Кратный интеграл определение и свойства. Двойные интегралы для чайников

Понятие двойного интеграла

Двойной интеграл (ДИ) является обобщением определенного интеграла (ОИ) функции одной переменной на случай функции двух переменных.

Пусть непрерывная неотрицательная функция $z=f\left(x,y\right)$ задана в замкнутой области $D$, расположенной в координатной плоскости $xOy$. Функция $z=f\left(x,y\right)$ описывает некоторую поверхность, которая проецируется в область $D$. Область $D$ ограничена замкнутой линией $L$, граничные точки которой также принадлежат области $D$. Предполагаем, что линия $L$ образована конечным числом непрерывных кривых, заданных уравнениями вида $y=\vartheta \left(x\right)$ или $x=\psi \left(y\right)$.

Разобьем область $D$ на $n$ произвольных участков площадью $\Delta S_{i} $. В каждом из участков выберем по одной произвольной точке $P_{i} \left(\xi _{i} ,\eta _{i} \right)$. В каждой из этих точек вычислим значение заданной функции $f\left(\xi _{i} ,\eta _{i} \right)$. Рассмотрим объем под той частью поверхности $z=f\left(x,y\right)$, которая проецируется в участок $\Delta S_{i} $. Геометрически этот объем можно приближенно представить как объем цилиндра с основанием $\Delta S_{i} $ и высотой $f\left(\xi _{i} , \eta _{ii} \right)$, то есть равным произведению $f\left(\xi _{i} ,\eta _{i} \right)\cdot \Delta S_{i} $. Тогда объем под всей поверхностью $z=f\left(x,y\right)$ в пределах области $D$ можно приближенно вычислить как сумму объемов всех цилиндров $\sigma =\sum \limits _{i=1}^{n}f\left(\xi _{i} ,\eta _{i} \right)\cdot \Delta S_{i} $. Эта сумма называется интегральной суммой для функции $f\left(x,y\right)$ в области $D$.

Назовем диаметром $d_{i} \left(\Delta S_{i} \right)$ участка $\Delta S_{i} $ самое большое расстояние между крайними точками этого участка. Обозначим $\lambda $ самый большой из диаметров всех участков из области $D$. Пусть $\lambda \to 0$ за счет неограниченного $n\to \infty $ измельчения разбивки области $D$.

Определение

Если существует предел интегральной суммы $I=\mathop{\lim }\limits_{\lambda \to 0} \sigma $, то это число называют ДИ от функции $f\left(x,y\right)$ по области $D$ и обозначают $I=\iint \limits _{D}f\left(x,y\right)\cdot dS $ или $I=\iint \limits _{D}f\left(x,y\right)\cdot dx\cdot dy $.

При этом область $D$ называется областью интегрирования, $x$ и $y$ -- переменными интегрирования, а $dS=dx\cdot dy$ -- элементом площади.

Из определения следует геометрический смысл ДИ: он дает точное значение объема некоторого криволинейного цилиндра.

Применение двойных интегралов

Объем тела

В соответствии с геометрическим смыслом ДИ, объем $V$ некоторого тела, ограниченного сверху поверхностью $z=f\left(x,y\right)\ge 0$, снизу областью $D$ на плоскости $xOy$, по бокам цилиндрической поверхностью, образующие которой параллельны оси $Oz$, а направляющей является контур области $D$ (линия $L$), вычисляется по формуле $V=\iint \limits _{D}f\left(x,y\right)\cdot dx\cdot dy $.

Пусть тело ограничивает сверху поверхность $z=f_{2} \left(x,y\right)$, а снизу -- поверхность $z=f_{1} \left(x,y\right)$, причем $f_{2} \left(x,y\right)\ge f_{1} \left(x,y\right)$. Проекцией обеих поверхностей на плоскость $xOy$ является одна и та же область $D$. Тогда объем такого тела вычисляют по формуле $V=\iint \limits _{D}\left(f_{2} \left(x,y\right)-f_{1} \left(x,y\right)\right)\cdot dx\cdot dy $.

Предположим, что в области $D$ функция $f\left(x,y\right)$ меняет знак. Тогда для вычисления объема соответствующего тела область $D$ надо разбить на две части: часть $D_{1} $, где $f\left(x,y\right)\ge 0$, и часть $D_{2} $, где $f\left(x,y\right)\le 0$. При этом интеграл по области $D_{1} $ будет положительным и равным объему той части тела, которая лежит выше плоскости $xOy$. Интеграл по области $D_{2} $ будет отрицательным и по абсолютной величине равным объему той части тела, которая лежит ниже плоскости $xOy$.

