Люди никогда не полетят на марс. Полет на марс отменяется Ли экспедиция на марс

Доктор технических наук Л. ГОРШКОВ.

Мечта о полете человека на планету Марс имеет давнюю историю, но только сегодня мы подошли к возможности ее исполнения очень близко. Во многом интерес к Марсу был связан с ожиданием встречи братьев по разуму. И хотя рассчитывать на обнаружение на Марсе разумных существ не приходится, какие-то формы жизни там, вероятно, можно отыскать. Но значение полета человека на Марс выходит далеко за пределы поиска жизни вне Земли. Важно, что Марс - единственная планета, перспективная с точки зрения ее колонизации. Существует мнение, что на Марс следует отправлять не экипаж, а автоматические станции, которые способны заменить человека-исследователя (см. "Наука и жизнь" № ; № ). Несмотря на это, работы по осуществлению полета ведутся, а в Институте медико-биологических проблем начинается эксперимент по моделированию полета. О проекте готовящейся марсианской экспедиции рассказывает Леонид Алексеевич Горшков, главный научный сотрудник РКК "Энергия", доктор технических наук, профессор, лауреат Государствен ной премии, действительный член Академии космонавтики. Один из руководителей работ по марсианской программе в РКК "Энергия". Принимал непосредственное участие в проектировании и разработке кораблей "Союз", станций "Салют", "Мир" и российского сегмента Международной космической станции (МКС). В 1994-1998 годах Л. А. Горшков был заместителем директора программы Международной космической станции с российской стороны.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Схема марсианской экспедиции.

Так устроен электроракетный двигатель.

Конструкция первого служебного модуля Международной космический станции "Звезда" послужила основой для межпланетного экспедиционного комплекса.

Внутреннее устройство жилого модуля межпланетного орбитального корабля.

Взаимодействие элементов модуля солнечного буксира.

Ферменные конструкции составляют основу двигательной установки межпланетного экспедиционного комплекса.

Общий вид межпланетного экспедиционного комплекса. На ажурных фермах установлены панели солнечных фотопреобразователей и два пакета электрореактивных двигателей.

Схема работы взлетно-посадочного комплекса, обеспечивающего доставку космонавтов-исследователей на поверхность Марса и возвращение их на орбитальный корабль.

Как выглядит полет человека на Марс

Перелет с орбиты Земли на орбиту Марса займет 2-2,5 года. Корабль, в котором все это время должен жить и работать экипаж, имеет массу 500 тонн, и топлива ему требуется сотни тонн. Именно масштабность задачи отличает полет человека на Марс от полетов сравнительно небольших автоматических аппаратов. Общая масса всего пилотируемого комплекса становится значительно больше, чем могут вывести на орбиту даже самые мощные ракеты-носители. Поэтому создавать гигантскую ракету для выведения с Земли всего межпланетного комплекса не имеет смысла. Проще отправлять его на околоземную орбиту по частям, из этих частей и собирать там комплекс, используя уже отработанные технологии сборки на орбите.

Полет произойдет следующим образом. За несколько месяцев комплекс соберут, и межпланетная экспедиция по гелиоцентрической орбите перелетит в окрестности Марса. Так как опускать весь межпланетный корабль на поверхность Марса нецелесообразно, в составе комплекса будет взлетно-посадочный модуль. После выхода межпланетного экспедиционного комплекса на круговую орбиту вокруг Марса в нем экипаж или его часть совершит посадку на поверхность планеты. После окончания работы на поверхности космонавты вернутся на корабль. Межпланетный экспедиционный комплекс стартует с околомарсианской орбиты к Земле и выйдет на орбиту, с которой стартовал к Марсу. На корабле возвращения экипаж спустится на Землю.

Таким образом, межпланетный экспедиционный комплекс состоит из четырех основных функциональных частей: корабля, в котором работает экипаж и размещается все основное оборудование; межпланетного буксира, обеспечивающего перелет по межпланетной траектории; взлетно-посадочного комплекса и корабля возвращения на Землю.

Основная проблема организации полета человека на Марс - обеспечить высокую вероятность благополучного возвращения экипажа. Уровень безопасности экипажа должен соответствовать российским стандартам, то есть марсианская экспедиция должна быть не опаснее, чем, например, полет на орбитальную станцию. Выполнить это требование чрезвычайно сложно.

Одним из принципиальных технических решений по межпланетному комплексу стал выбор буксира, по существу - большой ракеты с многократным включением двигателей.

Сегодня самой надежной ракетой, выводящей человека в космос, остается ракета-носитель "Союз", прекрасно работавшая всю многолетнюю историю пилотируемых полетов. Но даже и она, хоть и редко, отказывает. На этот случай предусмотрена система аварийного спасения, когда при выходе из строя ракеты-носителя пороховые двигатели уводят спускаемый аппарат с экипажем от ракеты и космонавты приземляются на поверхность Земли. Эту систему спасения уже приходилось применять при эксплуатации орбитальных станций.

Ракету "Союз" соберут на Земле и испытают с участием множества специалистов, включая группы контроля качества работ, а межпланетную ракету соберут и испытают на орбите. И она должна иметь значительно более высокую надежность, чем "Союз", так как невозможно создать систему аварийного спасения экипажа в случае отказа в процессе ее выхода на гелиоцентрическую орбиту. Поэтому для обеспечения необходимой безопасности экипажа нужны принципиально новые технические решения при выборе межпланетного буксира.

Работы над концепцией полета человека на Марс ведутся с 1960 года (см. "Наука и жизнь" № 6, 1994 г.). Первый отечественный проект корабля для посадки человека на поверхность Марса был выполнен в ОКБ-1, возглавляемом Сергеем Павловичем Королевым. Ныне это Ракетно-космическая корпорация "Энергия" им С. П. Королева. В проекте 1960 года было принято принципиально новое техническое решение: использовать для межпланетной экспедиции электроракетные двигатели (см. "Наука и жизнь" № ). Это решение РКК "Энергии" осталось неизменным для всех последующих модификаций проекта полета человека на Марс, и именно оно позволило во многом решить проблему безопасности.

