Кратные интегралы и их свойства. Двойные интегралы для чайников

Понятие двойного интеграла

Двойной интеграл (ДИ) является обобщением определенного интеграла (ОИ) функции одной переменной на случай функции двух переменных.

Пусть непрерывная неотрицательная функция $z=f\left(x,y\right)$ задана в замкнутой области $D$, расположенной в координатной плоскости $xOy$. Функция $z=f\left(x,y\right)$ описывает некоторую поверхность, которая проецируется в область $D$. Область $D$ ограничена замкнутой линией $L$, граничные точки которой также принадлежат области $D$. Предполагаем, что линия $L$ образована конечным числом непрерывных кривых, заданных уравнениями вида $y=\vartheta \left(x\right)$ или $x=\psi \left(y\right)$.

Разобьем область $D$ на $n$ произвольных участков площадью $\Delta S_{i} $. В каждом из участков выберем по одной произвольной точке $P_{i} \left(\xi _{i} ,\eta _{i} \right)$. В каждой из этих точек вычислим значение заданной функции $f\left(\xi _{i} ,\eta _{i} \right)$. Рассмотрим объем под той частью поверхности $z=f\left(x,y\right)$, которая проецируется в участок $\Delta S_{i} $. Геометрически этот объем можно приближенно представить как объем цилиндра с основанием $\Delta S_{i} $ и высотой $f\left(\xi _{i} , \eta _{ii} \right)$, то есть равным произведению $f\left(\xi _{i} ,\eta _{i} \right)\cdot \Delta S_{i} $. Тогда объем под всей поверхностью $z=f\left(x,y\right)$ в пределах области $D$ можно приближенно вычислить как сумму объемов всех цилиндров $\sigma =\sum \limits _{i=1}^{n}f\left(\xi _{i} ,\eta _{i} \right)\cdot \Delta S_{i} $. Эта сумма называется интегральной суммой для функции $f\left(x,y\right)$ в области $D$.

Назовем диаметром $d_{i} \left(\Delta S_{i} \right)$ участка $\Delta S_{i} $ самое большое расстояние между крайними точками этого участка. Обозначим $\lambda $ самый большой из диаметров всех участков из области $D$. Пусть $\lambda \to 0$ за счет неограниченного $n\to \infty $ измельчения разбивки области $D$.

Определение

Если существует предел интегральной суммы $I=\mathop{\lim }\limits_{\lambda \to 0} \sigma $, то это число называют ДИ от функции $f\left(x,y\right)$ по области $D$ и обозначают $I=\iint \limits _{D}f\left(x,y\right)\cdot dS $ или $I=\iint \limits _{D}f\left(x,y\right)\cdot dx\cdot dy $.

При этом область $D$ называется областью интегрирования, $x$ и $y$ -- переменными интегрирования, а $dS=dx\cdot dy$ -- элементом площади.

Из определения следует геометрический смысл ДИ: он дает точное значение объема некоторого криволинейного цилиндра.

Применение двойных интегралов

Объем тела

В соответствии с геометрическим смыслом ДИ, объем $V$ некоторого тела, ограниченного сверху поверхностью $z=f\left(x,y\right)\ge 0$, снизу областью $D$ на плоскости $xOy$, по бокам цилиндрической поверхностью, образующие которой параллельны оси $Oz$, а направляющей является контур области $D$ (линия $L$), вычисляется по формуле $V=\iint \limits _{D}f\left(x,y\right)\cdot dx\cdot dy $.

Пусть тело ограничивает сверху поверхность $z=f_{2} \left(x,y\right)$, а снизу -- поверхность $z=f_{1} \left(x,y\right)$, причем $f_{2} \left(x,y\right)\ge f_{1} \left(x,y\right)$. Проекцией обеих поверхностей на плоскость $xOy$ является одна и та же область $D$. Тогда объем такого тела вычисляют по формуле $V=\iint \limits _{D}\left(f_{2} \left(x,y\right)-f_{1} \left(x,y\right)\right)\cdot dx\cdot dy $.