Площадь плоской фигуры

Если везде в области $D$ на координатной плоскости $xOy$ положить $f\left(x,y\right)\equiv 1$, то ДИ численно равен площади области интегрирования $D$, то есть $S=\iint \limits _{D}dx\cdot dy $. В полярной системе координат эта же формула приобретает вид $S=\iint \limits _{D^{*} }\rho \cdot d\rho \cdot d\phi $.

Площадь произвольной поверхности

Пусть некоторая поверхность $Q$, заданная уравнением $z=f_{1} \left(x,y\right)$, проецируется на координатную плоскость $xOy$ в область $D_{1} $. В этом случае площадь поверхности $Q$ можно вычислить по формуле $S=\iint \limits _{D_{1} }\sqrt{1+\left(\frac{\partial z}{\partial x} \right)^{2} +\left(\frac{\partial z}{\partial y} \right)^{2} } \cdot dx\cdot dy $.

Количество вещества

Предположим, что в области $D$ на плоскости $xOy$ распределено некоторое вещество с поверхностной плотностью $\rho \left(x,y\right)$. Это значит, что поверхностная плотность $\rho \left(x,y\right)$ представляет собой массу вещества, приходящуюся на элементарную площадку $dx\cdot dy$ области $D$. При этих условиях общую массу вещества можно вычислить по формуле $M=\iint \limits _{D}\rho \left(x,y\right)\cdot dx\cdot dy $.

Заметим, что в качестве "вещества" может выступать электрический заряд, тепло и т.п.

Координаты центра массы плоской фигуры

Формулы для вычисления значений координат центра массы плоской фигуры таковы:$ $$x_{c} =\frac{\iint \limits _{D}x\cdot \rho \left(x,y\right)\cdot dx\cdot dy }{M} $, $y_{c} =\frac{\iint \limits _{D}y\cdot \rho \left(x,y\right)\cdot dx\cdot dy }{M} $.

Величины в числителях называются статическими моментами $M_{y} $ и $M_{x} $ плоской фигуры $D$ относительно осей $Oy$ и $Ox$ соответственно.

Если плоская фигура однородна, то есть $\rho =const$, то эти формулы упрощаются и выражаются уже не через массу, а через площадь плоской фигуры $S$: $x_{c} =\frac{\iint \limits _{D}x\cdot dx\cdot dy }{S} $, $y_{c} =\frac{\iint \limits _{D}y\cdot dx\cdot dy }{S} $.

Моменты инерции площади плоской фигуры

Рассмотрим на плоскости $xOy$ материальную плоскую фигуру. Представим ее как некоторую область $D$, по которой распределено вещество общей массой $M$ с переменной поверхностной плотностью $\rho \left(x,y\right)$.

Значение момента инерции площади плоской фигуры относительно оси $Oy$: $I_{y} \; =\; \iint \limits _{D}x^{2} \cdot \; \rho (x,\; y)\; \cdot dx\; \cdot dy $. Значение момент инерции относительно оси $Ox$: $I_{x} \; =\; \iint \limits _{D}y^{2} \cdot \; \rho (x,\; y)\cdot \; dx\; \cdot dy $. Момент инерции плоской фигуры относительно начала координат равен сумме моментов инерции относительно осей координат, то есть $I_{O} =I_{x} +I_{y} $.

Тройные интегралы вводятся для функций трех переменных.

Предположим, что задана некоторая область $V$ трехмерного пространства, ограниченная замкнутой поверхностью $S$. Считаем, что точки, которые лежат на поверхности, также принадлежат области $V$. Предположим, что в области $V$ задана некоторая непрерывная функция $f\left(x,y,z\right)$. Например, такой функцией при условии $f\left(x,y,z\right)\ge 0$ может быть объемная плотность распределения некоторого вещества, распределение температуры и т.п.

Разобьем область $V$ на $n$ произвольных частей, объемы которых $\Delta V_{i} $. В каждой из частей выберем по одной произвольной точке $P_{i} \left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)$. В каждой из этих точек вычислим значение заданной функции $f\left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)$.

Образуем интегральную сумму $\sum \limits _{i=1}^{n}f\left(\xi _{i} ,\eta _{i} ,\varsigma _{i} \right)\cdot \Delta V_{i} $ и будем неограниченно измельчать $\left(n\to \infty \right)$ разбивку области $V$ так, чтобы самый большой из диаметров $\lambda $ всех частей $\Delta V_{i} $ неограниченно уменьшался $\left(\lambda \to 0\right)$.