Принцип работы электроракетных двигателей заключается в том, что реактивная струя, обеспечивающая тягу, создается не вследствие теплового расширения газа, как в жидкостных ракетных двигателях (ЖРД), а с помощью разгона ионизированного газа в электромагнитном поле, создаваемом бортовой электростанцией. Топливом, а точнее, "рабочим телом" станет газ ксенон.

В качестве электростанции, питающей электроракетные двигатели, в 1960 году собирались использовать ядерный реактор мощностью 7 МВт. Отдельные части корабля предполагали доставлять на орбиту тяжелой ракетой-носителем (в это время еще только начинались работы по ракете Н-1). Экипаж планировался из шести человек. После посадки на поверхность Марса оборудование собрали бы в виде "поезда", который должен был пересечь планету от одного ее полюса до другого.

В 1969 году этот проект был переработан. Мощность реактора увеличена до 15 МВт. Для повышения надежности двигательной установки вместо одного реактора запланировали три. В ходе переработки проекта пришлось умерить "аппетиты": число посадочных аппаратов с пяти сократили до одного, членов экипажа стало четверо. В качестве ракеты-носителя решили использовать модификацию новой тяжелой ракеты Н-1 (см. "Наука и жизнь" №№ 4, 5, 1994 г.).

В 1988 году вследствие большого прогресса в создании пленочных фотопреобразователей и успехов в разработке трансформируемых ферменных конструкций ядерный реактор заменили на солнечные батареи. Одним из мотивов этого решения стало стремление сделать межпланетный экспедиционный комплекс экологически чистым. Основным достоинством такого решения была возможность многократного дублирования двигательной установки. Для доставки деталей корабля на орбиту Земли предполагалось использовать новую ракету-носитель "Энергия".

Элементы экспедиционного комплекса и состояние их разработки

Первый элемент международного комплекса - корабль, в котором работает экипаж. Он называется межпланетным орбитальным кораблем. Орбитальным - потому, что его главная функция связана с работой на орбитах межпланетного перелета. Создание этого корабля в сравнительно короткие сроки вполне реально. По своим задачам он, по существу, - аналог российского модуля "Звезда" Международной космической станции, только несколько больший по размерам. Дело в том, что на космическую станцию требуемое оборудование можно доставить на корабле "Прогресс" через два-три месяца, а у марсианской экспедиции такой возможности не будет два-два с половиной года. Поэтому все, что может понадобиться в течение всего полета, в том числе при возникновении нештатных ситуаций, нужно взять с собой и разместить на корабле.

Основные системы межпланетного корабля уже отработаны на орбитальных станциях "Салют" и "Мир". Поэтому для его постройки планируется использовать готовую документацию на многие конструктивные элементы, а главное - заводскую оснастку и технологии, имеющиеся на заводе - изготовителе корпуса модуля "Звезда" (завод Центра им. Хруничева).

Второй элемент межпланетного экспедиционного комплекса - солнечный буксир, обеспечивающий перелет по межпланетной траектории. Он состоит из двух пакетов электроракетных двигателей с системами управления, баков с рабочим телом и больших панелей с пленочными солнечными фотопреобразователями, снабжающими энергией двигатели.

Солнечный буксир также включает много уже разработанных агрегатов, конструкций и систем. Электроракетные двигатели широко используют в космической технике, и для полета на Марс требуется только несколько усовершенствовать их характеристики. Пленочные солнечные фотопреобразователи изготавливают в России для наземных нужд. А для проверки стойкости в условиях космического пространства их образцы размещали на внешней поверхности станции "Мир". Трансформируемые конструкции, на которых должны размещаться фотопреобразователи, также отрабатывали при полетах орбитальных станций. В солнечном буксире предполагается взять за основу конструкцию фермы "Софора", установленной на станции "Мир". Чтобы соединения не имели люфтов, использовали так называемый "эффект памяти формы", то есть способность некоторых материалов после нагревания принимать форму и размеры, какие были у соответствующих деталей до специально проведенной деформации.

Третий элемент межпланетного комплекса - взлетно-посадочный комплекс, в котором часть экипажа совершает посадку на поверхность Марса и возвращается обратно в корабль. Взлетно-посадочный комплекс в отличие от предыдущих элементов - совершенно новая разработка. Его аналогов в российских программах еще не было. Однако подобные задачи в российской космонавтике решались, и каких-то серьезных проблем по его созданию не видно.

И, наконец, четвертый элемент комплекса - корабль возвращения к Земле . Он имеет реальный прототип - корабль "Зонд", который разрабатывали в СССР для облета человеком Луны с входом в плотные слои атмосферы со второй космической скоростью. "Зонд-4"-"Зонд-7" совершили полеты в 1968-1969 годах с животными в кабине экипажа. Правда, от полетов человека в этих кораблях впоследствии отказались.

В чем же особенность проекта РКК "Энергия"? Почему он представляется вполне реальным? Прежде всего, из-за выбора двигательной установки межпланетного перелета. Электроракетные двигатели имеют сравнительно малую тягу, но высокую скорость истечения струи, что существенно снижает необходимые запасы топлива для межпланетных перелетов. Но самое главное состоит в том, что в отличие от всех других двигателей они позволяют обеспечить многократное резервирование. Что имеется в виду?

Для межпланетного комплекса с начальной массой порядка 1000 тонн нужно примерно 400 электроракетных двигателей тягой около 80 гс (0,8 Н) каждый. Все эти двигатели или группы двигателей работают независимо друг от друга, каждая группа имеет свою секцию баков с рабочим телом, свою систему управления, свою секцию солнечных батарей. И отказ даже нескольких групп двигателей не повлияет на межпланетный перелет. Такая двигательная установка практически не подвержена отказам. Это что-то вроде той стаи гусей, которая возила барона Мюнхаузена на Луну: любой гусь по дороге имел право устать и сойти с дистанции без вреда для всего полета.

