Круговорот воды. Хозяйственное звено круговорота воды

Круговорот веществ в биосфере — цикличный, многократно повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ. Наличие круговорота веществ является необходимым условием существования биосферы. После использования одними организмами вещества должны переходить в доступную для других организмов форму. Такой переход веществ от одного звена к другому требует энергетических затрат, поэтому возможен только при участии энергии Солнца. С использованием солнечной энергии на планете протекают два взаимосвязанных круговорота веществ: большой — геологический и малый — биологический (биотический).

Геологический круговорот веществ — процесс миграции веществ, осуществляемый под влиянием абиотических факторов: выветривания, эрозии, движения вод и т. д. Живые организмы участия в нем не принимают.

С возникновением на планете живого вещества появился биологический (биотический) круговорот . В нем принимают участие все живые организмы, поглощающие из окружающей среды одни вещества и выделяющие другие. Например, растения в процессе жизнедеятельности потребляют из окружающей среды углекислый газ, воду, минеральные вещества и выделяют кислород. Животные используют выделенный растениями кислород для дыхания. Они поедают растения и в результате пищеварения усваивают образовавшиеся в процессе фотосинтеза органические вещества. Выделяют углекислый газ и непереваренные остатки пищи. После отмирания растения и животные образуют массу мертвого органического вещества (детрит). Детрит доступен для разложения (минерализации) микроскопическими грибами и бактериями. В результате их жизнедеятельности в биосферу поступает дополнительное количество углекислого газа. А органические вещества превращаются в исходные неорганические компоненты — биогены. Образовавшиеся минеральные соединения, попадая в водоемы и почву, снова становятся доступны растениям для фиксации посредством фотосинтеза. Такой процесс повторяется бесконечно и носит замкнутый характер (круговорот). Например, весь атмосферный кислород проходит по этому пути примерно за 2 тыс. лет, а углекислому газу для этого требуется около 300 лет.

Энергия, заключенная в органических веществах, по мере перемещения в пищевых цепях уменьшается. Большая часть ее рассеивается в окружающей среде в виде тепла или расходуется на поддержание процессов жизнедеятельности организмов. Например, на дыхание животных и растений, транспорт веществ у растений, а также на процессы биосинтеза живых организмов. К тому же образовавшиеся в результате деятельности редуцентов биогены не содержат доступной для организмов энергии. В данном случае можно говорить лишь о потоке энергии в биосфере, но не о круговороте. Поэтому условием устойчивого существования биосферы является постоянно протекающий в биогеоценозах круговорот веществ и поток энергии.

Геологический и биологический круговороты в совокупности формируют общий биогеохимический круговорот веществ, основу которого составляют циклы азота, воды, углерода и кислорода.

Круговорот азота

Азот — один из самых распространенных элементов в биосфере. Основная часть биосферного азота находится в атмосфере в газообразной форме. Как известно из курса химии, химические связи между атомами в молекулярном азоте (N 2) очень прочные. Поэтому большинство живых организмов не способны использовать его непосредственно. Отсюда важным этапом в круговороте азота является его фиксация и перевод в доступную для организмов форму. Различают три пути фиксации азота.

Атмосферная фиксация . Под воздействием атмосферных электрических разрядов (молний) азот может взаимодействовать с кислородом с образованием оксида (NO) и диоксида (NO 2) азота. Оксид азота (NO) при этом очень быстро окисляется кислородом и превращается в диоксид азота. Диоксид азота растворяется в парах воды и в виде азотистой (HNO 2) и азотной (HNO 3) кислот с осадками попадает в почву. В почве в результате диссоциации этих кислот образуются нитрит- (NO 2 –) и нитрат-ионы (NO 3 –). Нитрит- и нитрат-ионы уже могут поглощаться растениями и включаться в биологический круговорот. На долю атмосферной фиксации азота приходится около 10 млн т азота в год, что составляет около 3 % ежегодной азотфиксации в биосфере.

Биологическая фиксация . Она осуществляется азотфиксирующими бактериями, которые переводят азот в доступные для растений формы. Благодаря микроорганизмам связывается около половины всего азота. Наиболее известны бактерии, фиксирующие азот в клубеньках бобовых растений. Они поставляют растениям азот в виде аммиака (NH 3). Аммиак хорошо растворим в воде с образованием иона аммония (NH 4 +), который и усваивается растениями. Поэтому бобовые — лучшие предшественники культурных растений в севообороте. После отмирания животных и растений и разложения их остатков почва обогащается органическими и минеральными соединениями азота. Далее гнилостные (аммонифицирующие) бактерии расщепляют азотсодержащие вещества (белки, мочевину, нуклеиновые кислоты) растений и животных до аммиака. Этот процесс называется аммонификацией . Большая часть аммиака впоследствии подвергается окислению нитрифицирующими бактериями до нитритов и нитратов, которые вновь используются растениями. Возвращение азота в атмосферу происходит путем денитрификации, которую осуществляет группа денитрифицирующих бактерий. В результате происходит восстановление азотистых соединений до молекулярного азота. Часть азота в нитратной и аммонийной формах с поверхностным стоком попадает в водные экосистемы. Здесь азот усваивается водными организмами или поступает в донные органические отложения.

Промышленная фиксация . Большое количество азота ежегодно связывается промышленным путем при производстве минеральных азотных удобрений. Азот из таких удобрений усваивается растениями в аммонийной и нитратной формах. Объем выпускаемых азотных удобрений в Беларуси в настоящее время составляет около 900 тыс. т в год. Крупнейшим производителем является ОАО «ГродноАзот». На данном предприятии выпускают карбамид, аммиачную селитру, сульфат аммония и другие азотные удобрения.

Примерно 1/10 искусственно внесенного азота используется растениями. Остальное с поверхностным стоком и грунтовыми водами переходит в водные экосистемы. Это приводит к накоплению в воде больших количеств соединений азота, доступных для усвоения фитопланктоном. В результате возможно бурное размножение водорослей (эвтрофикация) и, как следствие, заморы в водных экосистемах.

Круговорот воды

Вода — основной компонент биосферы. Она является средой для растворения практически всех элементов при осуществлении круговорота. Большая часть биосферной воды представлена жидкой водой и водой вечных льдов (более 99 % всех запасов воды в биосфере). Незначительная часть воды находится в газообразном состоянии — это атмосферные водяные пары. Биосферный круговорот воды основывается на том, что ее испарение с поверх ности Земли компенсируется выпадением осадков. Попадая на поверхность суши в виде осадков, вода способствует разрушению горных пород. Это делает составляющие их минералы доступными для живых организмов. Именно испарение воды с поверхности планеты обусловливает ее геологический круговорот. На него расходуется около половины падающей солнечной энергии. Испарение воды с поверхности морей и океанов происходит с большей скоростью, чем возвращение ее с осадками. Эта разница компенсируется за счет поверхностного и глубинного стоков благодаря тому, что на континентах осадки преобладают над испарением.