Предположим, что в области $D$ функция $f\left(x,y\right)$ меняет знак. Тогда для вычисления объема соответствующего тела область $D$ надо разбить на две части: часть $D_{1} $, где $f\left(x,y\right)\ge 0$, и часть $D_{2} $, где $f\left(x,y\right)\le 0$. При этом интеграл по области $D_{1} $ будет положительным и равным объему той части тела, которая лежит выше плоскости $xOy$. Интеграл по области $D_{2} $ будет отрицательным и по абсолютной величине равным объему той части тела, которая лежит ниже плоскости $xOy$.

Площадь плоской фигуры

Если везде в области $D$ на координатной плоскости $xOy$ положить $f\left(x,y\right)\equiv 1$, то ДИ численно равен площади области интегрирования $D$, то есть $S=\iint \limits _{D}dx\cdot dy $. В полярной системе координат эта же формула приобретает вид $S=\iint \limits _{D^{*} }\rho \cdot d\rho \cdot d\phi $.

Площадь произвольной поверхности

Пусть некоторая поверхность $Q$, заданная уравнением $z=f_{1} \left(x,y\right)$, проецируется на координатную плоскость $xOy$ в область $D_{1} $. В этом случае площадь поверхности $Q$ можно вычислить по формуле $S=\iint \limits _{D_{1} }\sqrt{1+\left(\frac{\partial z}{\partial x} \right)^{2} +\left(\frac{\partial z}{\partial y} \right)^{2} } \cdot dx\cdot dy $.

Количество вещества

Предположим, что в области $D$ на плоскости $xOy$ распределено некоторое вещество с поверхностной плотностью $\rho \left(x,y\right)$. Это значит, что поверхностная плотность $\rho \left(x,y\right)$ представляет собой массу вещества, приходящуюся на элементарную площадку $dx\cdot dy$ области $D$. При этих условиях общую массу вещества можно вычислить по формуле $M=\iint \limits _{D}\rho \left(x,y\right)\cdot dx\cdot dy $.

Заметим, что в качестве "вещества" может выступать электрический заряд, тепло и т.п.

Координаты центра массы плоской фигуры

Формулы для вычисления значений координат центра массы плоской фигуры таковы:$ $$x_{c} =\frac{\iint \limits _{D}x\cdot \rho \left(x,y\right)\cdot dx\cdot dy }{M} $, $y_{c} =\frac{\iint \limits _{D}y\cdot \rho \left(x,y\right)\cdot dx\cdot dy }{M} $.

Величины в числителях называются статическими моментами $M_{y} $ и $M_{x} $ плоской фигуры $D$ относительно осей $Oy$ и $Ox$ соответственно.

Если плоская фигура однородна, то есть $\rho =const$, то эти формулы упрощаются и выражаются уже не через массу, а через площадь плоской фигуры $S$: $x_{c} =\frac{\iint \limits _{D}x\cdot dx\cdot dy }{S} $, $y_{c} =\frac{\iint \limits _{D}y\cdot dx\cdot dy }{S} $.

Моменты инерции площади плоской фигуры

Рассмотрим на плоскости $xOy$ материальную плоскую фигуру. Представим ее как некоторую область $D$, по которой распределено вещество общей массой $M$ с переменной поверхностной плотностью $\rho \left(x,y\right)$.

Значение момента инерции площади плоской фигуры относительно оси $Oy$: $I_{y} \; =\; \iint \limits _{D}x^{2} \cdot \; \rho (x,\; y)\; \cdot dx\; \cdot dy $. Значение момент инерции относительно оси $Ox$: $I_{x} \; =\; \iint \limits _{D}y^{2} \cdot \; \rho (x,\; y)\cdot \; dx\; \cdot dy $. Момент инерции плоской фигуры относительно начала координат равен сумме моментов инерции относительно осей координат, то есть $I_{O} =I_{x} +I_{y} $.