Суммарная тяга всех двигателей составляет 32 кгс, или 320 Н. В открытом космосе корабль массой около 1000 тонн под действием этой силы приобретает ускорение 32x10 -5 м/с 2 . Этого мизерного ускорения достаточно, чтобы при длительной работе двигателей набрать необходимую для межпланетного перелета скорость. Время движения корабля по спиральной траектории вокруг Земли составляет около трех месяцев. На этом участке траектории двигатели не работают непрерывно, они выключаются при затенении Солнца Землей. После перехода корабля на гелиоцентрическую орбиту работа двигателей продолжится.

В России уже пройден большой путь к организации первого полета человека на Марс. На орбитальных станциях "Салют" и "Мир" проверены многие элементы будущего межпланетного комплекса, проведена огромная работа по отработке систем и технологий обеспечения длительных полетов человека в космос. Ни в одной стране не накоплено такого опыта.

В настоящее время в Институте медико-биологических проблем готовится эксперимент "500 дней" по исследованию медицинских аспектов будущего полета человека на Марс. В качестве основы макета марсианского комплекса используется конструкция, созданная в 1960-х годах по инициативе С. П. Королева, на которой уже проводились исследования по программе отработки межпланетных полетов.

Название эксперимента связано с тем, что, хотя время полета человека на Марс составляет 700-900 суток в зависимости от года проведения экспедиции, первый экспериментальный "полет" на Земле будет длиться 500 дней. Первый экипаж наземного "полета" составит шесть человек, и будет он международным, из представителей разных стран.

Представляется, что американцы окончательно еще не определились с концепцией полета человека на Марс. Но, судя по публикациям, докладам на международных конференциях, они склоняются к использованию ядерных двигателей. Российские специалисты не разделяют этого подхода по многим причинам. Во-первых, испытания таких двигателей на Земле связаны с истечением мощной радиоактивной струи. Несмотря на то что существуют технические способы защиты от нее земной атмосферы, стенды отработки таких двигателей все-таки представляют определенную опасность для окружающей территории. Но самое главное заключается в том, что для ядерных двигателей недостижим такой уровень надежности, какой можно достичь, применяя многократно резервируемые электроракетные двигатели. Кроме того, использование для межпланетного перелета экологически чистых двигателей позволяет сделать межпланетный корабль многоразовым. Многоразовость очень привлекательна, когда речь идет не о единственном полете, а о программе освоения Марса.

Этап посадки на поверхность Марса наиболее критичен с точки зрения обеспечения безопасности экипажа. В отличие от солнечного буксира и межпланетного орбитального корабля взлетно-посадочный комплекс имеет гораздо меньше возможностей использовать резервные комплекты оборудования: процессы идут быстро, и подключить дублирующее оборудование не всегда возможно. Поэтому главным фактором обеспечения необходимой надежности взлетно-посадочного комплекса становится его тщательная отработка, в том числе в беспилотном режиме в реальных марсианских условиях. Никто не решится послать на Марс человека до того, как взлетно-посадочный комплекс не осуществит посадку и взлет с планеты в автоматическом режиме. Поэтому первые полеты человека к Марсу будут без посадки экипажа на его поверхность.

При первых полетах к Марсу экипаж останется на околомарсианской орбите, на поверхность спустится только телеуправляемый автоматический аппарат. Следует особо обратить внимание на этот этап исследования Марса человеком. По существу, на поверхность "спускаются" глаза и руки космонавта. В этом полете хорошо сочетаются и безопасность экипажа, и использование в полной мере опыта и интуиции ученого-планетолога, который будет проводить исследования с борта межпланетного орбитального корабля. Получается полное виртуальное присутствие человека на реальной поверхности Марса. С Земли это сделать невозможно из-за большого расстояния и запаздывания сигнала на несколько десятков минут.

Трудно найти разницу с точки зрения эффективности работы, присутствует ли человек на поверхности физически или виртуально. Разве только не остается на грунте следа подошвы ботинок космонавта. При виртуальной посадке на Марс космонавт ведет наблюдение не через иллюминатор скафандра, а через весьма совершенные видеосредства. Работает не руками в перчатках скафандра, а с помощью более тонких инструментов. Учитывая, что одна из целей экспедиций на Марс - подготовка к его колонизации, полет с виртуальной посадкой экипажа станет только первым этапом в этом процессе.

Таким образом, российский проект полета человека на Марс обладает очень важными особенностями. Во-первых, технические решения, заложенные в проект, и наличие большого задела делают полет на Марс самым дешевым из всех известных вариантов экспедиций; во-вторых, безопасность экипажа в этом полете очень высока.

Зачем лететь на Марс?

И здесь уместен вопрос: а нужен ли вообще полет человека на Марс? С одной стороны, казалось бы, все ясно: полет человека на Марс стоит дорого. Каких-то более или менее заметных благ для землян он не сулит. А на самой Земле есть много проблем, на решение которых требуются средства. Даже просто обеспечение земного населения пищей представляется более приоритетной задачей, чем полет человека на Марс.

Но, к счастью, хотя жизнь населения Земли во все времена не была благополучной, человечество никогда не руководствовалось очевидным на первый взгляд принципом "сиюминутной выгоды". Именно поэтому мы сегодня не сидим в звериных шкурах у костра возле пещеры. Исследование окрестностей собственного "дома", от Мирового океана до космического пространства, всегда было и остается одним из элементов развития цивилизации.

Но существует ли какая-нибудь прагматичная мотивация полета на Марс? Первая очевидная задача экспедиции - изучение нашей соседней планеты. Исследования Марса помогут в значительной степени прогнозировать развитие Земли, продвинуться в понимании проблемы происхождения жизни и многом другом. Они находятся в одном ряду с изучением звезд, галактик, окружающей нас Вселенной, проникновением в существо материи, изучением структуры микромира, строения атомного ядра… Все это непосредственной выгоды в ближайшее время не сулит.