Определение

При перечисленных условиях предел $I$ этой интегральной суммы существует, называется тройным интегралом от функции $f\left(x,y,z\right)$ по области $V$ и обозначается $I\; =\; \iiint \limits _{V}f\left(x,y,z\right)\; \cdot dV $ или $I\; =\; \iiint \limits _{V}f\left(x,y,z\right)\cdot \; dx\cdot \; dy\; \cdot dz $.

Скачать с Depositfiles

Лекции 5-6

Тема2. Кратные интегралы.

Двойной интеграл.

Контрольные вопросы.

1. Двойной интеграл, его геометрический и физический смысл

2. Свойства двойного интеграла.

3. Вычисление двойного интеграла в декартовых координатах.

4. Замена переменных в двойном интеграле. Вычисление двойного интеграла в полярных координатах.

Пусть функция z = f (x , y ) определена в ограниченной замкнутой области D плоскости. Разобьём область D произвольным образом на n элементарных замкнутых областей 1 , … , n , имеющих площади  1 , …, n и диаметры d 1 , …, d n соответственно. Обозначим d наибольший из диаметров областей 1 , … , n . В каждой области k выберем произвольную точку P k (x k ,y k ) и составим интегральную сумму функции f (x,y )

S =
(1)

Определение. Двойным интегралом функции f (x,y ) по области D называется предел интегральной суммы


, (2)

если он существует.

Замечание. Интегральная сумма S зависит от способа разбиения области D и выбора точек P k (k =1, …, n ). Однако, предел
, если он существует, не зависит от способа разбиения области D и выбора точек P k .

Достаточное условие существования двойного интеграла. Двойной интеграл (1) существует, если функция f (x,y ) непрерывна в D за исключением конечного числа кусочно-гладких кривых и ограничена в D . В дальнейшем будем считать, что все рассматриваемые двойные интегралы существуют.

Геометрический смысл двойного интеграла.

Если f (x,y ) ≥0 в области D , то двойной интеграл (1) равен объему «цилиндрического” тела, изображенного на рисунке:

V =
(3)

Цилиндрическое тело ограничено снизу областью D , сверху  частью поверхности z = f (x , y ), с боков  вертикальными отрезками прямых, соединяющих границы этой поверхности и области D.

Физический смысл двойного интеграла. Масса плоской пластины.

Пусть задана плоская пластина D с известной функцией плотности γ(х, у ), тогда разбивая пластину D на части D i и выбирая произвольные точки
, получим для массы пластины
, или, сравнивая с формулой (2):




(4)

4. Некоторые свойства двойного интеграла.

    Линейность. Если С – числовая константа, то

    Аддитивность. Если область D « разбита” на области D 1 и D 2 , то

3) Площадь ограниченной области D равна


(5)

Вычисление двойного интеграла в декартовых координатах.

Пусть задана область


Рисунок 1

D = { (x , y ): a ≤ x ≤ b , φ 1 (x ) ≤ y≤ φ 2 (x ) } (6)

Область D заключена в полосе между прямыми x = a , y = b , снизу и сверху ограничена соответственно кривыми y = φ 1 (x ) и y = φ 2 (x ) .

Двойной интеграл (1) по области D (4) вычисляется переходом к повторному интегралу:


(7)

Этот повторный интеграл вычисляется следующим образом. Сначала вычисляется внутреннийинтеграл


по переменной y , п ри этомx считаетсяпостоянной. В результате получится функция от переменной x , а затем вычисляется « внешний” интеграл от этой функции по переменной x .

Замечание. Процесс перехода к повторному интегралу по формуле (7) часто называют расстановкой пределов интегрирования в двойном интеграле. При расстановке пределов интегрирования нужно помнить два момента. Во-первых, нижний предел интегрирования не должен превышать верхнего, во-вторых, пределы внешнего интеграла должны быть константами, а внутреннего должны в общем случае зависеть от переменной интегрирования внешнего интеграла.

Пусть теперь область D имеет вид

D = { (x , y ) : c ≤ y ≤ d , ψ 1 (y ) ≤ x ≤ ψ 2 (y ) } . (8)

Тогда


. (9)

Предположим, что область D можно представить в виде (6) и (8) одновременно. Тогда имеет место равенство


(10)

Переход од одного повторного интеграла к другому в равенстве (10) называется изменением порядка интегрирования в двойном интеграле.


Примеры.