Тройные интегралы вводятся для функций трех переменных.

Предположим, что задана некоторая область $V$ трехмерного пространства, ограниченная замкнутой поверхностью $S$. Считаем, что точки, которые лежат на поверхности, также принадлежат области $V$. Предположим, что в области $V$ задана некоторая непрерывная функция $f\left(x,y,z\right)$. Например, такой функцией при условии $f\left(x,y,z\right)\ge 0$ может быть объемная плотность распределения некоторого вещества, распределение температуры и т.п.

Разобьем область $V$ на $n$ произвольных частей, объемы которых $\Delta V_{i} $. В каждой из частей выберем по одной произвольной точке $P_{i} \left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)$. В каждой из этих точек вычислим значение заданной функции $f\left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)$.

Образуем интегральную сумму $\sum \limits _{i=1}^{n}f\left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)\cdot \Delta V_{i} $ и будем неограниченно измельчать $\left(n\to \infty \right)$ разбивку области $V$ так, чтобы самый большой из диаметров $\lambda $ всех частей $\Delta V_{i} $ неограниченно уменьшался $\left(\lambda \to 0\right)$.

Определение

При перечисленных условиях предел $I$ этой интегральной суммы существует, называется тройным интегралом от функции $f\left(x,y,z\right)$ по области $V$ и обозначается $I\; =\; \iiint \limits _{V}f\left(x,y,z\right)\; \cdot dV $ или $I\; =\; \iiint \limits _{V}f\left(x,y,z\right)\cdot \; dx\cdot \; dy\; \cdot dz $.

Предостережение.При вычислении несобственных интегралов с особыми точками внутрипромежутка интегрирования нельзямеханически применять формулу Ньютона – Лейбница, поскольку это может привести к ошибкам.

Общее правило: формула Ньютона – Лейбница верна, если первообразная от f(x) в особой точке последней непрерывна.

Пример 2.11.

Рассмотрим несобственный интеграл с особой точкой х = 0. Формула Ньютона–Лейбница, применяемая формально, дает

Однако общее правило здесь не выполняется; для f(x) = 1/x первообразная ln |x| не определена в х = 0 и является бесконечно большой в этой точке, т.е. не является непрерывной в этой точке. Непосредственной проверкой легко убедиться, что интеграл расходится. Действительно,

Полученная неопределенность может быть раскрыта по-разному, поскольку e и d стремятся к нулю независимым образом. В частности, полагая e = d, получаем главное значение несобственного интеграла, равное 0. Если e = 1/n, а d =1/n 2 , т.е. d стремится к 0 быстрее, чем e, то получаем

при и , наоборот,

т.е. интеграл расходится.n

Пример 2.12.

Рассмотрим несобственный интеграл с особой точкой х = 0. Первообразная от функции имеет вид и непрерывна в точке х = 0. Поэтому можно применить формулу Ньютона – Лейбница:

Естественным обобщением понятия определенного интеграла Римана на случай функции нескольких переменных является понятие кратного интеграла. Для случая двух переменных такие интегралы называют двойными.

Рассмотрим в двумерном евклидовом пространстве R ´ R , т.е. на плоскости с декартовой системой координат, множество Е конечной площади S .

Обозначим через (i = 1, …, k ) разбиение множества Е , т.е. такую систему его подмножеств E i , i = 1,. . ., k , что Ø при i ¹ j и (рис. 2.5). Здесь через обозначено подмножество E i без его границы, т.е. внутренние точки подмножества E i , которые вместе с его границей Гр E i образуют замкнутое подмножество E i, . Ясно, что площадь S (E i) подмножества E i совпадает с площадью его внутренней части , поскольку площадь границы ГрE i равна нулю.