Мы все живем на одной планете, и она подвержена различным глобальным опасностям, которые могут уничтожить все человечество. Например, столкновение с астероидом достаточно большой массы, безусловно, будет означать конец истории Homo sapiens. Да и сами земляне представляют опасность для самих себя. "Яйца не должны лежать в одной корзине", и организация поселений на других планетах Солнечной cистемы, и в первую очередь на Марсе, служит выходом из этой ситуации. Несмотря на то что вероятность глобальной катастрофы невелика, цена, которую может заплатить человечество за беспечность, максимальна из всего, что только можно представить. Процесс освоения планет длительный, но откладывать его начало неразумно, учитывая эту цену. Казалось бы, вполне прагматичная цель. Тем не менее многие считают вероятность глобальной катастрофы слишком низкой, чтобы признать программу освоения планет вполне обоснован ной для развертывания работ по полету человека на Марс. Но следует иметь в виду, что совокупность интересов членов общества никогда не соответствует интересам всего общества в целом.

Важен вопрос о мотивации работ по марсианской программе в России. Есть ли практические задачи, которые решит Россия, взявшись за организацию полета человека на Марс? Оказывается, есть.

Несмотря на то что динамика развития экономики России позитивна, у нее существует весьма уязвимое место - ресурсная направленность (производство и экспорт углеводородов, металлургия и т. д.), на что неоднократно обращал внимание президент Российской Федерации. Восстановить промышленность России после кризиса 1990-х годов пока не удалось. А какую промышленность надо восстанавливать прежде всего? Наверное, ту, которая использует передовые технологии, востребованные на мировом рынке. И авиакосмические технологии относятся именно к таким. По многим из них у нашей страны есть безусловный приоритет.

Восстановление промышленности имеет и социальный аспект. В создании орбитальных станций "Салют", "Мир", российского сегмента Международной космической станции, например, участвовали тысячи предприятий, работающих в самых различных регионах и городах страны. Для создания космической техники нужны не только чисто "космические" производства. Необходимы различные приборы и агрегаты, материалы и многое другое. А это все рабочие места для специалистов, использующих передовые технологии, что всегда очень важно для любой страны.

Мы уже привыкли к понятию "утечка мозгов". Утечка мозгов идет, но вроде бы ничего страшного не происходит. В действительности это только так кажется. Процесс, когда наиболее ценные кадры покидают Россию, опасен для страны, грозит самому ее существованию. Ученые покидают страну не потому, что за рубежом они получают больше денег, а прежде всего потому, что в нашей стране нет программ, в которых они нашли бы себе применение. России как воздух нужны крупные научные программы. В частности, в программе полета человека на Марс будут востребованы ученые самых различных специальностей - биологи, медики, материаловеды, физики, программисты, химики и многие, многие другие.

Можно по-разному относиться к понятию престижа страны. Но авторитет государства - это понятие в том числе и экономическое. Вспомним, как вырос авторитет США после программы "Аполлон". Полет человека на Марс, что бы ни говорили по этому поводу скептики, всегда волновал и будет волновать человечество. Реализация этой мечты многих поколений предельно престижна. Так что проект полета человека на Марс для России имеет особое значение.

Теперь о ситуации с международным сотрудничеством при организации полета человека на Марс. Очень часто можно слышать, что этот полет возможен только в широкой международной кооперации. Действительно, освоение Марса - длительный процесс, и в нем на определенных этапах станут участвовать практически все страны, обладающие соответствующими технология ми. В программе полетов на Марс будут востребованы самые различные корабли, базы, средства исследований и строительства. Национальные программы различных стран будут решать отдельные задачи освоения Марса. И каждая страна пройдет свою часть пути к этой программе.

Пока существуют разные государства, неизбежно наличие национальных программ. Каждая страна заинтересована в развитии своих передовых технологий, основанных на собственном опыте и разработках. Особенно если эти технологии востребованы на мировом рынке. Поэтому в космонавтике всегда будут соседствовать и международные и национальные программы.

Сегодня в США полет человека на Марс объявлен национальной программой. Американцы, в принципе, могут пригласить участвовать в ней и другие страны, однако за их собственные средства. Но собственные средства следует тратить с максимальной выгодой для себя. Вряд ли целесообразно делать за свои деньги какие-то элементы американской программы. Более выгодно разрабатывать ключевые технологии при полете человека на Марс, которые позволят развивать национальные программы и в дальнейшем. Например, многоразовые солнечные буксиры, ставшие одним из элементов российской концепции полета на Марс, позволят решать многие другие задачи, стоящие перед человечеством. Дело в том, что эффективные космические буксиры в перспективе во многом определят космическую стратегию, как когда-то ракеты-носители. Иными словами, Россия должна иметь собственную программу развития, а не обслуживать чужие интересы. Это ни в коей мере не мешает сотрудничеству. Системы, созданные в России, будут важны для обеспечения более широких возможностей, в том числе и американских полетов. И кооперация с различными странами по созданию отдельных элементов экспедиций, безусловно, будет.

Сотрудничество с США в первом полете человека на Марс имеет и чисто технические аспекты. Мы уважаем квалификацию американских инженеров. Но принятая американцами концепция может нас не устроить. Известен ряд американских программ, которые технически неприемлемы для российских специалистов, в том числе с точки зрения обеспечения безопасности экипажа.

Предположим, что американцы захотят осуществить какой-нибудь грандиозный марсианский ядерный проект наподобие "Фридом" и, хотя это маловероятно, предложат России участвовать в этом проекте на паритетной основе. Ну и что нам делать? Участвовать? Или практически за те же деньги разрабатывать проект, основанный на российских технологиях, более дешевый, менее амбициозный и, как мы рассчитываем, более результативный. Представляется, что второй путь естественен: интеллектуальный потенциал и опыт разработок пилотируемых программ, особенно связанных с длительными полетами человека, у российских специалистов, во всяком случае, не меньший, чем у американцев.