Увеличение интенсивности испарения воды на суше во многом обусловлено жизнедеятельностью растений. Растения извлекают воду из почвы и активно транспирируют ее в атмосферу. Часть воды в клетках растений расщепляется в процессе фотосинтеза. При этом водород фиксируется в виде органических соединений, а кислород выделяется в атмосферу.

Животные используют воду для поддержания осмотического и солевого равновесия в организме и выделяют ее во внешнюю среду вместе с продуктами обмена веществ.

Круговорот углерода

Углерод как химический элемент присутствует в атмосфере в составе углекислого газа. Это и обусловливает обязательное участие живых организмов в круговороте этого элемента на планете Земля. Основной путь, по которому углерод из неорганических соединений переходит в состав органических веществ, где он является обязательным химическим элементом, — это процесс фотосинтеза. Часть углерода выделяется в атмосферу в составе углекислого газа при дыхании живых организмов и при разложении бактериями мертвого органического вещества. Усвоенный растениями углерод потребляется животными. Кроме того, коралловые полипы, моллюски используют соединения углерода для построения скелетных образований и раковин. После их отмирания и оседания на дне формируются отложения известняков. Таким образом, углерод может исключаться из круговорота. Выведение углерода из круговорота на длительный срок достигается путем формирования полезных ископаемых: каменного угля, нефти, торфа.

На протяжении существования нашей планеты выведенный из круговорота углерод компенсировался углекислым газом, поступающим в атмосферу при вулканических извержениях и в ходе других естественных процессов. В настоящее время к природным процессам пополнения углерода в атмосфере добавилось значительное антропогенное воздействие. Например, при сжигании углеводородного топлива. Это нарушает отрегулированный веками круговорот углерода на Земле.

Увеличение концентрации углекислого газа за столетие всего на 0,01 % привело к заметному проявлению парникового эффекта. Среднегодовая температура на планете повысилась на 0,5 °С, а уровень Мирового океана поднялся почти на 15 см. По прогнозам ученых, если среднегодовая температура увеличится еще на 3-4 °С, начнется таяние вечных льдов. При этом уровень Мирового океана поднимется на 50-60 см, что приведет к затоплению значительной части суши. Это расценивается как глобальная экологическая катастрофа, ведь на этих территориях проживает около 40 % населения Земли.

Круговорот кислорода

В функционировании биосферы кислород играет исключительно важную роль в процессах обмена веществ и дыхании живых организмов. Уменьшение количества кислорода в атмосфере в результате процессов дыхания, сжигания топлива и гниения компенсируется кислородом, выделяемым растениями при фотосинтезе.

Кислород образовывался в первичной атмосфере Земли при ее остывании. В силу своей высокой реакционной способности он переходил из газообразного состояния в состав различных неорганических соединений (карбонатов, сульфатов, оксидов железа и др.). Сегодняшняя кислородсодержащая атмосфера планеты образовалась исключительно за счет осуществляемого живыми организмами фотосинтеза. Содержание кислорода в атмосфере повышалось до нынешних значений в течение длительного времени. Поддержание его количества на постоянном уровне в настоящее время возможно только благодаря фотосинтезирующим организмам.

К сожалению, в последние десятилетия деятельность человека, приводящая к вырубке лесов, эрозии почв, снижает интенсивность фотосинтеза. А это, в свою очередь, нарушает естественный ход круговорота кислорода на значительных территориях Земли.

Небольшая часть кислорода атмосферы участвует в процессах образования и разрушения озонового экрана при действии ультрафиолетового излучения Солнца.

Основой биогенного круговорота веществ является солнечная энергия. Главным условием устойчивого существования биосферы являются постоянно протекающий в биогеоценозах круговорот веществ и поток энергии. В круговоротах азота, углерода и кислорода основная роль принадлежит живым организмам. Основу же глобального круговорота воды в биосфере обеспечивают физические процессы.

В глобальном масштабе биохимические круговороты воды и углекислого газа имеют, на наш взгляд, самое важное значение для человечества. Для биохимических круговоротов характерно наличие в атмосфере небольших, но подвижных фондов.

Атмосферный фонд СО 2 в круговороте, по сравнению с запасами углерода в океанах, ископаемом топливе и других резервуарах земной коры, относительно невелик.

С наступлением научно-технического прогресса сбалансированные прежде потоки углерода между атмосферой, материками и океанами начинают поступать в атмосферу в количестве, которое не полностью может связаться растениями.

Существуют разные оценки влияния деятельности человечка на обогащение атмосферы CO 2 однако все авторы сходятся во мнении, что основными накопителями углерода являются леса, так как в биомассе лесов содержится в 1,5 раза, а в гумусе, содержащемся в почве, - в 4 раза больше СО 2 , чем в атмосфере.

Растения - хороший регулятор содержания CO 2 в атмосфере Для большинства растений характерно увеличение интенсивности фотосинтеза при повышенном содержании диоксида углерода в воздухе

Фотосинтезирующий "зеленый пояс" Земли и карбонатная система моря поддерживают постоянный уровень СО 2 в атмосфере. Однако стремительное увеличение потребления горючих ископаемых, а также уменьшение поглотительной способности "зеленого пояса" приводят к тому, что содержание CO 2 в атмосфере постепенно растет. Предполагают, что если уровень СО 2 в атмосфере будет превышен вдвое (до начала активного влияния человека на окружающую среду он составлял 0,29 %), то не исключено повышение глобальной температуры на 1,5 - 4,5 °С. Это может привести к таянию ледников и как следствие - к повышению уровня Мирового океана, а также к неблагоприятным последствиям в сельском хозяйстве. В настоящее время в США существует национальная научно-исследовательская программа по ведению сельского хозяйства на случай потепления или похолодания климата.

Помимо СО 2 в атмосфере в небольших количествах присутствуют оксид углерода СО - 0,1 части на миллион и метан СН 4 - 1,6 части на миллион. Эти углеродные соединения активно включены в круговорот и поэтому имеют небольшое время пребывания в атмосфере: СО - около 0,1 года, СН 4 - 3,6 года, а СО 2 - 4 года. Оксид углерода и метан образуются при неполном или аэробном разложении органического вещества и в атмосфере окисляются до СО 2 .



Накопление СО в глобальном масштабе не представляется реальным, но в городах, где воздух застаивается, имеет место повышение концентрации этого соединения, что негативно влияет на здоровье людей.

Метан образуется при разложении органического вещества в болотистых местностях и мелководных морях. По мнению некоторых ученых, метан выполняет полезную функцию - он поддерживает стабильность озонового слоя, который предохраняет все живое на Земле от гибельного воздействия ультрафиолетового излучения.

Фонд воды в атмосфере, как показано на рисунке 11, невелик, и скорость ее оборота выше, а время пребывания меньше, чем CO 2 . Как и на круговорот CO 2 , деятельность человека оказывает влияние на круговорот воды.