1) Изменить порядок интегрирования в интеграле


Решение. По виду повторного интеграла находим область

D = { (x , y ): 0 ≤ x ≤ 1, 2 x ≤ y≤ 2 } .

Изобразим область D . По рисунку видим, что эта область расположена в горизонтальной полосе между прямыми y =0, y =2 и между линиями x =0 и x = D

Иногда для упрощения вычислений делают замену переменных:


,
(11)

Если функции (11) непрерывно дифференцируемы и определитель (Якобиан) отличен от нуля в рассматриваемой области:


(12)

Кратный интеграл

интеграл от функции, заданной в какой-либо области на плоскости, в трёхмерном или n -мерном пространстве. Среди К. и. различают двойные интегралы, тройные интегралы и т. д. n -кратные интегралы.

Пусть функция f (x, y ) задана в некоторой области D плоскости хОу. Разобьем область D на n частичных областей d i , площади которых равны s i , выберем в каждой области d i точку (ξ i , η i ) (см. рис. ) и составим интегральную сумму

Если при неограниченном уменьшении максимального диаметра частичных областей d i суммы S имеют предел независимо от выбора точек (ξ i , η i ), то этот предел называют двойным интегралом от функции f (x, у ) по области D и обозначают

Аналогично определяется тройной интеграл и вообще n -кратный интеграл.

Для существования двойного интеграла достаточно, например, чтобы область D была замкнутой квадрируемой областью (См. Квадрируемая область), а функция f (x, y ) была непрерывна в D. К. и. обладают рядом свойств, аналогичных свойствам простых Интеграл ов. Для вычисления К. и. обычно приводят его к повторному интегралу (См. Повторный интеграл). В специальных случаях для сведения К. и. к интегралам меньшей размерности могут служить Грина формулы и Остроградского формула . К. и. имеют обширные применения: с их помощью выражаются объёмы тел, их массы, статические моменты, моменты инерции и т. п.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Кратный интеграл" в других словарях:

    Интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определенному интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, n… … Большой Энциклопедический словарь

    Определенный интеграл от функции нескольких переменных. Имеются различные понятия К. и. (интеграл Римана, интеграл Лебега, интеграл Лебега Стилтьеса и др.). Кратный интеграл Римана вводится на основе Жордана меры Пусть Е измеримое по Жордану… … Математическая энциклопедия

    В математическом анализе кратным или многократным интегралом называют множество интегралов, взятых от переменных. Например: Замечание: кратный интеграл − это определенный интеграл, при его вычислении всегда получается число. Содержание 1… … Википедия

    Интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определённому интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, n… … Энциклопедический словарь

    Интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определ. интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, я… … Естествознание. Энциклопедический словарь

    Примечание: всюду в данной статье, где используется знак имеется в виду (кратный) интеграл Римана, если не оговорено обратное; всюду в данной статье, где говорится об измеримости множества, имеется в виду измеримость по Жордану, если не… … Википедия

    Кратный интеграл вида где являющийся средним значением степени 2k модуля тригонометрической суммы. Теорема Виноградова о величине этого интеграла теорема о среднем лежит в основе оценок сумм Вейля. Литература Виноградова инте … Википедия

    Определённый интеграл как площадь фигуры У этого термина существуют и другие значения, см. Интеграл (значения). Интеграл функции … Википедия

    Интеграл, в к ром последовательно выполняется интегрирование по разным переменным, т. е. интеграл вида (1) Функция f(x, y).определена на множестве А, лежащем в прямом произведении XX Y пространств Xи У, в к рых заданы s конечные меры mx и my,… … Математическая энциклопедия

    Интеграл, взятый вдоль какой либо кривой на плоскости или в пространстве. Различают К. и. 1 го и 2 го типов. К. и. 1 го типа возникает, например, при рассмотрении задачи о вычислении массы кривой переменной плотности; он обозначается… … Большая советская энциклопедия

Жордана и - разбиение множества Е, т. е. такая система измеримых по Жордану множеств E i , что Величину

где d(E i ) - диаметр множества Е i , наз. мелкостью разбиения Если определена на множестве Е, то всякую сумму вида

наз. интегральной суммой Римана функции f. Если для функции f существует независящий от разбиения, то этот наз. n-к ратным интегралом Римана и обозначают


Саму функцию fназ. в этом случае интегрируемой по Риману, короче - R-интегрируемой.