Работа над марсианской экспедицией в США и в России не будет какой-то "марсианской гонкой". Каждая из стран станет разрабатывать свои ключевые технологии, которые позволят развивать свою национальную передовую промышленность и науку. Например, для организации очень результативного пилотируемого полета на орбиту Марса с виртуальной посадкой экипажа на марсианскую поверхность Россия уже имеет огромный технический и технологический задел. И очень важно использовать его в крупной научно-технической программе.

Таким образом, в России есть все для осуществления полета человека к Марсу: необходимый интеллектуальный потенциал, уникальный опыт работ по пилотируемым программам, работоспособная промышленная кооперация, необходимость инвестиций в наукоемкую промышленность с передовыми технологиями. Есть все основания рассчитывать, что в ближайшие десятилетия давняя мечта землян о полете человека на Марс наконец осуществится!

Экспедиция на Марс не раз захватывала внимание человечества, еще со времен космической гонки в 1960-х годах. Сейчас это уже не фантазии, а вопрос времени и ресурсов. В 2020 году стартуют миссии нескольких организаций, которые продолжают подготовку к освоению новой планеты и приближают реализацию главной цели – колонизации Марса.

Миссия NASA «Марс-2020»

Проект «Марс-2020» (Mars 2020 rover mission) является частью продолжительной программы NASA по изучению «Красной планеты». Основной целью проекта является разведывательная миссия поверхности планеты, что позволит ответить на множество фундаментальных вопросов. Например, была ли жизнь на Марсе, остались ли на его поверхности следы обитаемых условий в прошлом, или признаки существования бактерий и других микроорганизмов.

Кроме того, в задачи Марс-2020 входит сбор информации и апробация технологий, которые в будущем будут использоваться колонизаторами. В рамках программы будет выполнено тестирование получения кислорода из местной атмосферы, поиск полезных ископаемых и ресурсов (например, подземных вод), урегулирование процессов посадки, определение погоды, концентрации пыли и пр.

Проект Марс-2020 представляет собой марсоход, который будет отправлен с Земли в июле/августе 2020 (о чем сообщалось на официальном сайте проекта). Марсоход будет передвигаться по поверхности необычным способом: с помощью встроенных вертолетных лопастей. Таки образом, он будет как бы «прыгать», поднимаясь вверх, пролитая определенное расстояние и приземляясь на грунт. Однако, вертолет может летать только 3-4 раза в сутки, поскольку марсоход оборудован небольшой солнечной батареей. Такое решение было принято для сохранения минимального веса устройства. В противном случае он не смог бы летать в условиях местной плотности воздуха.

Экспедиция на поверхности планеты будет длиться не менее одного марсианского года (687 дней). В этот период будет проводиться сбор необходимой информации, включая образцы грунта, которые в последующем планируется переправить на Землю для дальнейшего изучения в специализированной лаборатории.

ЭкзоМарс

Еще одной программой по изучению Красной планеты является EXOMARS 2016-2020. Она разрабатывается и контролируется Европейским космическим агентством и Российской государственной организацией Роскосмос. В рамках программы предусмотрены две миссии:

  1. Запуск орбитального аппарата Trace Gas Orbiter (TGO) в 2016 году.
  2. Полет на Марс марсохода в 2020 году.

Программа ExoMars направлена на разведку поверхности и демонстрацию новых технологий, которые будут использованы будущей экспедицией. Ее задачи включают:

  • вход в атмосферу, спуск и посадка полезной нагрузки;
  • тестирование мобильности на поверхности Марса;
  • доступ к недрам и получение образцов.

Интересно: Одной из приоритетных целей ExoMars является участие в международной миссии по возвращению образцов обратно на Землю.

Орбитальный аппарат TGO был отправлен на еще в 2016 году. Он успешно прибыл на орбиту Марса и сейчас уже выполняет требуемые исследования. В задачи TGO входит изучение составляющих атмосферы: в частности, метана и других газов, водяного пара. Кроме того, он будет работать в качестве спутника-ретранслятора для осуществления связи с марсоходом, который будет запущен в 2020.

На марсоходе установлено оборудование для сбора грунта и других образцов планеты. В его задачи входит исследование экзобиологии и геохимии. Роскосмос предоставляет пусковую установку «Протон» для обеих миссий.

SpaceX

«Человеческую» экспедицию на Марс в 2024 году планирует Илон Маск. В данный момент ведется постройка космического корабля и ракеты, которая доставит корабль до орбиты. Эта задача будет возложена на ракету Falcon 9. Она представляет собой двухступенчатый ракетоноситель, который предназначен для многоразового использования.

Возможность возвращать первую ступень обратно и использовать ее повторно значительно сократило расходы космических полетов. Например, запуск Falcon Heavy обошелся SpaceX примерно в 90 млн долларов, а запуск подобной ракеты от компании ULA (предприятие Boeing) стоил бы не менее 400 млн долларов. Если ученым удастся возвращать и вторую ступень, то это еще больше сэкономит средств для освоения космических просторов.

В мае 2018 года Илон Маск презентовал дизайн пилотированного космического корабля Crew Dragon, который и доставит людей на Марс. В начале он пройдет тестовые полеты, среди которых перевозка полезной нагрузки на МКС. А в дальнейшем его испытают пилоты, которые также отправятся на МКС.

Inspiration Mars Foundation

О своем намерении организовать полет на Марс в 2018 году заявляла некоммерческая организация Inspiration Mars Foundation (фонд), основанная Деннисом Тито в 2013 году. Компания планировала воспользоваться особым орбитальным периодом в январе 2018, который позволяет добраться до орбиты Марса с минимальным расходом топлива. Дополнительное окно запланировано на 2021 год, если миссию не удастся реализовать в 2018.

Предложение было основано на траектории свободного возвращения. Пилотируемый корабль должен был выйти на орбиту Марса через орбиту Венеры и Земли, и вернуться обратно на Землю через 501 день. Данная кампания подвергалась значительной критике со стороны государственных и независимых организаций.

