Круг конуса называется. Конус как геометрическая фигура

а плоскостью, параллельной основанию (рис. ). Объём У. к. равен , где r 1 и r 2 радиусы оснований, h – высота.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Усечённый конус" в других словарях:

    Геометрическое тело, отсечённое от конуса плоскостью, параллельной основанию (рис.). Объём усечённого конуса равен. * * * УСЕЧЕННЫЙ КОНУС УСЕЧЕННЫЙ КОНУС, геометрическое тело, отсеченное от конуса плоскостью, параллельной основанию. Объем… … Энциклопедический словарь

    усечённый конус - — Тематики нефтегазовая промышленность EN truncated cone … Справочник технического переводчика

    УСЕЧЁННЫЙ, усечённая, усечённое; усечён, усечена, усечено. 1. прич. страд. прош. вр. от усечь (книжн.). 2. Такой, у которого верхняя часть отсечена плоскостью, параллельной основанию (о конусе, пирамиде; мат.). Усечённый конус. Усеченная пирамида … Толковый словарь Ушакова

    усечённый - ая, ое.; матем. Такой, у которого верхняя часть отсечена плоскостью, параллельной основанию. Усечённый конус. У ая пирамида … Словарь многих выражений

    УСЕЧЁННЫЙ, ая, ое. В математике: такой, у к рого вершинная часть отделена, отсечена плоскостью, параллельной основанию. У. конус. Усечённая пирамида. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Ая, ое. 1. прич. страд. прош. от усечь. 2. в знач. прил. мат. Такой, у которого верхняя часть отсечена плоскостью, параллельной основанию. Усеченный конус. Усеченная пирамида. 3. в знач. прил. грамм., лит. С усечением (во 2 знач.), представляющий … Малый академический словарь

    Прямой круговой конус. Прямой и … Википедия

    - (лат. conus, от греч. konos) коническая поверхность множество прямых (образующих) пространства, соединяющих все точки нек рой линии (направляющей) с данной точкой (вершиной) пространства. Простейший К. круглый, или прямой круговой, направляющей к … Большой энциклопедический политехнический словарь

    - (лат. conus, от греч. konos) (математика), 1) К., или коническая поверхность, геометрическое место прямых (образующих) пространства, соединяющих все точки некоторой линии (направляющей) с данной точкой (вершиной) пространства.… … Большая советская энциклопедия

    Окружающий нас мир динамичен и разнообразен, и далеко не всякий объект можно просто обмерить линейкой. Для подобного переноса используются специальные техники, как то триангуляция. Потребность в составлении сложных развёрток, как правило,… … Википедия

Конус. Усеченный конус

Конической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной кривой и точку вне кривой (рис.32).

Данная кривая называется направляющей , прямые – образующими , точка – вершиной конической поверхности.

Прямой круговой конической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной окружности и точку на прямой, которая перпендикулярна плоскости окружности и проходит через ее центр. В дальнейшем эту поверхность будем кратко называть конической поверхностью (рис.33).

Конусом (прямым круговым конусом ) называется геометрическое тело, ограниченное конической поверхностью и плоскостью, которая параллельна плоскости направляющей окружности (рис.34).


Рис. 32 Рис. 33 Рис. 34

Конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг оси, содержащей один из катетов треугольника.

Круг, ограничивающий конус, называется его основанием . Вершина конической поверхности называется вершиной конуса. Отрезок, соединяющий вершину конуса с центром его основания, называется высотой конуса. Отрезки, образующие коническую поверхность, называются образующими конуса. Осью конуса называется прямая, проходящая через вершину конуса и центр его основания. Осевым сечением называется сечение, проходящее через ось конуса. Разверткой боковой поверхности конуса называется сектор, радиус которого равен длине образующей конуса, а длина дуги сектора равна длине окружности основания конуса.

Для конуса верны формулы:

где R – радиус основания;

H – высота;

l – длина образующей;

S осн – площадь основания;

S бок

S полн

V – объем конуса.

Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию конуса (рис.35).


Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг оси, содержащей боковую сторону трапеции, перпендикулярную основаниям.

Два круга, ограничивающие конус, называются его основаниями . Высотой усеченного конуса называется расстояние между его основаниями. Отрезки, образующие коническую поверхность усеченного конуса называются образующими . Прямая, проходящая через центры оснований, называется осью усеченного конуса. Осевым сечением называется сечение, проходящее через ось усеченного конуса.

Для усеченного конуса верны формулы:

(8)

где R – радиус нижнего основания;

r – радиус верхнего основания;

H – высота, l – длина образующей;

S бок – площадь боковой поверхности;

S полн – площадь полной поверхности;

V – объем усеченного конуса.