В случае n=1 в качестве множества Е, по к-рому производится , обычно берется , а в качестве его разбиений t рассматриваются разбиения, состоящие также только из отрезков (см. Римана интеграл ). Таким образом, в этом случае как множество, по к-рому производится интегрирование, так и элементы разбиения представляют собой измеримые по Жордану множества весьма специального вида --отрезки. Поэтому не все свойства R-интегрируемых на отрезке функций справедливы для функций Д-интегрируемых на произвольных измеримых по Жордану множествах. Напр., из того, что любая функция, определенная на множестве жордановой меры , Д-интегрируема на нем, следует, что Д-интегрируемые функции могут быть неограниченными, это невозможно для Д-интегрируемых функций на отрезках. Чтобы из Д-интегрируемости функции на нек-ром множестве следовала ограниченность функции, на рассматриваемое множество налагают дополнительные условия, напр, чтобы у него существовали сколь угодно мелкие разбиения, все элементы к-рых имеют положительную меру Жордана. К таким множествам относятся все измеримые по Жордану открытые множества и их замыкания, в частности измеримые по Жордану области и их замыкания. Имеь-но для таких множеств большей частью и используется кратный интеграл Римана.

В случае n=2 (n=3) К. и. наз. двойным (т р о й н ы м). Поскольку кратный интеграл Римана можно брать только по множествам, измеримым по Жордану (в случае n=2 они наз. также квадрируемыми, а при n=3 - кубируемыми множествами), то двойной (тройной) интеграл Римана рассматривают только на множествах (обычно областях или их замыканиях), границы к-рых имеют площади (объемы) в смысле Жордана, равные нулю.

Интеграл Римана от ограниченных функций n переменных обладает обычными свойствами интеграла (линейность, относительно множеств, по к-рым производится интегрирование, сохранение при интегрировании нестрогих неравенств, интегрируемость произведения интегрируемых функций и т. п.).

Кратный интеграл Римана может быть сведен к повторному интегралу. Пусть

Е- измеримое в R n по Жордану множество, = - сечение множества Е(n-m)-мерной гиперплоскостью - проекция Ена причем измеримы соответственно в смысле (n-m)-мерной и m-мер-ной меры Жордана. Тогда, если функция f Д-интегрируема на множестве Еи для всех существуют (n-m)-кратные интегралы от ее сужения на множестве то существует

где внешний интеграл является m-кратным интегралом Римана, и

Для случая n=3 отсюда следуют формулы: 1) Если - проекция Eна а функции таковы, что множество Еограничено в направлении оси z их графиками, т. е.


2) Пусть проекцией множества Ена ось Ох является отрезок - сечение множества Еплоскостью, параллельной плоскости и проходящей через точку х, тогда

В случае, когда Gявляется измеримой по Жордану областью в пространстве - взаимно однозначное G на измеримую Г пространства причем непрерывно дифференцируемо на замыкании области G, для интегрируемой на = функции f (х).справедлива замены переменного в интеграле

где J(t) - отображения j.

Геометрический смысл кратного интеграла Римана от функции ппеременных связан с понятием ( п+ 1)-мерной меры Жордана если функция f (х).интегрируема на множестве на Еи

Кратным интегралом Лебега наз, Лебега интеграл от функций многих переменных, его определение базируется на понятии Лебега меры в n-мерном евклидовом пространстве. Кратный интеграл Лебега может быть сведен к повторному интегралу (см. Фубини теорема ). Для непрерывно дифференцируемых взаимно однозначных отображений областей справедлива формула замены переменного (1), а также формула (2), выражающая геометрии, смысл кратного интеграла Лебега, в к-рой под мерой следует понимать (n+1)-мерную меру Лебега.

Понятие К. и. переносится на функции, интегрируемые по множеству А, принадлежащему произведению пространств Xи У, в каждом из к-рых заданы -конечные полные неотрицательные меры, соответственно при этом интегрирование по множеству Апроизводится по мере являющейся произведением мер

Для функций многих переменных существует также понятие несобственного К. и. (см. Несобственный интеграл ). Понятие К. и. применяется также к неопределенным интегралам функций многих переменных. Под неопределенным К. и. понимают функцию множества

где Е - измеримое множество. Если, напр., f(x).интегрируема по Лебегу на нек-ром множестве, то ее F(Е). на этом множестве имеет функцию f(x).своей симметричной производной. В этом смысле (аналогично случаю функций одной переменной) взятие неопределенного К. и. является операцией, обратной к операции дифференцирования функции множества.

Лит. : И л ь и н В. А., Лозняк Э. Г., Основы математического анализа, 2 изд., ч. 2, М., 1980; К о л м о г о р о в А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 5 изд., М., 1981: }

Понравилась статья? Поделитесь с друзьями!