Квадратичная функция. Задачи на анализ графика квадратичной функции

Вида у = kx + m с двумя переменными х, у. Правда, переменные х, у, фигурирующие в этом уравнении (в этой математической модели) считались неравноправными: х - независимая переменная (аргумент), которой мы могли придавать любые значения, независимо ни от чего; у - зависимая переменная, поскольку ее значение зависело от того, какое значение переменной х было выбрано. Но тогда возникает естественный вопрос: а не встречаются ли математические модели такого же плана, но такие, у которых у выражается через х не по формуле у = kx + m, а каким-то иным способом? Ответ ясен: конечно, встречаются. Если, например, х - сторона квадрата, а у - его
площадь, то у - х 2 . Если х - сторона куба, а у - его объем, то у - х 3 . Если х - одна сторона прямоугольника, площадь которого равна 100 см 2 , а у - другая его сторона, то . Поэтому, естественно, что в математике не ограничиваются изучением модели y-kx + m, приходится изучать и модель у = х 2 , и модель у = х 3 , и модель , и многие другие модели, имеющие такую же структуру: в левой части равенства находится переменная у, а в правой - какое-то выражение с переменной х. Для таких моделей сохраняют термин «функция», опуская прилагательное «линейная».

В этом параграфе мы рассмотрим функцию у = х 2 и построим ее график .

Дадим независимой переменной х несколько конкретных значений и вычислим соответствующие значения зависимой переменной у (по формуле у = x 2):

если х = 0, то у = О 2 = 0;
если х = 1, то у = I 2 = 1;
если х = 2, то у = 2 2 = 4;
если х = 3, то у = З 2 = 9;
если х = - 1, то у = (- I 2) - 1;
если х = - 2, то у = (- 2) 2 = 4;
если х = - 3, то у = (- З) 2 = 9;
Короче говоря, мы составили следующую таблицу:

X 0
1
2
3
-1
-2
-3
У 0
1
4
9
1
4
9

Построим найденные точки (0; 0), (1; 1), (2; 4), 93; 9), (-1; 1), (- 2; 4), (- 3; 9), на координатной плоскости хОу (рис. 54, а).

Эти точки расположены на некоторой линии, начертим ее (рис. 54, б). Эту линию называют параболой.

Конечно, в идеале надо было бы дать аргументу х все возможные значения, вычислить соответствующие значения переменной у и построить полученные точки (х; у). Тогда график был бы абсолютно точным, безупречным. Однако это нереально, ведь таких точек бесконечно много. Поэтому математики поступают так: берут конечное множество точек, строят их на координатной плоскости и смотрят, какая линия намечается этими точками. Если контуры этой линии проявляются достаточно отчетливо (как это было у нас, скажем, в примере 1 из § 28), то эту линию проводят. Возможны ли ошибки? Не без этого. Поэтому и надо все глубже и глубже изучать математику, чтобы были средства избегать ошибок.

Попробуем, глядя на рисунок 54, описать геометрические свойства параболы.

Во-первых , отмечаем, что парабола выглядит довольно красиво, поскольку обладает симметрией. В самом деле, если провести выше оси х любую прямую, параллельную оси х, то эта прямая пересечет параболу в двух точках, расположенных на равных расстояниях от оси у, но по разные стороны от нее (рис. 55). Кстати, то же можно сказать и о точках, отмеченных на рисунке 54, а:

(1; 1} и (- 1; 1); (2; 4) и (-2; 4); C; 9) и (-3; 9).

Говорят, что ось у является осью симметрии параболы у=х 2 или что парабола симметрична относительно оси у.

Во-вторых , замечаем, что ось симметрии как бы разрезает параболу на две части, которые обычно называют ветвями параболы.

В-третьих , отмечаем, что у параболы есть особая точка, в которой смыкаются обе ветви и которая лежит на оси симметрии параболы - точка (0; 0). Учитывая ее особенность, ей присвоили специальное название - вершина параболы.

В-четвертых , когда одна ветвь параболы соединяется в вершине с другой ветвью, это происходит плавно, без излома; парабола как бы «прижимается» к оси абсцисс. Обычно говорят: парабола касается оси абсцисс.

Теперь попробуем, глядя на рисунок 54, описать некоторые свойства функции у = х 2.

Во-первых , замечаем, что у - 0 при х = 0, у > 0 при х > 0 и при х < 0.

Во-вторых, отмечаем, что y наим. = 0, а у наиб не существует.

В-третьих , замечаем, что функция у = х 2 убывает на луче (-°°, 0] - при этих значениях х, двигаясь по параболе слева направо, мы «спускаемся с горки» (см. рис. 55). Функция у = х 2 возрастает на луче ;
б) на отрезке [- 3, - 1,5];
в) на отрезке [- 3, 2].

Решение,

а) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка (рис. 56). Для выделенной части графика находим у наим. = 1 (при х = 1), у наиб. = 9 (при х = 3).

б) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, -1,5] (рис. 57). Для выделенной части графика находим y наим. = 2,25 (при х = - 1,5), у наиб. = 9 (при х = - 3).

в) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, 2] (рис. 58). Для выделенной части графика находим у наим = 0 (при х = 0), у наиб. = 9 (при х = - 3).

Совет. Чтобы каждый раз не строить график функции у - х 2 по точкам, вырежьте из плотной бумаги шаблон параболы. С его помощью вы будете очень быстро чертить параболу.

Замечание. Предлагая вам заготовить шаблон параболы, мы как бы уравниваем в правах функцию у = х 2 и линейную функцию у = кх + m. Ведь графиком линейной функции является прямая, а для изображения прямой используется обычная линейка - это и есть шаблон графика функции у = кх + m. Так пусть у вас будет и шаблон графика функции у = х 2 .

Пример 2. Найти точки пересечения параболы у = х 2 и прямой у - х + 2.

Решение. Построим в одной системе координат параболу у = х 2 прямую у = х + 2 (рис. 59). Они пересекаются в точках А и В, причем по чертежу нетрудно найти координаты этих точек А и В: для точки А имеем: x = - 1, y = 1, а для точки В имеем: х - 2, у = 4.

Ответ: парабола у = х 2 и прямая у = х + 2 пересекаются в двух точках: А (-1; 1) и В(2;4).

Важное замечание. До сих пор мы с вами довольно смело делали выводы с помощью чертежа. Однако математики не слишком доверяют чертежам. Обнаружив на рисунке 59 две точки пересечения параболы и прямой и определив с помощью рисунка координаты этих точек, математик обычно проверяет себя: на самом ли деле точка (-1; 1) лежит как на прямой, так и на параболе; действительно ли точка (2; 4) лежит и на прямой, и на параболе?

Для этого нужно подставить координаты точек А и В в уравнение прямой и в уравнение параболы, а затем убедиться, что и в том, и в другом случае получится верное равенство. В примере 2 в обоих случаях получатся верные равенства. Особенно часто производят такую проверку, когда сомневаются в точности чертежа.

В заключение отметим одно любопытное свойство параболы, открытое и доказанное совместно физиками и математиками.

Если рассматривать параболу у = х 2 как экран, как отражающую поверхность, а в точке поместить источник света, то лучи, отражаясь от параболы экрана, образуют параллельный пучок света (рис. 60). Точку называют фокусом параболы. Эта идея используется в автомобилях: отражающая поверхность фары имеет параболическую форму, а лампочку помещают в фокусе - тогда свет от фары распространяется достаточно далеко.

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Понравилась статья? Поделитесь с друзьями!