Пример 1. Сечение конуса параллельное основанию делит высоту в отношении 1:3, считая от вершины. Найти площадь боковой поверхности усеченного конуса, если радиус основания и высота конуса равны 9 см и 12 см.

Решение. Сделаем рисунок (рис. 36).

Для вычисления площади боковой поверхности усеченного конуса используем формулу (8). Найдем радиусы оснований О 1 А и О 1 В и образующую АВ.

Рассмотрим подобные треугольники SO 2 B и SO 1 A , коэффициент подобия , тогда

Отсюда

Так как то

Площадь боковой поверхности усеченного конуса равна:

Ответ: .

Пример2. Четверть круга радиуса свернута в коническую поверхность. Найти радиус основания и высоту конуса.

Решение. Четверить круга является разверткой боковой поверхности конуса. Обозначим r – радиус его основания, H – высота. Площадь боковой поверхности вычислим по формуле: . Она равна площади четверти круга: . Получим уравнение с двумя неизвестными r и l (образующая конуса). В данном случае образующая равна радиусу четверти круга R , значит, получим следующее уравнение: , откуда Зная радиус основания и образующую, найдем высоту конуса:

Ответ: 2 см, .

Пример 3. Прямоугольная трапеция с острым углом 45 О, меньшим основанием 3см и наклонной боковой стороной равной , вращается вокруг боковой стороны перпендикулярной основаниям. Найти объем полученного тела вращения.

Решение. Сделаем рисунок (рис. 37).

В результате вращения получим усеченный конус, чтобы найти его объем вычислим радиус большего основания и высоту. В трапеции O 1 O 2 AB проведем AC^O 1 B . В имеем: значит, этот треугольник равнобедренный AC =BC =3 см.

Ответ:

Пример 4. Треугольник со сторонами 13 см, 37 см и 40 см вращается вокруг внешней оси, которая параллельна большей стороне и находится от нее на расстоянии 3 см (Ось расположена в плоскости треугольника). Найти площадь поверхности полученного тела вращения.

Решение . Сделаем рисунок (рис. 38).

Поверхность полученного тела вращения состоит из боковых поверхностей двух усеченных конусов и боковой поверхности цилиндра. Для того чтобы вычислить эти площади необходимо знать радиусы оснований конусов и цилиндра (BE и OC ), образующие конусов (BC и AC ) и высоту цилиндра (AB ). Неизвестной является только CO . это расстояние от стороны треугольника до оси вращения. Найдем DC . Площадь треугольника ABC с одной стороны равна произведению половины стороны AB на высоту, проведенную к ней DC , с другой стороны, зная все стороны треугольника, его площадь вычислим по формуле Герона.

Лекция: Конус. Основание, высота, боковая поверхность, образующая, развертка

Конус – это тело, которой состоит из окружности, которая находится в основании, из точки равноудаленной от всех точек на окружности, а также от прямых, соединяющих эту точку (вершину) со всеми точками, лежащими на окружности.


Несколькими вопросами ранее, мы рассматривали пирамиду. Так вот конус – это частный случай пирамиды, в основании которой лежит окружность. Практически все свойства пирамиды подходят и для конуса.

Каким образом можно получить конус? Вспомните прошлый вопрос и то, как мы получили цилиндр. Теперь возьмите равнобедренный треугольник и крутите его вокруг своей оси – Вы получите конус.


Образующие конуса – это отрезки, заключенные между точками окружности и вершиной конуса. Образующие конуса равны между собой.

Чтобы найти длину образующей, следует воспользоваться формулой:

Если все образующие соединить между собой, можно получить боковую поверхность конуса. Общая его поверхность состоит из боковой поверхности и основания в виде окружности.


Конус имеет высоту . Чтобы ее получить, достаточно опустить перпендикуляр из вершины, непосредственно, в центр основания.


Чтобы найти площадь боковой поверхности, следует воспользоваться формулой:

Для нахождения полной площади поверхности конуса воспользуйтесь следующей формулой.

Определения:
Определение 1. Конус
Определение 2. Круговой конус
Определение 3. Высота конуса
Определение 4. Прямой конус
Определение 5. Прямой круговой конус
Теорема 1. Образующие конуса
Теорема 1.1. Осевое сечение конуса

Объем и площади :
Теорема 2. Объем конуса
Теорема 3. Площадь боковой поверхности конуса

Усеченный конус :
Теорема 4. Сечение, параллельное основанию
Определение 6. Усеченный конус
Теорема 5. Объем усеченного конуса
Теорема 6. Площадь боковой поверхности усеченного конуса

Определние
Тело ограниченное с боков конической поверхностью, взятой между её вершиной и плоскостью направляющей, и плоским основанием направляющей, образованным замкнутой кривой, называется конусом.