С энергетической точки зрения можно выделить две части круговорота СО 2: "верхнюю", которая приводится в движение Солнцем, и "нижнюю", в которой выделяется энергия. Как уже отмечалось, около 30 % всей энергии Солнца, поступающей на поверхность Земли, затрачивается на приведение в движение круговорота воды.

В экологическом плане особое внимание следует обратить на два аспекта круговорота воды. Во-первых, море за счет испарения теряет больше воды, чем получает с осадками, то есть значительная часть осадков, поддерживающих экосистемы суши, в том числе и агроэкосистемы, состоит из воды, которая испарилась с поверхности моря. Во-вторых, в результате деятельности человека возрастает по верхностный сток и сокращается пополнение фонда грунтовых вод. Уже сейчас имеются территории, на которых используются грунтовы воды, накопившиеся в предыдущем столетии. Следовательно, в этом случае вода - невозобновимый ресурс. После истощения грунтовых вод ее будут доставлять с других территорий, что потребует вложения дополнительного количества энергии.

Круговорот азота

Азот, как и углерод, входит в состав атмосферного воздуха и присутствует в нем в виде молекул (Мд).

Он играет важную роль в жизнедеятельности организмов. Как и кислород, азот необходим для дыхания животных. Азот входит в состав многих органических соединений, прежде всего белка. В молекуле белка он образует прочные амидные связи с углеродом или соединяется.с водородом, присутствуя в виде аминных (- NH 3) или амидных (- NH 2) групп.

Образование амидных (пептидных) связей (С - N-связи) является главным механизмом синтеза белковых молекул и пептидов, составляющих сущность всего живого на Земле.

Схема, отражающая круговорот азота, приведена на рис. 6.

Рис. 6. Схема круговорота азота. Выделены основные этапы и приведены оценки количества азота, участвующего в основных потоках. Числа в скобках - тераграммы (Тг = 10 6 т) в год (по Ю. Одуму, 1986)

Источником азота для автотрофов являются нитраты (соли азотной кислоты HNO 3), а также молекулярный азот атмосферы. Азот нитратов через корневую систему растений попадает по проводящим путям в листья, где используется для синтеза растительного белка.

Второй путь, которым азот попадает в организмы - прямая фиксация азота из атмосферы. Это явление совершенно уникально и свойственно прокариотам - безъядерным микроорганизмам. До 1950 г. были известны всего три таксона микроорганизмов, способных связывать атмосферный азот:

· свободноживущие бактерии родов Azotobacter и Clostridium;

· симбиотические клубеньковые бактерии рода Rhizobium;

· сине-зеленые водоросли (цианобактерии) родов Anabaena, Nostoc, а также другие члены порядка Nostocales.

Затем были обнаружены и другие виды организмов, способных к фиксации азота из атмосферы: пурпурные бактерии рода Rhodospirillum, a также почвенные бактерии, близкие к Pseudomonas, актиномицеты из корневых клубеньков ольхи (Ainus, Ceanothus, Myrica и другие). Было так же установлено, что сине-зеленые водоросли рода Anabaena (надо подчеркнуть, что эти водоросли обладают способностью к гетеротрофному питанию и имеют другие признаки, позволяющие относить их к бактериям) могут быть симбионтами грибов, мхов, папоротников и даже семенных растений, и способность к фиксации азота является полезной для обоих участников. Эта удивительная способность служит причиной того, что при выращивании риса и бобовых на одном и том же поле в течение нескольких лет можно получать хорошие урожаи, не внося азотных удобрений.

Биохимический механизм прямой фиксации атмосферного азота осуществляется при участии фермента нитрогеназы, катализирующей расщепление молекулы азота (N 2). Процесс этот требует значительных затрат энергии на разрыв тройной связи в молекуле азота. Реакция идет с участием молекулы воды, в результате чего образуется аммиак (NH 3), например, в клубеньках бобовых. На фиксацию 1 г азота бактерии расходуют около 10 г глюкозы (около 40 ккал), синтезированной в ходе фотосинтеза, т. е. эффективность составляет всего 10 %.

Приведенный пример иллюстрирует также выгоду симбиоза как стратегии "сотрудничества", способствующей выживанию. Нетрудно прийти к идее перспективности выведения таких сортов сельскохозяйственных культур, которые, используя симбиоз с азотфиксирующими микроорганизмами, давали бы хорошие урожаи без применения удобрений.

Образующиеся в растениях азотсодержащие органические соединения по трофическим цепям попадают в организм гетеротрофов (животных), а также в почву - после отмирания растений. В почве они подвергаются распаду при участии сапрофагов, минерализуются и используются затем другими растениями. Конечным звеном разложения являются организмы-аммонификаторы, образующие аммиак (NH 3). Аммиак включается в реакции нитрификации, т. е. образования нитритов и их превращения в нитраты. Таким образом цикл круговорота азота в почве поддерживается постоянно.

В то же время часть азота возвращается в атмосферу благодаря деятельности бактерий-денитрификаторов, разлагающих нитраты до молекулярного азота (N 2). В результате бактериальной денитрификации ежегодно с 1 га почвы улетучивается до 50 - 60 кг азота.

Приостановление круговорота азота может происходить вследствие его накопления в глубоководных океанических осадках. При этом азот выключается из кругооборота на несколько миллионов лет. Потери компенсируются поступлением газообразного азота при вулканических извержениях. Ю. Одум полагает, что извержения вулканов в этом смысле полезны, и, если "блокировать все вулканы на Земле, то при этом от голода вполне может погибнуть больше людей, чем страдает сейчас от извержений" (Одум Ю. Экология. М.: Мир, 1986. Т. 1. С. 209).

Круговорот азота является примером хорошо забуференного круговорота газообразных веществ. Он является важным фактором, лимитирующим или контролирующим численность организмов.

Круговорот азота достаточно подробно изучен. Известно, в частности, что из 10 9 т азота, которые ежегодно усваиваются в биосфере, около 80 % возвращается в круговорот с суши и из воды, и лишь 20 % необходимого количества - это "новый" азот, поступающий из атмосферы с дождем и в результате азотфиксации. Напротив, из азота, поступившего на поля с удобрениями, очень небольшая часть используется повторно; большая же часть теряется с собираемым урожаем в результате выноса водой и денитрификации.

Круговорот фосфора

Фосфор также является элементом, необходимым для питания живых организмов, играет важнейшую роль в росте и развитии растений.

Резервуаром фосфора, в отличие от азота, служит не атмосфера, а горные породы и другие отложения, образовавшиеся в прошлые геологические эпохи. Минеральный фосфор входит в состав многих горных пород. Он попадает в гидросферу в ходе их эрозии, отлагается в виде осадков на мелководьях, частично осаждается в глубоководных илах.

У животных фосфор в виде органических соединений (с белками, в частности) входит в состав костей и других тканей. Он также играет роль в энергетических процессах запасания энергии клеток в виде аденозинтрифосфорной и аденозиндифосфорной кислот.

