меньше двух:

.

Возможен и другой подход к определению того, можно или нет составить базис из некоторых переменных. При решении примера в итоге преобразования матрицы системы к ступенчатому виду она приняла вид:

Выбирая пары переменных, можно было рассчитать соответствующие миноры этой матрицы. Легко убедиться, что для всех пар, кроме х 2 и х 3 , они не равны нулю, т.е. столбцы линейно независимы. И только для столбцов при переменных х 2 и х 3
, что говорит об их линейной зависимости.

Рассмотрим еще один пример. Решим систему уравнений

Итак, уравнение, соответствующее третьей строке последней матрицы, противоречиво - оно привелось к неверному равенству 0 = -1, следовательно, данная система несовместна.

Метод Жордана-Гаусса 3 представляет собой развитие метода Гаусса. Суть его состоит в том, что расширенную матрицу системы преобразуют к виду, когда коэффициенты приrпеременных образуют единичную матрицу с точностью до перестановки строк или столбцов 4 (гдеr– ранг матрицы системы).

Решим этим методом систему:

Рассмотрим расширенную матрицу системы:

В этой матрице выберем единичный элемент. Например, коэффициент при х 2 в третьем ограничении 5 . Добьемся, чтобы в остальных строках в этом столбце стояли нули, т.е. сделаем столбец единичным. В процессе преобразований будем называть этотстолбец разрешающим (ведущим, ключевым). Третье ограничение (третьюстроку ) тоже будем называтьразрешающей . Самэлемент , который стоит на пересечении разрешающих строки и столбца (здесь это единица), тоже называютразрешающим .

В первой строке сейчас стоит коэффициент (-1). Чтобы получить на его месте ноль, умножим третью строку на (-1) и вычтем результат из первой строки (т.е. просто сложим первую строку с третьей).

Во второй строке стоит коэффициент 2. Чтобы получить на его месте ноль, умножим третью строку на 2 и вычтем результат из первой строки.

Результат преобразований будет иметь вид:

Из этой матрицы хорошо видно, что одно из первых двух ограничений можно вычеркнуть (соответствующие строки пропорциональны, т.е. эти уравнения следуют друг из друга). Вычеркнем, например, второе:

Итак, в новой системе два уравнения. Получен единичный столбец (второй), причем единица здесь стоит во второй строке. Запомним, что второму уравнению новой системы у нас будет соответствовать базисная переменная х 2 .

Выберем базисную переменную для первой строки. Это может быть любая переменная, кроме х 3 (потому что при х 3 в первом ограничении стоит нулевой коэффициент, т.е. набор переменных х 2 и х 3 здесь базисным быть не может). Можно взять первую или четвертую переменную.

Выберем х 1 . Тогда разрешающим элементом будет 5, и обе части разрешающего уравнения придется разделить на пять, чтобы получить в первом столбце первой строки единицу.

Добьемся, чтобы в остальных строках (т.е. во второй строке) в первом столбце стояли нули. Так как сейчас во второй строке стоит не ноль, а 3, надо вычесть из второй строки элементы преобразованной первой строки, умноженные на 3:

Из полученной матрицы можно непосредственно извлечь одно базисное решение, приравняв небазисные переменные к нулю, а базисные – к свободным членам в соответствующих уравнениях: (0,8; -3,4; 0; 0). Можно также вывести общие формулы, выражающие базисные переменные через небазисные: х 1 = 0,8 – 1,2х 4 ; х 2 = -3,4 + х 3 + 1,6х 4 . Эти формулы описывают все бесконечное множество решений системы (приравнивая х 3 и х 4 к произвольным числам, можно вычислить х 1 и х 2).

Отметим, что суть преобразований на каждом этапе метода Жордана-Гаусса заключалась в следующем:

1) разрешающую строку делили на разрешающий элемент, чтобы получить на его месте единицу,

2) из всех остальных строк вычитали преобразованную разрешающую, умноженную на тот элемент, который стоял в данной строке в разрешающем столбце, чтобы получить на месте этого элемента ноль.