Основные понятия
Круговым конусом называют тело, которое состоит из круга (основания), точки, не лежащей в плоскости основания (вершины) и всех отрезков соединяющих вершину с точками основания.

Прямым конусом называется конус, высота которого основанием содержит центр основания конуса.

Рассмотрим какую-либо линию (кривую, ломаную или смешанную)(например, l ), лежащую в некоторой плокости, и произвольную точку (например, М), не лежащую в этой плоскости. Всевозможные прямые, соединяющие точку М со всеми точками данной линии l , образуют поверхность, называемую канонической . Точка М является вершиной такой поверхности, а заданная линия l - направляющей . Все прямые соединяющие точку М со всеми точками линии l , называют образующими . Каноническая поверхность не ограничивается ни её вершиной, ни направляющей. Она простирается неограниченно в обе стороны от вершины. Пусть теперь направляющая - замкнутая выпуклая линия. Если направляющая - ломаная линия, то тело, ограниченное с боков канонической поверхностью, взятой между её вершиной и плокостью направляющей, и плоским основанием в плоскости направляющей, называется пирамидой .
Если же направляющая - кривая или смешанная линия, то тело, ограниченное с боков канонической поверхностью, взятой между её вершиной и плокостью направляющей, и плоским основанием в плоскости направляющей, называется конусом или
Определение 1 . Конусом называют тело, состоящее из основания - плоской фигуры, ограниченной замкнутой линией (кривой или смешанной), вершины - точки, не лежащей в плокости основания, и всех отрезков, соединяющих вершину со всевозможными точками основания.
Все прямые, проходящие через вершину конуса и любую из точек кривой, ограничивающей фигуру основания конуса, называются образующими конуса. Чаще всего в геометрических задачах под образующей прямой имеется ввиду отрезок этой прямой, заключенный между вершиной и плоскостью основания конуса.
Основание ограниченной смешанной линией - это очень редкий случай. Он сдесь указан только потому, что он может быть рассмотрен в геометрии. Чаще рассматривается случай с криволинейной направляющей. Хотя, что случай с произвольной кривой, что случай со смешанной направляющей, мало чем полезен и в них сложно вывести какие-любо закономерности. Из числа конусов в курсе элементарной геометрии изучается прямой круговой конус.

Известно, что окружность есть частный случай замкнутой кривой линии. Круг - плоская фигура, ограниченная окружностью. Принимая окружность за направляющую, можно определеить круговой конус.
Определение 2 . Круговым конусом называют тело, которое состоит из круга (основания), точки, не лежащей в плоскости основания (вершины) и всех отрезков соединяющих вершину с точками основания.
Определение 3 . Высота конуса - перпендикуляр, опущенный из вершины на плокость основания конуса. Можно выделить конус, высота которого падает в центр плоской фигуры основания.
Определение 4 . Прямым конусом называется конус, высота которого основанием содержит центр основания конуса.
Если связать эти два определения, мы получим конус, основание котрого есть круг, а высота падает в центр этого круга.
Определение 5 . Прямым круговым конусом называют конус, основание котрого есть круг, а высота его соединяет вершину и центр основания данного конуса. Такой конус получается вращением прямоугольного треугольника вокруг одного из катетов. Поэтому прямой круговой конус является телом вращения и называется также конусом вращения. Если не оговорено противное, то для краткости в дальнейшем говорим просто конус.
Итак приведем некоторые свойства конуса:
Теорема 1 . Все образующие конуса равны. Доказательство. Высота МО перпендикулярна всем прямым основания по определению перпендикулярной прямой к плокости. Поэтому треугольники МОА, МОВ и МОС являются прямоугольными и равны по двум катетам (МО - общая, ОА=ОВ=ОС - радиусы основания. Поэтому равны и гипотенузы, т.е. образующие.
Радиус основания конуса иногда называют радиусом конуса . Высота конуса называется также осью конуса , поэтому любое сечение, проходящее через высоту называется осевым сечением . Любое осевое сечение пересекает основание по диаметру (т.к. прямая, по которой пересекаются осевое сечение и плокость основания, проходит через центр окружности) и образует равнобедренный треугольник.
Теорема 1.1. Осевое сечение конуса есть равнобедренный треугольник. Так треугольник АМВ является равнобедренным, т.к. две его стороны МВ и МА есть образующие. Угол АМВ является углом при вершине осевого сечения.



Понравилась статья? Поделитесь с друзьями!