Через d(E i) обозначим диаметр множества E i , т.е. максимальное расстояние между двумя его точками. Величину l(t) = d(E i) назовем мелкостью разбиения t. Если функция f(x),x = (x, y), определена на E как функция двух аргументов, то всякую сумму вида

X i Î E i , i = 1, . . . , k, x i = (x i , y i),

зависящую как от функции f и разбиения t , так и от выбора точек x i Î E i Ì t, называют интегральной суммой функции f .

Если для функции f существует ,не зависящий ни от разбиений t , ни от выбора точек (i = 1, …, k), то этот предел называется двойным интегралом Римана от f(x,y) и обозначается



Саму функцию f называют в этом случае интегрируемой по Риману .

Напомним, что в случае функции одного аргумента в качестве множества Е , по которому производится интегрирование, обычно берется отрезок , а в качестве его разбиения t рассматривается разбиение, состоящее из отрезков. В остальном, как нетрудно убедиться, определение двойного интеграла Римана повторяет определение определенного интеграла Римана для функции одного аргумента.

Двойной интеграл Римана от ограниченных функций двух переменных обладает обычными свойствами определенного интеграла для функций одного аргумента – линейностью, аддитивностью относительно множеств, по которым производится интегрирование, сохранение при интегрировании нестрогих неравенств , интегрируемость произведения интегрируемых функций и т.п.

Вычисление кратных интегралов Римана сводится к вычислению повторных интегралов . Рассмотрим случай двойного интеграла Римана. Пусть функция f(x,y) определена на множестве Е, лежащем в декартовом произведении множеств X ´ Y, E Ì X ´ Y.

Повторным интегралом от функции f(x, y) называется интеграл, в котором последовательно выполняется интегрирование по разным переменным, т.е. интеграл вида

Множество E(y) = {x: Î E} Ì X называется сечением множества E, соответствующим заданному y, y Î E y ; множество E y называется – проекцией множества E на ось Y.

Для повторного интеграла используют также такое обозначение:

которое, как и прежнее, означает, что сначала при фиксированном y, y Î E y , проводится интегрирование функции f(x, y) по x по отрезку E (y ), являющемуся сечением множества Е , соответствующим этому y. В результате внутренний интеграл определяет некоторую функцию одной переменной – y. Эта функция интегрируется затем как функция одной переменной, на что указывает символ внешнего интеграла.

При изменении порядка интегрирования получается повторный интеграл вида

где внутреннее интегрирование проводится по y, а внешнее – по x. Как соотносится этот повторный интеграл с повторным интегралом, определенным выше?

Если существует двойной интеграл от функции f , т.е.

то существуют и оба повторных интеграла, причем они одинаковы по величине и равны двойному, т.е.

Подчеркнем, что сформулированное в этом утверждении условие возможности перемены порядка интегрирования в повторных интегралах является лишь достаточным , но не необходимым.

Другие достаточные условия возможности перемены порядка интегрирования в повторных интегралах формулируются следующим образом:

если существует хотя бы один из интегралов

то функция f(x, y) интегрируема по Риману на множестве Е , оба повторных интеграла от нее существуют и равны двойному интегралу. n

Конкретизируем записи проекций и сечений в обозначениях повторных интегралов.


Если множество Е является прямоугольником

то E x = {x: a £ x £ b}, E y = {y: c £ y £ d}; при этом E(y) = E x для любого y, y Î E y . , а E(x) = E y для любого x, x Î E x ..

Формальная запись: "y y Î E y Þ E(y) = E x Ù"x x Î E x Þ E(x) = E y

Если множество Е имеет криволинейную границу и допускает представления

В этом случае повторные интегралы записываются так:

Пример 2.13.

Вычислить двойной интеграл по прямоугольной области, сведя его к повторному .