Рассмотрим еще раз преобразованную расширенную матрицу системы:

Из этой записи видно, что ранг матрицы системы А равен r.

В ходе проведенных рассуждений мы установили, что система будет совместной тогда и только тогда, когда
. Это означает, что расширенная матрица системы будет иметь вид:

Отбрасывая нулевые строки, мы получим, что ранг расширенной матрицы системы тоже равен r.

Теорема Кронекера-Капелли . Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

Вспомним, что ранг матрицы равен максимальному числу ее линейно независимых строк. Из этого следует, что если ранг расширенной матрицы меньше числа уравнений, то уравнения системы линейно зависимы, и одно или несколько из них могут быть исключены из системы (поскольку являются линейной комбинацией остальных). Система уравнений будет линейно независимой лишь в том случае, если ранг расширенной матрицы равен числу уравнений.

При этом для совместных систем линейных уравнений можно утверждать, что если ранг матрицы равен числу переменных, то система имеет единственное решение, а если он меньше числа переменных, то система неопределенная и имеет бесконечно много решений.

1Например, пусть в матрице пять строк (исходный порядок строк – 12345). Надо поменять вторую строку и пятую. Чтобы вторая строка попала на место пятой, «сдвинулась» вниз, последовательно три раза поменяем соседние строки: вторую и третью (13245), вторую и четвертую (13425) и вторую и пятую (13452). Затем, чтобы пятая строка попала на место второй в исходной матрице, надо «сдвинуть» вверх пятую строку путем только двух последовательных перемен: пятой и четвертой строк (13542) и пятой и третьей (15342).

2Числом сочетаний из n по r называют число всех различных r–элементных подмножеств n–элементного множества (различными множествами считаются те, которые имеют различный состав элементов, порядок отбора при этом не важен). Его вычисляют по формуле:
. Напомним смысл знака “!” (факториал):
0!=1.)

3Поскольку этот метод более распространен, чем рассмотренный ранее метод Гаусса, и по своей сути представляет собой сочетание прямого и обратного хода метода Гаусса, его тоже иногда называют методом Гаусса, опуская первую часть названия.

4Например,
.

5Если бы в матрице системы не было единиц, то можно было бы, например, разделить обе части первого уравнения на два, и тогда первый коэффициент стал бы единичным; или т.п.

  • Системы m линейных уравнений с n неизвестными.
    Решение системы линейных уравнений — это такое множество чисел {x 1 , x 2 , …, x n }, при подстановке которых в каждое из уравнений системы получается верное равенство.
    где a ij , i = 1, …, m; j = 1, …, n — коэффициенты системы;
    b i , i = 1, …, m — свободные члены;
    x j , j = 1, …, n — неизвестные.
    Вышеприведенная система может быть записана в матричном виде: A · X = B ,




    где (A |B ) — основная матрица системы;
    A — расширенная матрица системы;
    X — столбец неизвестных;
    B — столбец свободных членов.
    Если матрица B не является нуль-матрицей ∅, то данная система линейных уравнений называется неоднородной.
    Если матрица B = ∅, то данная система линейных уравнений называется однородной. Однородная система всегда имеет нулевое (тривиальное) решение: x 1 = x 2 = …, x n = 0 .
    Совместная система линейных уравнений — это имеющая решение система линейных уравнений.
    Несовместная система линейных уравнений — это не имеющая решение система линейных уравнений.
    Определённая система линейных уравнений — это имеющая единственное решение система линейных уравнений.
    Неопределённая система линейных уравнений — это имеющая бесконечное множество решений система линейных уравнений.
  • Системы n линейных уравнений с n неизвестными
    Если число неизвестных равно числу уравнений, то матрица – квадратная. Определитель матрицы называется главным определителем системы линейных уравнений и обозначается символом Δ.
    Метод Крамера для решения систем n линейных уравнений с n неизвестными.
    Правило Крамера.
    Если главный определитель системы линейных уравнений не равен нулю, то система совместна и определена, причем единственное решение вычисляется по формулам Крамера:
    где Δ i — определители, получаемые из главного определителя системы Δ заменой i -го столбца на столбец свободных членов. .
  • Системы m линейных уравнений с n неизвестными
    Теорема Кронекера−Капелли .