На данный момент актуальной информации о деятельности фонда нет, так как их официальный сайт заблокирован.

Mars One

– это частный проект голландской организации Mars One and Interplanetary Media Group под руководством Баса Лансдорпа. Программа предполагает экспедицию на Марс в один конец. Компания позиционирует себя как некоммерческая организация. Однако, она предлагает способ получения дохода от экспедиции в виде съемок и дальнейшей продажи документальных фильмов о подготовке и осуществлении миссии.

Реализация проекта предполагает поэтапное осуществление. С 2020 года на поверхность планеты будет запущен первый посадочный модуль, для сбора информации для экспедиции. До 2026 года на Марсе с помощью робототехники будут выстроены жилые модули, перевезено оборудование и другие полезные грузы. Полет первого корабля с людьми запланирован на 2026 год. Следующие корабли с людьми будут отправлены в 2028 и 2029 годах. До 2035 года организация рассчитывает построить колонию для 20 человек.

Тем не менее, организация Mars One неоднократно подвергалась жесткой критике и обвинялась в неправомерных действиях с целью получения материальной выгоды. В российском документальном фильме «Обретение Марса» ее руководители прямолинейно были названы мошенниками.

Илон Маск мечтает колонизировать Марс: видео

По материалам: 2020-god.com

Забытому на Марсе Мэтту Деймону в голливудском блокбастере «Марсианин» пришлось самостоятельно справляться со множеством трудностей, чтобы выжить на Красной планете. Однако в реальной жизни бороться за эту самую жизнь пришлось бы еще задолго до того, как попадешь собственно на сам Марс. Ведь, помимо радиации, психологических и физических проблем, связанных с долгим пребыванием в космосе, человеку придется столкнуться и с другими испытаниями при реальных полетах на Марс. Давайте рассмотрим самые очевидные из них.

Более продолжительные марсианские сутки

Марсианский день всего примерно на 40 минут длиннее, чем на Земле. И хотя на первый взгляд можно, наоборот, обрадоваться тому, что у тебя будет на целых 40 минут больше каждый день, это на самом деле может оказаться очень серьезной проблемой, так как суточный биологический ритм человека рассчитан на 24 часа. Дополнительные 40 минут каждый день на Марсе вскоре приведут к тому, что у человека разовьется синдром бесконечной смены часовых поясов, что, в свою очередь, будет проявляться в виде постоянной усталости и плохого самочувствия.

Операторы аэрокосмического агентства NASA уже успели испытать на себе все «радости» этого синдрома, так как им пришлось работать в соответствии с марсианским временем, как только одни из первых отправленных на Марс роверов начали свою ежедневную работу на Красной планете. Все работники космической марсианской миссии «Соджорнер», например, придерживались того же времени, в каком приходилось работать роверу. Спустя месяц такого напряженного графика операторы, что называется, выдохлись.

Для последующих марсианских роверов центр управления NASA смог успешно придерживаться марсианского времени в течение трех месяцев, однако к концу миссии работники по-прежнему очень сильно уставали. На основе наблюдений ученые выяснили, что человек способен придерживаться марсианского времени только лишь на кратковременные периоды. Астронавтам же, которым придется оставаться на Марсе месяцами, никак не удастся выбраться из рамок марсианского времени.

Более ранние исследования вопросов сна показали, что человеческое тело обладает естественным 25-часовым биологическим ритмом, однако, как оказалось позже, результаты этих исследований были неверны. После проведения новых наблюдений ни один из участников не смог адаптироваться к марсианскому времени.

Пониженная гравитация

Несмотря на имеющуюся возможность симуляции космического путешествия к Марсу на борту Международной космической станции путем долгого пребывания на ней, эффект продолжительного воздействия на человеческое тело марсианской гравитации (составляет 38 процентов от земной) по-прежнему остается загадкой для ученых. Позволит ли долгое воздействие такой частичной гравитации сохранить целостность мышечной и скелетной плотности? И если нет, то как с этим бороться? Если учесть, что при любом полете на Марс человеку придется провести долгие месяцы в закрытой консервной банке, поиск ответов на эти вопросы является критически важным аспектом.

В рамках не самых идеальных симуляций два исследования на мышах показали, что потеря костной и мышечной массы в условиях марсианской гравитации могут быть равнозначны полному ее отсутствию. Первое исследование обнаружило, что даже нахождение в условиях с 70-процентной от земной гравитации не предотвратит потерю мышечной и костной массы.

В рамках второго исследования ученые выяснили, что мыши, находясь в условиях с пониженной гравитацией, утратили по меньшей мере около 20 процентов скелетной массы. Однако следует учитывать, что все эти исследования основаны на симуляциях. До тех пор, пока астронавты на самом деле не высадятся на Марсе, узнать истинные последствия воздействия пониженной гравитации на их тела будет невозможно.

Суровая марсианская поверхность

Первое, что выяснил Нил Армстронг после своего шага на поверхность Луны, было то, что посадочная область была в буквальном смысле покрыта большими булыжниками, представляющими опасность для его посадочного модуля. Аналогичная проблема может возникнуть у астронавтов, которые будут совершать посадку на Марс. У них будет очень мало времени для определения и избегания попадания посадочного модуля на такие вот булыжники или песчаники. Камни и различные склоны могут привести к опрокидыванию марсианского посадочного модуля. Дело в том, что даже весьма крупные изменения в плоскости поверхности бывает очень трудно обнаружить с орбиты, поэтому люди, которые будут создавать планы посадки, могут такие изменения просто случайно пропустить.

Небольшие трещины и впадины тоже могут обмануть сенсоры, что, в свою очередь, может привести к несвоевременному выпуску парашютов или посадочных ног, а также неправильному автоматическому расчету посадочной скорости. Шансы на то, что посадочный модуль может ждать катастрофа из-за неправильно проанализированного места посадки, на удивление очень высоки. Одним из исследований было установлено, что эти шансы составляют около 20 процентов.