Поскольку выполняется условие sin 2 (x+ y) =| sin 2 (x + y)|, то проверку выполнимости достаточных условий существования двойного интеграла I в форме существования любого из повторных интегралов

здесь проводить специально не следует и можно сразу переходить к вычислению повторного интеграла

Если он существует, то существует и двойной интеграл, причем I = I 1 . Поскольку

Итак, I = .n

Пример 2.14.

Вычислить двойной интеграл по треугольной области (см. рис. 2.6), сведя его к повторному

Гр(E) = {: x = 0, y = 0, x + y = 2}.

Сначала убедимся в существовании двойного интеграла I. Для этого достаточно убедиться в существовании повторного интеграла

т.е. подынтегральные функции непрерывны на отрезках интегрирования, поскольку все они степенные. Следовательно, интеграл I 1 существует. В этом случае двойной интеграл тоже существует и равен любому повторному, т.е.


Пример 2.15.

Для лучшего понимания связи между понятиями двойного и повторных интегралов рассмотрим следующий пример, который при первом чтении может быть опущен. Задана функция двух переменных f(x, y)

Отметим, что эта функция при фиксированном х нечетна по y , а при фиксированном y – нечетна по x. В качестве множества Е, по которому интегрируется эта функция, возьмем квадрат E = {: -1 £ x £ 1, -1 £ y £ 1 }.

Вначале рассмотрим повторный интеграл

Внутренний интеграл

берется при фиксированном y, -1 £ y £ 1. Поскольку подынтегральная функция при фиксированном y нечетная по x, а интегрирование по этой переменной осуществляется по отрезку [-1, 1], симметричному относительно точки 0, то внутренний интеграл равен 0. Очевидно, что внешний интеграл по переменной y от нулевой функции также равен 0, т.е.

Аналогичные рассуждения для второго повторного интеграла приводят к тому же результату:

Итак, для рассматриваемой функции f(x, y) повторные интегралы существуют и равны друг другу. Однако двойной интеграл от функции f(x, y) не существует. Чтобы убедиться в этом, обратимся к геометрическому смыслу вычисления повторных интегралов.

Для вычисления повторного интеграла

используется разбиение квадрата Е специального вида, равно как и специальным образом проводимый подсчет интегральных сумм. Именно, квадрат Е разбивается на горизонтальные полосы, (см. рис.2.7), а каждая полоса – на маленькие прямоугольники. Каждая полоска соответствует некоторому значению переменной y; например, это может быть ордината горизонтальной оси полосы.


Подсчет интегральных сумм производится так: сначала подсчитывается суммы для каждой полосы в отдельности, т.е. при фиксированном y для разных x, а затем эти промежуточные суммы суммируются для разных полос, т.е. для разных y. Если мелкость разбиения устремить к нулю, то в пределе мы получим указанный выше повторный интеграл.

Ясно, что для второго повторного интеграла

множество Е разбивается вертикальными полосами, соответствующими разным x. Промежуточные суммы подсчитываются внутри каждой полосы по маленьким прямоугольникам, т.е. по y, а затем они суммируются для разных полос, т.е. по х. В пределе, при мелкости разбиения, стремящейся к нулю, получаем соответствующий повторный интеграл.

Чтобы доказать, что двойной интеграл не существует, достаточно привести один пример разбиения, расчет интегральных сумм по которому в пределе при мелкости разбиения, стремящейся к нулю, дает результат, отличный от значения повторных интегралов. Приведем пример такого разбиения, соответствующего полярной системе координат (r, j) (см. рис. 2.8).

В полярной системе координат положение любой точки на плоскости М 0 (x 0 , y 0), где x 0 ,y 0 – декартовы координаты точки М 0 – определяется длиной r 0 радиуса, соединяющего ее с началом координат и углом j 0 , образуемым этим радиусом с положительным направлением оси x (угол отсчитывается против часовой стрелки). Связь между декартовыми и полярными координатами очевидна:

y 0 = r 0 × sinj 0 .