    Для того чтобы данная система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу расширенной матрицы системы, rang(Α) = rang(Α|B) .
    Если rang(Α) ≠ rang(Α|B) , то система заведомо не имеет решений.
    Eсли rang(Α) = rang(Α|B) , то возможны два случая:
    1) rang(Α) = n (числу неизвестных) − решение единственно и может быть получено по формулам Крамера;
    2) rang(Α) < n − решений бесконечно много.
  • Метод Гаусса для решения систем линейных уравнений


    Составим расширенную матрицу (A |B ) данной системы из коэффициентов при неизвестных и правых частей.
    Метод Гаусса или метод исключения неизвестных состоит в приведении расширенной матрицы (A |B ) с помощью элементарных преобразований над ее строками к диагональному виду (к верхнему треугольному виду). Возвращаясь к системе уравнений, определяют все неизвестные.
    К элементарным преобразованиям над строками относятся следующие:
    1) перемена местами двух строк;
    2) умножение строки на число, отличное от 0;
    3) прибавление к строке другой строки, умноженной на произвольное число;
    4) выбрасывание нулевой строки.
    Расширенной матрице, приведенной к диагональному виду, соответствует линейная система, эквивалентная данной, решение которой не вызывает затруднений. .
  • Система однородных линейных уравнений.
    Однородная система имеет вид:

    ей соответствует матричное уравнение A · X = 0 .
    1) Однородная система всегда совместна, так как r(A) = r(A|B) , всегда существует нулевое решение (0, 0, …, 0).
    2) Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r = r(A) < n , что равносильно Δ = 0.
    3) Если r < n , то заведомо Δ = 0, тогда возникают свободные неизвестные c 1 , c 2 , …, c n-r , система имеет нетривиальные решения, причем их бесконечно много.
    4) Общее решение X при r < n может быть записано в матричном виде следующим образом:
    X = c 1 · X 1 + c 2 · X 2 + … + c n-r · X n-r ,
    где решения X 1 , X 2 , …, X n-r образуют фундаментальную систему решений.
    5) Фундаментальная система решений может быть получена из общего решения однородной системы:

    ,
    если последовательно полагать значения параметров равными (1, 0, …, 0), (0, 1, …, 0), …, (0, 0, …,1).
    Разложение общего решения по фундаментальной системе решений — это запись общего решения в виде линейной комбинации решений, принадлежащих к фундаментальной системе.
    Теорема . Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.
    Итак, если определитель Δ ≠ 0, то система имеет единственное решение.
    Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.
    Теорема . Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r(A) < n .
    Доказательство :
    1) r не может быть больше n (ранг матрицы не превышает числа столбцов или строк);
    2) r < n , т.к. если r = n , то главный определитель системы Δ ≠ 0, и, по формулам Крамера, существует единственное тривиальное решение x 1 = x 2 = … = x n = 0 , что противоречит условию. Значит, r(A) < n .
    Следствие . Для того чтобы однородная система n линейных уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы Δ = 0.

Решение . A = . Найдем r(А). Так как матрица А имеет порядок 3х4, то наивысший порядок миноров равен 3. При этом все миноры третьего порядка равны нулю (проверить самостоятельно). Значит , r(А) < 3. Возьмем главный базисный минор = -5-4 = -9 0. Следовательно r(А) =2.

Рассмотрим матрицу С = .

Минор третьего порядка 0. Значит, r(C) = 3.

Так как r(А) r(C) , то система несовместна.