В результате разложения мертвых организмов и минерализации органических соединений фосфор в виде фосфатов (солей ортофосфорной кислоты) вновь используется растениями и тем самым снова вовлекается в круговорот.

Выведение фосфора из круговорота происходит вследствие его накопления в донных осадках. Круговорот фосфора является примером простого осадочного цикла с недостаточной "забуференностью" и нарушенными механизмами саморегуляции вследствие антропогенного воздействия на окружающую среду. Существует мнение, что механизмы возвращения фосфора в круговорот недостаточны и не возмещают потерь, связанных с техногенезом.

Деятельность человека по лову рыбы и птиц ведет к нарушению баланса фосфора. По данным Дж. Хатчинсона, на сушу в результате рыболовства возвращается всего около 60 000 т элементарного фосфора (Цит. по: Одум Ю. Экология. М.: Мир, 1986. Т. 1). Добывается на удобрения ежегодно 1-2 млн. т фосфорсодержащих пород. Причем большая часть из этого количества смывается водой и выводится из кругооборота.

В настоящее время вызывает озабоченность увеличение концентрации фосфатов в водных экосистемах, что приводит к их интенсивному зарастанию, деградации экосистем и в конечном итоге к их гибели.

Фосфор широко используется в агротехнике в виде фосфорных (минеральных) удобрений с целью повышения плодородия почвы и урожайности сельскохозяйственных культур. Таким образом, минеральный фосфор попадает в водные и наземные экосистемы - вследствие выноса растворенных фосфатов с сельскохозяйственными сточными водами и стока с полей, где применялись фосфорные удобрения, а также сброса городских и промышленных сточных вод.

По данным Дж. Хатчинсона, время оборота фосфора в воде малых озер (площадью 0,3 - 0,4 км 2 и глубиной 6 - 7 м) составляет 5,4 - 7,6 суток, а больших (площадью 2 км 2 , глубиной около 4 м)- 17 суток. Время оборота в донных осадках намного больше и составляет соответственно примерно 40 и 176 суток. Разница в величине показателя, по-видимому, объясняется тем, что в малых озерах отношение поверхности донных осадков к объему воды больше. Таким образом в больших, но не глубоководных водоемах фосфор депонируется, что сильно усложняет борьбу с их зарастанием.

В самоочищении большая роль принадлежит гидробионтам. Так, животные-фильтраторы и детритофаги вносят существенный вклад в круговорот фосфора. Например, популяция фильтрующих двустворчатых моллюсков Modiolus demissus за 2,5 дня "возвращает" из воды столько "взвешенного" фосфора, сколько его содержится в воде, т. е. время оборота "взвешенного" фосфора составляет всего 2,5 дня (Одум Ю. Экология. М.: Мир, 1986. Т. 1. С. 219).

В то же время, как уже отмечалось, фосфор жизненно необходим для растений и относится к числу факторов, лимитирующих численность растительных и других организмов, входящих в трофические цепи.

Круговорот серы

Схема круговорота серы представлена на рис. 8.

Минеральная сера попадает в почву в результате естественного разложения серного и медного колчеданов в горных породах. Она переносится с атмосферными осадками и попадает в наземные и водные экосистемы.

Для круговорота серы характерен обширный резервный фонд в почве и отложениях и меньший фонд - в атмосфере.

В быстро обменивающемся фонде серы ключевую роль играют специализированные группы микроорганизмов (сульфатокисляющих и сульфатредуцирующих).

Сера является компонентом белков и входит в состав ряда аминокислот: цистина, цистеина, метионина. Эти аминокислоты синтезируются растениями, использующими минеральную серу. В организм животных сера попадает с растительной пищей.

Рис. 8. Круговорот серы, охватывающий воздух, воду и почву.

"Кольцо" в центре схемы иллюстрирует процессы окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата (SO 4) и фондом сульфидов железа в почве и в осадках. Специализированные микроорганизмы выполняют реакции: H 2 S ®S 2 ®SO 4 - бесцветные, зеленые и пурпурные серобактерии; SO 4 ®H 2 S (анаэробное восстановление сульфата) - Desulfovibrio; H 2 S ®SO 4 (аэробное окисление сульфида) - тиобациллы; органическая S в SO 4 и H 2 S - аэробные и анаэробные гетеротрофные микроорганизмы соответственно. Первичная продукция, разумеется, обеспечивает включение сульфата в органическое вещество, а экскреция животными служит путем возвращения сульфата в круговорот. Двуокись серы (SO 2), выделяющаяся в атмосферу при сжигании горючих ископаемых, особенно угля, является одним из самых опасных компонентов промышленных выбросов (по Ю. Одуму, 1986).

6.1. Круговорот воды

Круговорот воды – один из главных компонентов абиотической циркуляции веществ, включает переход воды из жидкого в газообразное и твердое состояние и обратно (рис. 9). Он обладает всеми основными чертами других круговоротов – также примерно сбалансирован в масштабе всего земного шара и приводится в движение энергией. Круговорот воды – самый значительный по переносимым массам и затратам энергии круговорот на Земле. Каждую секунду в него вовлекается 16,5 млн м 3 воды и тратится на это более 40 млрд МВт солнечной энергии.

Рис. 9. Круговорот воды в природе

Основные процессы, обеспечивающие круговорот воды, – инфильтрация, испарение, сток :

1. Инфильтрация – испарение – транспирация: вода впитывается почвой, удерживается в качестве капиллярной воды, а затем возвращается в атмосферу, испаряясь с поверхности земли, или же поглощается растениями и выделяется в виде паров при транспирации;

2. Поверхностный и внутрипочвенный сток: вода становится частью поверхностных вод. Движение грунтовых вод: вода попадает под землю и движется сквозь нее, питая колодцы и родники, вновь попадает в систему поверхностных вод.

Таким образом, круговорот воды можно представить в виде двух энергетических путей: верхний путь (испарение) приводится в движение солнечной энергией, нижний (выпадение осадков) – отдает энергию озерам, рекам, заболоченным землям, другим экосистемам и непосредственно человеку, например на ГЭС. Деятельность человека оказывает огромное влияние на глобальный круговорот воды, что может изменять погоду и климат. В результате покрытия земной поверхности непроницаемыми для воды материалами, строительства оросительных систем, уплотнения пахотных земель, уничтожения лесов и т. п. сток воды в океан увеличивается и пополнение фонда грунтовых вод сокращается. Во многих сухих областях эти резервуары выкачиваются человеком быстрее, чем заполняются. В России для водоснабжения и орошения земель разведано 3 367 месторождений подземных вод. Эксплуатационные запасы разведанных месторождений составляют 28,5 км 3 /год. Степень освоения этих запасов составляет в РФ не более 33 %, а в эксплуатации находится 1 610 месторождений.