Разбиение строится следующим образом. Сначала квадрат Е разбивается на сектора радиусами, исходящими из центра координат, а затем каждый сектор – на маленькие трапеции линиями, перпендикулярными оси сектора. Подсчет интегральных сумм проводится так: сначала по маленьким трапециям внутри каждого сектора вдоль его оси (по r), а затем – по всем секторам (по j) . Положение каждого сектора характеризуется углом его оси j, а длина его оси r(j) зависит от этого угла:

если или , то ;

если , то ;

если , то

если , то .

Переходя к пределу интегральных сумм полярного разбиения при мелкости разбиения, стремящейся к нулю, получим запись двойного интеграла в полярных координатах. Такую запись можно получить и чисто формальным образом, заменяя декартовы координаты (x, y) на полярные (r, j).

По правилам перехода в интегралах от декартовых координат к полярным следует писать, по определению:

В полярных координатах функция f(x, y) запишется так:

Окончательно имеем

Внутренний интеграл (несобственный) в последней формуле

где функция r(j) указана выше, 0 £ j £ 2p , равен +¥ для любого j, ибо

Следовательно, подынтегральная функция во внешнем интеграле, вычисляемом по j, не определена ни для какого j . Но тогда не определен и сам внешний интеграл, т.е. не определен исходный двойной интеграл.

Отметим, что для функции f(x, y) не выполнено достаточное условие существования двойного интеграла по множеству Е. Покажем, что интеграл

не существует. Действительно,

Аналогично устанавливается такой же результат для интеграла

Остановимся несколько подробнее на работах Остроградского по кратным интегралам.

Формула Остроградского для преобразования тройного интеграла в двойной, которую мы пишем обычно в виде

где div A - дивергенция поля вектора А,

Аn - скалярное произведение вектора А на единичный вектор внешней нормали n граничной поверхности, в математической литературе нередко связывалась ранее с именами Гаусса и Грина.

На самом деле в работе Гаусса о притяжении сфероидов можно усмотреть только весьма частные случаи формулы (1), например при P=x, Q=R=0 и т. п. Что касается Дж. Грина, то в его труде по теории электричества и магнетизма формулы (1) вовсе нет; в нем выведено другое соотношение между тройным и двойным интегралами, именно, формула Грина для оператора Лапласа, которую можно записать в виде

Конечно, можно вывести формулу (1) и из (2), полагая

и точно так же можно получить формулу (2) из формулы (1), но Грин этого и не думал делать.

где слева стоит интеграл по объему, а справа интеграл по граничной поверхности, причем суть направляющие косинусы внешней нормали.

Парижские рукописи Остроградского свидетельствуют, с полной несомненностью, что ему принадлежит и открытие, и первое сообщение интегральной теоремы (1). Впервые она была высказана и доказана, точно так, как это делают теперь в “Доказательстве одной теоремы интегрального исчисления”, представленном Парижской Академии наук 13 февраля 1826 г., после чего еще раз была сформулирована в той части “Мемуара о распространении тепла внутри твердых тел ”, которую Остроградский представил 6 августа 1827 г. “Мемуар” был дан на отзыв Фурье и Пуассону, причем последний его, безусловно читал, как свидетельствует запись на первых страницах обеих частей рукописи. Разумеется, Пуассону и не приходила мысль приписывать себе теорему, с которой он познакомился в сочинении Остроградского за два года до представления своей работы на теории упругости.

Что касается взаимоотношения работ по кратным интегралам Остроградского и Грина, напомним, что в “Заметке по теории теплоты” выведена формула, обнимающая собственную формулу Грина, как весьма частный случай. Непривычная теперь символика Коши, употребленная Остроградским в “Заметке”, до недавнего времени скрывала от исследователей это важное открытие. Разумеется, за Грином остается честь открытия и первой публикации в 1828 г. носящей его имя формулы для операторов Лапласа.