Размер головного обтекателя ракеты

При разработке пилотируемого посадочного марсианского модуля практически мгновенно возникает одна серьезная техническая проблема - диаметр головного обтекателя ракеты, на которой этот марсианский модуль будет запущен. Несмотря на то, что в настоящий момент диаметр самого большого обтекателя составляет 8,4 метра, будет очень сложно сделать так, чтобы его размер соотносился с конструкцией пилотируемого марсианского посадочного модуля.

Защитный тепловой экран, необходимый для протекции тяжелого груза, в этом случае будет слишком громадным, чтобы уместиться под обтекателем. Поэтому в этом случае, скорее всего, придется использовать надувную технологию теплового экрана, разработка которой к настоящему моменту находится только на стадии экспериментов.

Если использовать нынешний дизайн обтекателя для марсианской миссии, то потребуется использовать гораздо более компактный посадочный модуль, который будет соответствовать диаметру 8,4 метрового обтекателя. Любые более крупные модули просто не поместятся.

Даже если будет решено использовать более компактный посадочный модуль, то, скорее всего, из-за таких технических ограничений придется переделывать его конструкцию. Придется, например, переработать не только месторасположение астронавтов, но и топливные баки модуля. Сам же размер обтекателя изменить не получится, потому что это дестабилизирует ракету-носитель.

Сверхзвуковая ТДУ

Одним из основных способов снизить скорость посадочного марсианского модуля для мягкой стыковки с марсианской поверхностью является система сверхзвуковой тормозной двигательной установки (ТДУ). Суть ее заключается в использовании направленных в сторону движения реактивных двигателей для замедления аппарата со сверхзвуковых скоростей.

Использование сверхзвуковой ТДУ в тонкой разряженной атмосфере Марса является обязательным условием. Однако запуск двигателей сверхзвуковых мощностей может создать ударную волну, которая может повредить марсианский посадочный модуль. У NASA, например, практически нет опыта использования подобных процедур, что, в свою очередь, уменьшает шансы на успешность всей миссии.

Данная технология имеет три проблемных аспекта. Во-первых, эффект взаимодействия между воздушным потоком и выхлопными газами двигателей могут в буквальном смысле развалить посадочный модуль пополам. Во-вторых, тепло, генерируемое выхлопом отрабатываемого ракетного топлива, может нагреть посадочный модуль. В-третьих, сохранить стабильность посадочного модуля при запуске сверхзвуковых ТДУ может быть очень непростой задачей.

Несмотря на проведенные ранее мелкомасштабные испытания таких ТДУ с использованием аэродинамических труб, требуется проведение множества полномасштабных тестовых испытаний для определения надежности такой системы. Это очень дорогая и длительная задача. Однако у того же NASA, возможно, имеется и альтернативный (непрямой) вариант испытаний подобных систем. Американская частная компания SpaceX активно пытается разработать многоразовую ракету, которая использует аналогичный принцип посадки. И следует отметить, что успехи в этом направлении есть.

Статическое электричество

Да, да, то самое, от которого волосы встают дыбом, или происходит небольшой электрический удар, когда вы чего-либо касаетесь. Здесь, на Земле, статическое электричество, может, и является предметом различных шуток и розыгрышей (хотя в земных условиях оно тоже может быть опасным), но на Марсе статическое электричество может обернуться серьезными проблемами для астронавтов.

На Земле большинство статических разрядов происходят благодаря изолирующим свойствам резиновых основ обуви, которую мы носим. На Марсе изолирующим материалом будет служить сама поверхность Марса. Даже просто пройдя по марсианской поверхности, астронавт может накопить статический разряд достаточной силы для того, чтобы сжечь электронику, например, входного шлюза воздушной камеры, просто прикоснувшись к внешней металлической обшивке корабля.

Особенность и сухость марсианской поверхности делает ее отличным изолирующим материалом. Частицы марсианской поверхности могут до 50 раз быть меньше частиц пыли на Земле. При хождении по ней, на ботинках астронавтов будет накапливаться ее определенный запас. Когда марсианский ветер ее сдует, его обувь накопит достаточно заряда, чтобы вызвать легкий электрический удар, которого в таких условиях может быть достаточно, чтобы похоронить всю миссию.

Марсианские роверы, работающие сейчас на Красной планете, используют специальные тончайшие иглы, которые разряжают заряд в атмосферу и не дают ему поразить электронику марсоходов. В случае с пилотируемыми миссиями на Марс, потребуется использование специальных скафандров, которые позволят защитить и астронавтов, и оборудование, которое они будут использовать.

Подходящая ракета-носитель

Система Космических Запусков (Space Launch System, SLS) является в настоящий момент крупнейшей находящейся в разработке ракетой-носителем, которую планируют использовать в ближайшем будущем. Именно эту ракету Запад планирует использовать для пилотируемых миссий на Марс.

Согласно текущим планам NASA, для одной пилотируемой миссии на Марс потребуется с десяток ракет SLS. Однако нынешняя наземная инфраструктура для запусков SLS лишь по минимальным параметрам соответствует необходимым условиям: необходимо иметь как минимум одно помещение для сборки ракеты, один гигантский транспортер для доставки ракеты на стартовую площадку и собственно одну стартовую площадку.

Если хотя бы один из этих компонентов сломается или не справится со своей задачей, то возникнут серьезные опасения по поводу доступности необходимой ракеты-носителя, что в свою очередь поставит под вопрос саму возможность пилотируемой миссии на Марс.

Например, любые задержки, связанные с настройкой и проверкой всех систем SLS, могут внести серьезные изменения в графики пусков. Такие же проблемы могут создать и менее значительные технические проблемы и даже погодные условия.