Особенность круговорота в том, что из океана испаряется воды больше (примерно 3,8·10 14 т), чем возвращается с осадками (примерно 3,4·10 14 т). На суше, наоборот, осадков выпадает больше (примерно 1,0·10 14 т), чем испаряется (суммарно около 0,6·10 14 т). В связи с тем, что из океана воды испаряется больше, чем возвращается, значительная часть осадков, используемых экосистемами суши, в том числе и агроэкосистемами, производящими пищу для человека, состоит из воды, испаряющейся из моря. Излишки воды с суши стекают в озера и реки, а оттуда снова в океан. По существующим оценкам, в пресных водоемах (озерах и реках) содержится 0,25·10 14 т воды, а годовой сток составляет 0,2·10 14 тонн. Таким образом, время оборота пресных вод составляет примерно один год. Разность между количеством осадков, выпадающих на сушу за год (1,0·10 14 т), и стоком (0,2·10 14 т) составляет 0,8·10 14 т, которые испаряются и поступают в подпочвенные водоносные горизонты. Поверхностный сток частично пополняет резервуары грунтовых вод и сам пополняется от них.

Атмосферные осадки являются основным звеном влагооборота и во многом определяют гидрологический режим экосистем суши. Их распределение по территории, особенно в горах, неравномерно, что связано с особенностями атмосферных процессов и подстилающей поверхности. Так, например, для лесотундровых редколесий Путоранской лесорастительной провинции Средней Сибири годовая сумма осадков составляет 617 мм, для северотаежных лесов Нижне-Тунгусского лесорастительного округа – 548, а для южнотаежных лесов Приангарья она уменьшается до 465 мм (табл. 2).

Таблица 2

Эвапотранспирация лесных экосистем Енисейского меридиана

Округ, провинция

Запас древостоев, м 3 /га *

Осадки, мм **

Испарение, мм ***

перехваченных осадков

Притундровые леса

Путоранская лесорастительная провинция

Северная тайга

Туруханский лесорастительный округ

Южная тайга

Приангарский лесорастительный округ

* – Ведрова и др. (из кн. Лесные экосистемы Енисейского меридиана, 2002);

**, *** – Буренина и др.(там же).

Испарению принадлежит одно из ведущих мест. С появлением жизни на Земле круговорот воды стал относительно сложным, так как к физическому явлению превращения воды в пар добавился процесс биологического испарения, связанный с жизнедеятельностью растений и животных – транспирация . Наряду с осадками и стоком эвапотранспирация, включающая испарение перехваченных осадков, транспирационный расход влаги растениями и подпологовое испарение, является основной расходной статьей водного баланса, особенно в лесных экосистемах. Например, в тропическом влажном лесу количество воды, испаряемой растениями, достигает 7000 м 3 /км 2 в год, тогда как в саванне на той же широте и высоте с той же площади оно не превышает 3000 м 3 /км 2 в год.

Растительность в целом играет значительную роль в испарении воды, влияя тем самым на климат регионов. Интенсивность эвапотранспирации зависит от радиационного баланса и различной продуктивности растительности. Как видно из табл. 2, при увеличении надземной фитомассы вследствие большего испарения перехваченных осадков и транспирационного расхода влаги суммарное испарение возрастает.

Кроме того, высшая растительность выполняет очень важную для наземных экосистем водоохранную и водорегулирующую функцию: смягчает паводки, удерживая влагу в почвах и препятствуя их иссушению и эрозии. Например, при вырубке леса в одних случаях увеличивается вероятность затопления и заболачивания территории, в других – прекращающийся процесс транспирации может привести к «осушению» климата. Обезлесение негативно влияет на подземные воды, снижая способность местности задерживать осадки. В некоторых местах леса помогают пополнять водоносные слои, хотя в большинстве случаев леса как раз истощают их.

Таблица 3

Долевое соотношение пресных и соленых вод на Земле

Общие запасы воды на Земле оцениваются приблизительно от 1,5 до 2,5 млрд км 3 . Соленая вода составляет около 97 % объема водной массы, на Мировой океан приходится 96,5 % (табл. 3). Объем пресных вод, по разным оценкам, составляет 35–37 млн км 3 , или 2,5–2,7 % общих запасов воды на Земле. Большая часть пресных вод (68–70 %) сосредоточена в ледниках и снежном покрове (по Реймерсу, 1990).

Предыдущая

Является выдающийся русский ученый академик В.И. Вернадский.

Биосфера — сложная наружная оболочка Земли, в которой содержится вся совокупность живых организмов и та часть вещества планеты, которая находится в процессе непрерывного обмена с этими организмами. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.

Земля состоит из концентрических оболочек (геосфер) как внутренних, так и внешних. К внутренним относятся ядро и мантия, а к внешним: литосфера - каменная оболочка Земли, включая земную кору (рис. 1) толщиной от 6 км (под океаном) до 80 км (горные системы); гидросфера - водная оболочка Земли; атмосфера — газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли.

На высоте от 10 до 50 км расположен слой озона, с максимальной его концентрацией на высоте 20-25 км, защищающий Землю от чрезмерного ультрафиолетового излучения, гибельного для организма. Сюда же (к внешним геосферам) относится и биосфера.

Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км

Рис. 1. Схема строения земной коры

(рис. 2). Особенность этих частей состоит в том, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы — воздуха, воды, горных пород и органического вещества - биоты обусловило формирование почв и осадочных пород.

Рис. 2. Структура биосферы и соотношение поверхностей, занятых основными структурными единицами

Круговорот веществ в биосфере и экосистемах

Все доступные для живых организмов химические соединения в биосфере ограничены. Исчерпаемость пригодных для усвоения химических веществ часто тормозит развитие тех или иных групп организмов в локальных участках суши или океана. По выражению академика В.Р. Вильямса, единственный способ придать конечному свойства бесконечного состоит в том, чтобы заставить его вращаться по замкнутой кривой. Следовательно, устойчивость биосферы поддерживается благодаря круговороту веществ и потокам энергии. Имеются два основных круговорота веществ: большой — геологический и малый — биогеохимический.

Большой геологический круговорот (рис. 3). Кристаллические горные породы (магматические) под воздействием физических, химических и биологических факторов преобразуются в осадочные породы. Песок и глина — типичные осадки, продукты преобразования глубинных пород. Однако формирование осадков происходит не только за счет разрушения уже существующих пород, но также и путем синтеза биогенных минералов — скелетов микроорганизмов — из природных ресурсов — вод океана, морей и озер. Рыхлые водянистые осадки по мере их изоляции на дне водоемов новыми порциями осадочного материала, погружения на глубину, попадания в новые термодинамические условия (более высокие температуры и давления) теряют воду, отвердевают, преобразуясь при этом в осадочные горные породы.

В дальнейшем эти породы погружаются в еше более глубокие горизонты, где и протекают процессы их глубинного преобразования к новым температурным и барическим условиям, — происходят процессы метаморфизма.

Под воздействием потоков эндогенной энергии глубинные породы переплавляются, образуя магму — источник новых магматических пород. После поднятия этих пород на поверхность Земли, под действием процессов выветривания и переноса снова происходит их трансформация в новые осадочные породы.