Пример 2. Определить совместность системы уравнений

Решить эту систему, если она окажется совместной.

Решение .

A = , C = . Oчевидно, что r(А) ≤ 3, r(C) ≤ 4. Так как detC = 0, то r(C) < 4. Рассмотрим минор третьего порядка , расположенный в левом верхнем углу матрицы А и С: = -23 0. Значит, r(А) = r(C) = 3.

Число неизвестных в системе n=3 . Значит, система имеет единственное решение. При этом четвертое уравнение представляет сумму первых трех и его можно не принимать во внимание.

По формулам Крамера получаем x 1 = -98/23, x 2 = -47/23, x 3 = -123/23.

2.4. Mатричный метод. Mетод Гаусса

Систему n линейных уравнений с n неизвестными можно решать матричным методом по формуле X = A -1 B (при Δ 0), которая получается из (2) умножением обоих частей на А -1 .

Пример 1. Решить систему уравнений

матричным методом (в параграфе 2.2 эта система была решена по формулам Крамера)

Решение . Δ = 10 0 А = - невырожденная матрица.

= (убедитесь в этом самостоятельно, произведя необходимые вычисления).

A -1 = (1/Δ)х= .

Х = A -1 В = х= .

Ответ : .

С практической точки зрения матричный метод и формулы Крамера связаны с большим объемом вычислений, поэтому предпочтение отдается методу Гаусса , который заключается в последовательном исключении неизвестных. Для этого систему уравнений приводят к эквивалентной ей системе с треугольной расширенной матрицей (все элементы ниже главной диагонали равны нулю). Эти действия называют прямым ходом . Из полученной треугольной системы переменные находят с помощью последовательных подстановок (обратный ход ).

Пример 2 . Методом Гаусса решить систему

(Выше эта система была решена по формуле Крамера и матричным методом).

Решение .

Прямой ход . Запишем расширенную матрицу и с помощью элементарных преобразований приведем ее к треугольному виду:

~ ~ ~ ~ .

Получим систему

Обратный ход. Из последнего уравнения находим х 3 = -6 и подставим это значение во второе уравнение:

х 2 = - 11/2 - 1/4 х 3 = - 11/2 - 1/4(-6) = - 11/2 + 3/2 = -8/2 = -4.

х 1 = 2 - х 2 + х 3 = 2+4-6 = 0.

Ответ : .

2.5. Общее решение системы линейных уравнений

Пусть дана система линейных уравнений = b i (i =). Пусть r(A) = r(C) = r, т.е. система совместна. Любой минор порядка r, отличный от нуля, является базисным минором. Не ограничивая общности, будем считать, что базисный минор располагается в первых r (1 ≤ r ≤ min(m,n)) строках и столбцах матрицы А. Отбросив последние m-r уравнений системы, запишем укороченную систему:


которая эквивалентна исходной. Назовем неизвестные х 1 ,….х r базисными , а х r +1 ,…, х r свободными и перенесем слагаемые, содержащие свободные неизвестные, в правую часть уравнений укороченной системы. Получаем систему относительно базисных неизвестных:

koтоторая для каждого набора значений свободных неизвестных х r +1 = С 1 ,…, х n = С n-r имеет единственное рeшение х 1 (С 1 ,…, С n-r),…, х r (С 1 ,…, С n-r), находимое по правилу Крамера.

Соответствующее решение укороченной, а следовательно, и исходной системы имеет вид:

Х(С 1 ,…, С n-r) = - общее решение системы.

Если в общем решении свободным неизвестным придать какие-нибудь числовые значения, то получим решение линейной системы, называемое частным .

Пример . Установить совместность и найти общее решение системы

Решение . А = , С = .

Так как r(A) = r(C) = 2 (убедитесь в этом самостоятельно), то исходная система совместна и имеет бесчисленное множество решений (так как r < 4).



Понравилась статья? Поделитесь с друзьями!