Открытие формулы преобразования тройного интеграла в двойной помогло Остроградскому решить проблему варьирования п-кратного интеграла, именно, вывести понадобившуюся там общую формулу преобразования интеграла от выражения типа дивергенции по п- мерной области и интеграл по ограничивающей ее сверхповерхности S с уравнением L(x,y,z,…)=0. Если придерживаться прежних обозначений, то формула имеет вид


Впрочем, Остроградский не применял геометрических образов и терминов, которыми пользуемся мы: геометрия многомерных пространств в то время еще не существовала.

В “Мемуаре об исчислении вариаций кратных интегралов” рассмотрены еще два важных вопроса теории таких интегралов. Во-первых, Остроградский выводит формулу замены переменных в многомерном интеграле; во-вторых, впервые дает полное и точное описание приема вычисления п- кратного интеграла с помощью п последовательных интеграций по каждой из переменных в соответствующих пределах. Наконец, из формул, содержащихся в этом мемуаре, легко выводится общее правило дифференцирования по параметру многомерного интеграла, когда от этого параметра зависит не только подынтегральная функция, но и граница области интегрирования. Названное правило вытекает из наличных в мемуаре формул настолько естественным образом, что позднейшие математики даже отождествляли его с одною из формул этого мемуара.

Замене переменных в кратных интегралах Остроградский посвятил специальную работу. Для двойного интеграла соответствующее правило вывел с помощью формальных преобразований Эйлер, для тройного - Лагранж. Однако, хотя результат Лагранжа верен, рассуждения его были не точными: он как бы исходил из того, что элементы объемов в старых и новых переменных - координатах - между собою равны. Аналогичную ошибку допустил вначале в только что упомянутом выводе правила замены переменных Остроградский. В статье “О преобразовании переменных в кратных интегралах” Остроградский раскрыл ошибку Лагранжа, а также впервые изложил тот наглядный геометрический метод преобразования переменных в двойном интеграле, который, в несколько более строгом оформлении, излагается и в наших руководствах. Именно, при замене переменных в интеграле по формулам, область интегрирования разбивается координатными линиями двух систем u=const, v=const на бесконечно малые криволинейные четырехугольники. Тогда интеграл можно получить, складывая сначала те его элементы, которые отвечают бесконечно узкой криволинейной полосе, а затем, продолжая суммировать элементы полосами, пока они все не будут исчерпаны. Несложный подсчет дает для площади, которая с точностью до малых высшего порядка может рассматриваться как параллелограмм, выражение, где, выбирается так, чтобы площадь была положительной. В итоге получается известная формула

Жордана и - разбиение множества Е, т. е. такая система измеримых по Жордану множеств E i , что Величину

где d(E i ) - диаметр множества Е i , наз. мелкостью разбиения Если определена на множестве Е, то всякую сумму вида

наз. интегральной суммой Римана функции f. Если для функции f существует независящий от разбиения, то этот наз. n-к ратным интегралом Римана и обозначают


Саму функцию fназ. в этом случае интегрируемой по Риману, короче - R-интегрируемой.

В случае n=1 в качестве множества Е, по к-рому производится , обычно берется , а в качестве его разбиений t рассматриваются разбиения, состоящие также только из отрезков (см. Римана интеграл ). Таким образом, в этом случае как множество, по к-рому производится интегрирование, так и элементы разбиения представляют собой измеримые по Жордану множества весьма специального вида --отрезки. Поэтому не все свойства R-интегрируемых на отрезке функций справедливы для функций Д-интегрируемых на произвольных измеримых по Жордану множествах. Напр., из того, что любая функция, определенная на множестве жордановой меры , Д-интегрируема на нем, следует, что Д-интегрируемые функции могут быть неограниченными, это невозможно для Д-интегрируемых функций на отрезках. Чтобы из Д-интегрируемости функции на нек-ром множестве следовала ограниченность функции, на рассматриваемое множество налагают дополнительные условия, напр, чтобы у него существовали сколь угодно мелкие разбиения, все элементы к-рых имеют положительную меру Жордана. К таким множествам относятся все измеримые по Жордану открытые множества и их замыкания, в частности измеримые по Жордану области и их замыкания. Имеь-но для таких множеств большей частью и используется кратный интеграл Римана.