Таким образом, большой круговорот обусловлен взаимодействием солнечной (экзогенной) энергии с глубинной (эндогенной) энергией Земли. Он перераспределяет вещества между биосферой и более глубокими горизонтами нашей планеты.

Рис. 3. Большой (геологический) круговорот веществ (тонкие стрелки) и изменение разнообразия в земной коре (сплошные широкие стрелки — рост, прерывистые — уменьшение разнообразия)

Большим круговоротом называется и круговорот воды между гидросферой, атмосферой и литосферой, который движется энергией Солнца. Вода испаряется с поверхности водоемов и суши и затем вновь поступает на Землю в виде осадков. Над океаном испарение превышает осадки, над сушей наоборот. Эти различия компенсируют речные стоки. В глобальном круговороте воды немаловажную роль играет растительность суши. Транспирация растений на отдельных участках земной поверхности может составить до 80-90% выпадающих здесь осадков, а в среднем по всем климатическим поясам — около 30%. В отличие от большого малый круговорот веществ происходит лишь в пределах биосферы. Взаимосвязь большого и малого круговорота воды показана на рис. 4.

Круговороты планетарного масштаба создаются из бесчисленных локальных циклических перемещений атомов, движимых жизнедеятельностью организмов в отдельных экосистемах, и тех перемещений, которые вызваны действием ландшафтных и геологических причин (поверхностный и подземный сток, ветровая эрозия, движение морского дна, вулканизм, горообразование и т.п.).

Рис. 4. Взаимосвязь большого геологического круговорота (БГК) воды с малым биогеохимическим круговоротом (МБК) воды

В отличие от энергии, которая однажды использована организмом, превращается в тепло и теряется, вещества в биосфере циркулируют, создавая биогеохимические круговороты. Из девяноста с лишним элементов, встречающихся в природе, живым организмам нужно около сорока. Наиболее важные для них требуются в больших количествах — углерод, водород, кислород, азот. Круговороты элементов и веществ осуществляются за счет саморегулирующих процессов, в которых участвуют все составные части . Эти процессы являются безотходными. Существует закон глобального замыкания биогеохимического круговорота в биосфере , действующий на всех этапах ее развития. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимичес
кого круговорота. Еще большее влияние на биогеохимический круговорот оказывает Человек. Но его роль проявляется в противоположном направлении (круговороты становятся незамкнутыми). Основу биогеохимического круговорота вешеств составляют энергия Солнца и хлорофилл зеленых растений. Другие наиболее важные круговороты — воды, углерода, азота, фосфора и серы — связаны с биогеохимическим и способствуют ему.

Круговорот воды в биосфере

Растения используют водород воды при фотосинтезе в построении органических соединений, выделяя молекулярный кислород. В процессах дыхания всех живых существ, при окислении органических соединений вода образуется вновь. В истории жизни вся свободная вода гидросферы многократно прошла циклы разложения и новообразования в живом веществе планеты. В круговорот воды на Земле ежегодно вовлекается около 500 000 км 3 воды. Круговорот воды и ее запасы показаны на рис. 5 (в относительных величинах).

Круговорот кислорода в биосфере

Своей уникальной атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. С круговоротом кислорода тесно связано образование озона в высоких слоях атмосферы. Кислород освобождается из молекул воды и является по сути побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемых фотосинтезом. Между содержанием кислорода в атмосфере и гидросфере существует подвижное равновесие. В воде его примерно в 21 раз меньше.

Рис. 6. Схема круговорота кислорода: полужирные стрелки — основные потоки поступления и расхода кислорода

Выделившийся кислород интенсивно расходуется на процессы дыхания всех аэробных организмов и на окисление разнообразных минеральных соединений. Эти процессы происходят в атмосфере, почве, воде, илах и горных породах. Показано, что значительная часть кислорода, связанного в осадочных породах, имеет фотосинтетическое происхождение. Обменный фонд О, в атмосфере составляет не более 5% общей продукции фотосинтеза. Многие анаэробные бактерии также окисляют органические вещества в процессе анаэробного дыхания, используя для этого сульфаты или нитраты.

На полное разложение органического вещества, создаваемого растениями, требуется точно такое же количество кислорода, которое выделилось при фотосинтезе. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда кислорода в атмосфере. Весь имеющийся в ней кислород проходит полный цикл через живые организмы примерно за 2000 лет.

В настоящее время значительная часть кислорода атмосферы связывается в результате работы транспорта, промышленности и других форм антропогенной деятельности. Известно, что человечество тратит уже более 10 млрд т свободного кислорода из общего его количества в 430-470 млрд т, поставляемого процессами фотосинтеза. Если учесть, что в обменный фонд поступает лишь небольшая часть фотосинтетического кислорода, деятельность людей в этом отношении начинает приобретать угрожающие масштабы.

Круговорот кислорода теснейшим образом сопряжен с углеродным циклом.

Круговорот углерода в биосфере

Углерод как химический элемент является основой жизни. Он может разными способами соединяться со многими другими элементами, образуя простые и сложные органические молекулы, входящие в состав живых клеток. По распространению на планете углерод занимает одиннадцатое место (0,35% веса земной коры), но в живом веществе он в среднем составляет около 18 или 45% сухой биомассы.

В атмосфере углерод входит в состав углекислого газа С0 2 , в меньшей мере — в состав метана СН 4 . В гидросфере С0 2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО 2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Некоторая часть молекул С0 2 реагирует с водой, образуя угольную кислоту, которая затем диссоциирует на ионы НСО 3 - и СО 2- 3 " Эти ионы реагируют с катионами кальция или магния с выпадением в осадок карбонатов. Подобные реакции лежат в основе буферной системы океана, поддерживающей постоянство рН воды.

Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли. Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов — бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества.

Рис. 7. Круговорот углерода

Особенно активно происходит возврат в атмосферу С0 2 из почвы, где сосредоточена деятельность многочисленных групп организмов, разлагающих остатки отмерших растений и животных и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда С0 2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус — богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус почв является одним из важных резервуаров углерода на суше.

В условиях, где деятельность деструкторов тормозят факторы внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода, надолго выключаясь из биологического круговорота. Углерод временно депонируется также в живой биомассе, в мертвом опаде, в растворенном органическом веществе океана и т.п. Однако основным резервным фондом углерода на пишете являются не живые организмы и не горючие ископаемые, а осадочные породы — известняки и доломиты. Их образование также связано с деятельностью живого вещества. Углерод этих карбонатов надолго захоронен в недрах Земли и поступает в круговорот лишь в ходе эрозии при обнажении пород в тектонических циклах.

В биогеохимическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4-5 лет, запасы в почвенном гумусе — за 300-400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая его часть (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов.

В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых.

Круговорот азота в биосфере

В атмосфере и живом веществе содержится менее 2% всего азота на Земле, но именно он поддерживает жизнь на планете. Азот входит в состав важнейших органических молекул — ДНК, белков, липопротеидов, АТФ, хлорофилла и др. В растительных тканях его соотношение с углеродом составляет в среднем 1: 30, а в морских водорослях I: 6. Биологический цикл азота поэтому также тесно связан с углеродным.

Молекулярный азот атмосферы недоступен растениям, которые могут усваивать этот элемент только в виде ионов аммония, нитратов или из почвенных или водных растворов. Поэтому недостаток азота часто является фактором, лимитирующим первичную продукцию — работу организмов, связанную с созданием органических веществ из неорганических. Тем не менее атмосферный азот широко вовлекается в биологический круговорот благодаря деятельности особых бактерий (азотфиксаторов).

В круговороте азота большое участие также принимают аммонифицирующие микроорганизмы. Они разлагают белки и другие содержащие азот органические вещества до аммиака. В аммонийной форме азот частью вновь поглощается корнями растений, а частью перехватывается нитрифицирующими микроорганизмами, что противоположно функциям группы микроорганизмов — денитрификаторов.

Рис. 8. Круговорот азота

В анаэробных условиях в почвах или водах они используют кислород нитратов для окисления органических веществ, получая энергию для своей жизнедеятельности. Азот при этом восстанавливается до молекулярного. Азотфиксация и денитрификация в природе приблизительно уравновешены. Цикл азота, таким образом, зависит преимущественно от деятельности бактерий, тогда как растения встраиваются в него, используя промежуточные продукты этого цикла и намного увеличивая масштабы циркуляции азота в биосфере за счет продуцирования биомассы.

Роль бактерий в круговороте азота настолько велика, что если уничтожить только 20 их видов, жизнь на нашей планете прекратится.

Небиологическая фиксация азота и поступление в почвы его окислов и аммиака происходит также с дождевыми осадками при ионизации атмосферы и грозовых разрядах. Современная промышленность удобрений фиксирует азот атмосферы в размерах, превышающих природную фиксацию азота, в целях увеличения продукции сельскохозяйственных растений.

В настоящее время деятельность человека все сильнее влияет на круговорот азота, в основном в сторону превышения перевода его в связанные формы над процессами возврата в молекулярное состояние.

Круговорот фосфора в биосфере

Этот элемент, необходимый для синтеза многих органических веществ, включая АТФ, ДНК, РНК, усваивается растениями только в виде ионов ортофосфорной кислоты (Р0 3 4 +). Он относится к элементам, лимитирующим первичную продукцию и на суше, и особенно в океане, поскольку обменный фонд фосфора в почвах и водах невелик. Круговорот этого элемента в масштабах биосферы незамкнут.

На суше растения черпают из почвы фосфаты, освобожденные редуцентами из разлагающихся органических остатков. Однако в щелочной или кислой почве растворимость фосфорных соединений резко падает. Основной резервный фонд фосфатов содержится в горных породах, созданных на дне океана в геологическом прошлом. В ходе выщелачивания пород часть этих запасов переходит в почву и в виде взвесей и растворов вымывается в водоемы. В гидросфере фосфаты используются фитопланктоном, переходя по цепям питания в другие гидробионты. Однако в океане большая часть фосфорных соединений захоранивается с остатками животных и растений на дне с последующим переходом с осадочными породами в большой геологический круговорот. На глубине растворенные фосфаты связываются с кальцием, образуя фосфориты и апатиты. В биосфере, по сути, происходит однонаправленный поток фосфора из горных пород суши в глубины океана, следовательно, обменный фонд его в гидросфере очень ограничен.

Рис. 9. Круговорот фосфора

Наземные залежи фосфоритов и апатитов используются при производстве удобрений. Попадание фосфора в пресные водоемы является одной из главных причин их «цветения».

Круговорот серы в биосфере

Круговорот серы, необходимой для построения ряда аминокислот, отвечает за трехмерную структуру белков, поддерживается в биосфере широким спектром бактерий. В отдельных звеньях этого цикла участвуют аэробные микроорганизмы, окисляющие серу органических остатков до сульфатов, а также анаэробные редукторы сульфата, восстанавливающие сульфаты до сероводорода. Кроме перечисленных группы серобактерий окисляют сероводород до элементарной серы и далее до сульфатов. Растения усваивают из почвы и воды только ионы SO 2- 4 .

Кольцо в центре иллюстрирует процесс окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках.

Рис. 10. Круговорот серы. Кольцо в центре иллюстрирует процесс окисления (0) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках

Основное накопление серы происходит в океане, куда ионы сульфатов непрерывно поступают с суши с речным стоком. При выделении из вод сероводорода сера частично возвращается в атмосферу, где окисляется до диоксида, превращаясь в дождевой воде в серную кислоту. Промышленное использование большого количества сульфатов и элементарной серы и сжигание горючих ископаемых поставляют в атмосферу большие объемы диоксида серы. Это вредит растительности, животным, людям и служит источником кислотных дождей, усугубляющих отрицательные эффекты вмешательства человека в круговорот серы.

Скорость круговорота веществ

Все круговороты веществ происходят с различной скоростью (рис. 11)

Таким образом, круговороты всех биогенных элементов на планете поддерживаются сложным взаимодействием разных частей . Они формируются деятельностью разных по функциям групп организмов, системой стока и испарения, связывающих океан и сушу, процессами циркуляции вод и воздушных масс, действием сил гравитации, тектоникой литосферных плит и другими масштабными геологическими и геофизическими процессами.

Биосфера действует как единая сложная система, в которой происходят различные круговороты веществ. Главным двигателем этихкруговоротов является живое вещество планеты, все живые организмы, обеспечивающие процессы синтеза, трансформации и разложения органического вещества.

Рис. 11. Темпы циркуляции веществ (П. Клауд, А. Джибор, 1972)

В основе экологического взгляда на мир лежит представление о том, что каждое живое существо окружено множеством влияющих на него различных факторов, образующих в комплексе его место обитания — биотоп. Следовательно, биотоп — участок территории, однородный по условиям жизни для определенных видов растений или животных (склон оврага, городской лесопарк, небольшое озеро или часть большого, но с однородными условиями — прибрежная часть, глубоководная часть).

Организмы, характерные для определенного биотопа, составляют жизненное сообщество, или биоценоз (животные, растения и микроорганизмы озера, луга, береговой полосы).

Жизненное сообщество (биоценоз) образует со своим биотопом единое целое, которое называется экологической системой (экосистемой). Примером естественных экосистем могут служить муравейник, озеро, пруд, луг, лес, город, ферма. Классическим примером искусственной экосистемы является космический корабль. Как видно, здесь нет строгой пространственной структуры. Близким к понятию экосистемы является понятие биогеоценоза.

Основными компонентами экосистем являются:

  • неживая (абиотическая) среда. Это вода, минеральные вещества, газы, а также органические вещества и гумус;
  • биотические компоненты. К ним относятся: продуценты или производители (зеленые растения), консументы, или потребители (живые существа, питающиеся продуцентами), и редуценты, или разлагатели (микроорганизмы).