В случае n=2 (n=3) К. и. наз. двойным (т р о й н ы м). Поскольку кратный интеграл Римана можно брать только по множествам, измеримым по Жордану (в случае n=2 они наз. также квадрируемыми, а при n=3 - кубируемыми множествами), то двойной (тройной) интеграл Римана рассматривают только на множествах (обычно областях или их замыканиях), границы к-рых имеют площади (объемы) в смысле Жордана, равные нулю.

Интеграл Римана от ограниченных функций n переменных обладает обычными свойствами интеграла (линейность, относительно множеств, по к-рым производится интегрирование, сохранение при интегрировании нестрогих неравенств, интегрируемость произведения интегрируемых функций и т. п.).

Кратный интеграл Римана может быть сведен к повторному интегралу. Пусть

Е- измеримое в R n по Жордану множество, = - сечение множества Е(n-m)-мерной гиперплоскостью - проекция Ена причем измеримы соответственно в смысле (n-m)-мерной и m-мер-ной меры Жордана. Тогда, если функция f Д-интегрируема на множестве Еи для всех существуют (n-m)-кратные интегралы от ее сужения на множестве то существует

где внешний интеграл является m-кратным интегралом Римана, и

Для случая n=3 отсюда следуют формулы: 1) Если - проекция Eна а функции таковы, что множество Еограничено в направлении оси z их графиками, т. е.


2) Пусть проекцией множества Ена ось Ох является отрезок - сечение множества Еплоскостью, параллельной плоскости и проходящей через точку х, тогда

В случае, когда Gявляется измеримой по Жордану областью в пространстве - взаимно однозначное G на измеримую Г пространства причем непрерывно дифференцируемо на замыкании области G, для интегрируемой на = функции f (х).справедлива замены переменного в интеграле

где J(t) - отображения j.

Геометрический смысл кратного интеграла Римана от функции ппеременных связан с понятием ( п+ 1)-мерной меры Жордана если функция f (х).интегрируема на множестве на Еи

Кратным интегралом Лебега наз, Лебега интеграл от функций многих переменных, его определение базируется на понятии Лебега меры в n-мерном евклидовом пространстве. Кратный интеграл Лебега может быть сведен к повторному интегралу (см. Фубини теорема ). Для непрерывно дифференцируемых взаимно однозначных отображений областей справедлива формула замены переменного (1), а также формула (2), выражающая геометрии, смысл кратного интеграла Лебега, в к-рой под мерой следует понимать (n+1)-мерную меру Лебега.

Понятие К. и. переносится на функции, интегрируемые по множеству А, принадлежащему произведению пространств Xи У, в каждом из к-рых заданы -конечные полные неотрицательные меры, соответственно при этом интегрирование по множеству Апроизводится по мере являющейся произведением мер

Для функций многих переменных существует также понятие несобственного К. и. (см. Несобственный интеграл ). Понятие К. и. применяется также к неопределенным интегралам функций многих переменных. Под неопределенным К. и. понимают функцию множества

где Е - измеримое множество. Если, напр., f(x).интегрируема по Лебегу на нек-ром множестве, то ее F(Е). на этом множестве имеет функцию f(x).своей симметричной производной. В этом смысле (аналогично случаю функций одной переменной) взятие неопределенного К. и. является операцией, обратной к операции дифференцирования функции множества.

Лит. : И л ь и н В. А., Лозняк Э. Г., Основы математического анализа, 2 изд., ч. 2, М., 1980; К о л м о г о р о в А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 5 изд., М., 1981: }

Понравилась статья? Поделитесь с друзьями!