Природа действует в высшей степени экономно. Так, созданная организмами биомасса (вещество тел организмов) и содержащаяся в них энергия передаются другим членам экосистемы: животные поедают растения, этих животных поедают другие животные. Этот процесс называют пищевой, или трофической, цепью. В природе пищевые цепи зачастую перекрещиваются, образуя пищевую сеть.

Примеры пищевых цепей: растение — растительноядное животное — хищник; злак — полевая мышь — лиса и др. и пищевая сеть показаны на рис. 12.

Таким образом, состояние равновесия в биосфере основано на взаимодействии биотических и абиотических факторов среды, которое поддерживается благодаря непрерывному обмену веществом и энергией между всеми компонентами экосистем.

В замкнутых круговоротах естественных экосистем наряду с другими обязательно участие двух факторов: наличие редуцентов и постоянное поступление солнечной энергии. В городских и искусственных экосистемах мало или совсем нет редуцентов, поэтому жидкие, твердые и газообразные отходы накапливаются, загрязняя окружающую среду.

Рис. 12. Пищевая сеть и направление потока вещества

Роль воды в происходящих в биосфере процессах огромна. Без воды невозможен обмен веществ в живых организмах. С появлением жизни на Земле круговорот воды стал относительно сложным, так как к простому явлению физиологического испарения добавился более сложный процесс биологического испарения (транспирация), связанный с жизнедеятельностью растений и животных.

Кратко круговорот воды в природе можно описать следующим образом. Вода поступает на поверхность Земли в виде осадков, которые образуются главным образом из водяного пара, попадающего в атмосферу в результате физического испарения и испарения воды растениями. Одна часть этой воды испаряется прямо с поверхности водных объектов или косвенно, при посредстве растений и животных, а другая питает подземные воды (рисунок 1.13).

Характер испарения зависит от многих факторов. Так, с единицы площади в лесной местности испаряется значительно больше воды, чем с поверхности водного объекта. С уменьшением растительного покрова уменьшается и транспирация, а, следовательно, и количество осадков.

Поток воды в гидрологическом цикле определяется испарением, а не осадками. Способность атмосферы удерживать водяной пар ограниченна. Увеличение скорости испарения ведет к соответствующему увеличению осадков. Вода, содержащаяся в воздухе в виде пара в любой момент, соответствует в среднем слою толщиной 2,5 см., равномерно распределенному по поверхности Земли. Количество осадков, выпадающих в год, составляет в среднем 65 см. Следовательно, водяные пары атмосферного фронта ежегодно совершают круговорот примерно 25 раз (раз в две недели).

Содержание воды в водных объектах и почве в сотни раз больше, чем в атмосфере, однако она протекает через два первых фонда с одинаковой скоростью. Среднее время переноса воды в ее жидкой фазе по поверхности Земли около 3650 лет, в 10000 раз больше, чем время ее переноса в атмосфере. Человек в процессе хозяйственной деятельности оказывает сильное воздействие на основу гидрологического цикла – испарение воды.

Загрязнение водных объектов и в первую очередь морей и океанов нефтепродуктами резко ухудшает процесс физического испарения, а уменьшение площади лесов – транспирацию. Это не может не сказаться на характере круговорота воды в природе.

Рисунок 1.13- Круговорот воды

Глобальные круговороты жизненно важных биогенных элементов распадаются в биосфере на множество мелких круговоротов, приуроченных к локальным местам обитания различных биологических сообществ. Они могут быть более или менее сложными и в разной степени чувствительными к различного рода внешним воздействия. Но природа распорядилась так, что в естественных условиях эти биохимические круговороты являются «образцовыми безотходными технологиями». Цикличность охватывает 98-99% биогенных элементов и лишь 1-2% уходит даже не в отходы, а в геологический запас (рисунок 1.14).

1.8 Основы устойчивости биосферы

Устойчивость экосистем и их совокупности биосферы зависит от многих факторов (рисунок 1.15), суть наиболее важных из них в следующем:

Рисунок 1.15- Факторы устойчивости биосферы

1. Биосфера использует внешние источники энергии: солнечную энергию и энергию разогрева земных недр для упорядочения ее организации, эффективного использования свободной энергии, не вызывая загрязнения окружающей среды. Постоянное использование определенного количества энергии и ее рассеивание в виде тепла создало эволюционно сложившийся тепловой баланс в биосфере.

Для биоценозов характерен закон (принцип) «энергетической проводимости»: сквозной поток энергии, проходя через трофические уровни биоценоза, постоянно гасится.

В 1942 г. Р. Линдеман сформулировал закон пирамиды энергии или закон (правило) 10 %, согласно которому с одного трофического уровня экологической пирамиды переходит на другой более высокий ее уровень (« по лестнице » продуцент - консумент - редуцент) в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии.

2. Биосфера использует вещества (преимущественно легкие биогенные элементы) в основном в форме круговоротов. Биогеохимические циклы элементов отработаны эволюционно и не приводят к накоплению отходов.

3. В биосфере существует огромное многообразие видов и биологических сообществ. Конкурентные и хищнические отношения между видами способствуют установлению между ними равновесия. При этом практически отсутствуют доминирующие виды с чрезмерной численностью, что обеспечивает защиту биосферы от сильной опасности со стороны внутренних факторов.

Видовое разнообразие- это фактор повышения устойчивости экосистем к воздействию внешних факторов. Генофонд дикой природы - бесценный дар, возможности которого пока использованы лишь в малой степени.

4. Практически все закономерности, характерные для живого вещества, имеют адаптивное значение. Биосистемы вынуждены приспосабливаться к непрерывно изменяющимся условиям жизни. В вечно меняющейся среде жизни каждый вид организма адаптирован по- своему. Это выражается правилом экологической индивидуальности: двух идентичных видов не существует.

Экологическая специфичность видов подчеркивается так называемой аксиомой адаптированности: каждый вид адаптирован к строго определенной специфичной для него совокупности условий существования - экологической нише.

5. Саморегуляция или поддержание численности популяции зависит от совокупности абиотических и биотических факторов. Каждая популяция взаимодействует с природой как целостная система.

Правило популяционного максимума: численность естественных популяций ограничена истощением пищевых ресурсов и условий размножения, недостаточностью этих ресурсов и слишком коротким периодом ускорения роста популяции.

Любая популяция обладает строго определенной генетической, фенотической, половозрастной и другой структурой. Она не может состоять из меньшего числа индивидов, чем это необходимо для обеспечения ее устойчивости к факторам внешней среды.

Принцип минимального размера не есть константа для любых видов, он строго специфичен для каждой популяции. Выход за пределы минимума грозит популяции гибелью: она уже не будет в состоянии самовосстановиться.

Разрушение каждого из приведенных факторов может привести к снижению устойчивости, как отдельных экосистем, так и биосферы в целом.


Похожая информация.




Понравилась статья? Поделитесь с друзьями!