Кроме того, стыковка на орбите, необходимая для сборки космического аппарата, который отправится на Марс, требует соблюдения так называемого окна запуска, то есть времени, в рамках которого будет осуществляться запуск ракеты. Помимо этого, запуск корабля к Марсу уже непосредственно с самой орбиты Земли тоже требует соблюдения определенных временных рамок. На основе исторических данных о ранних запусках шаттлов ученые разработали целые модели запусков. Они показывают отсутствие уверенности в том, что ракета SLS будет доступна к определенном пусковому окну, что в свою очередь тоже может поставить крест на любой пилотируемой миссии на Марс.

Токсичный марсианский грунт

В 2008 году автоматический зонд NASA сделал историческое открытие. На поверхности Марса были обнаружены перхлораты. Несмотря на то, что эти токсичные реагенты нашли свое применение в индустриальном производстве, они способны вызывать у людей серьезные проблемы с их щитовидной железой даже при использовании в малых количествах.

На Марсе концентрация перхлоратов в грунте составляет 0,5 процента, что уже является очень опасным для человека. Если астронавты занесут эти реагенты в свои марсианские жилища, то со временем обязательно случится загрязнение, а потом и отравление.

В какой-то степени снизить вероятность загрязнения могут помочь технологии процедуры дезактивации, которые обычно применяются в горной промышленности. Однако полностью избавиться от проблемы в условиях Марса не получится, и, следовательно, астронавтов рано или поздно будут ожидать проблемы щитовидных желез.

Помимо этого, отравление перхлоратами организма связывают с различными заболеваниями кровеносной системы. Правда, ученые в этом направлении пока далеко не продвинулись, и поэтому выяснение всех эффектов воздействия перхлоратов на человеческий организм еще только предстоит узнать. Поэтому в долгоиграющей перспективе последствия пребывания на Красной планете очень сложно предсказать.

Вполне вероятно, что астронавтам придется постоянно принимать искусственные гормональные препараты, чтобы поддерживать их метаболизм для борьбы с последствиями долгосрочного воздействия перхлоратов.

Долгосрочное хранение ракетного топлива

Для полета на Марс и обратно нам потребуется ракетное топливо. Огромный запас топлива. Самым эффективным в настоящий момент ракетным топливом является криогенное топливо, представляющее собой жидкий водород и кислород.

Это топливо при хранении необходимо постоянно охлаждать. Однако даже при максимальной подготовке, по статистике, из топливных баков ежемесячно происходит 3-4-процентная утечка водорода. Если, находясь уже в полете астронавты обнаружат, что в их топливных баках не хватает топлива для обратной дороги домой, то - сами понимаете - произойдет полная катастрофа.

Астронавтам придется следить за выкипанием криогенного топлива несколько лет до тех пор, пока будет проходить их миссия на Красной планете. Дополнительное топливо можно было бы производить непосредственно на самом Марсе, однако его хранение и охлаждение потребует установки специальных охладителей, которым, в свою очередь, необходима электроэнергия для работы. Поэтому перед началом миссии на Марс нам необходимо провести множество долгосрочных испытаний технологий хранения топлива, чтобы убедиться в том, что нам его хватит при любых обстоятельствах.

Любовь и размолвки

В рамках долговременных космических перелетов никто не может заречься от возникновения между членами экипажа романтических отношений. К концу сложного трудового дня многим людям необходима психологическая и физическая разрядка, выходом из которой как раз являются любовные отношения. И хотя на первый взгляд все это звучит мило и романтично, на практике в космосе такой вид отношений может очень плохо сказаться на всей миссии.

В 2008 году группа людей участвовала в эксперименте. Долгое нахождение в закрытом пространстве использовалось в качестве симуляции полета на Марс. События эксперимента вышли из-под контроля в тот момент, когда один из «астронавтов» очень расстроился, что его подружка отказалась от интимной близости и вместо этого выбрала третьего астронавта. Находящийся в состоянии постоянного стресса и утомления первый астронавт в какой-то момент не выдержал, и все это закончилось сломанной челюстью третьего астронавта. Если бы это был не эксперимент, а реальная космическая миссия, то такое поведение поставило бы серьезное сомнение в ее успешности.

К сожалению, NASA даже не пытается рассматривать все эти возможности. Согласно недавнему отчету Национальной академии наук США, NASA вообще не исследовало вопросы возможных сексуальных отношений в рамках космических миссий на Марс, а также не занималась вопросами возможной сочетаемости психотипов людей при долговременных космических миссиях.

Mars One — нидерландский проект безвозвратной экспедиции на Марс. По задумке организаторов, в 2023-м году группа из четырёх добровольцев отправится на красную планету и останется там навечно, земляне будут наблюдать за жизнью колонизаторов в формате реалити-шоу. Сразу заявлено, что на Земле и Красной планете абсолютно разные условия жизни, и тот, кто побывал на Марсе, уже не сможет существовать здесь. Возвращение экипажа — задача невыполнимая. Некоторые учёные уже заявили, что считают грядущую экспедицию массовым самоубийством.

Фото: www.mars-one.com

Тем не менее, заявки на участие в экспедиции подали 200 тысяч человек со всего мира. Во второй тур прошли 52 россиянина. АиФ.ru поговорил с претендентами на участие в миссии о том, почему они собираются навсегда покинуть Землю.

Фото: www.mars-one.com

Илья Храмов: «Гагарин полетел, и я смогу»

Тольяттинец Илья Храмов прошёл первый отборочный тур для проекта Mars One. Из 200 тысяч претендентов выбрали только 1058 человек. Инженер-конструктор АвтоВАЗа не боится, что может больше никогда не увидеть Землю, и уверен, что через десять лет именно он станет одним из первых колонизаторов красной планеты.

Илья Храмов. Фото: АиФ-Самара / Ксения Железнова

25-летнего Илью Храмова уже узнают горожане. На улице Коммунистическая он здоровается с жителем Тольятти и говорит, что не знаком с ним, но, скорее всего, мужчина видел его по телевизору.

«СМИ меня одолевают, звонят каждый день. Как только стало известно, что во второй тур Mars One прошли 1058 человек, среди них 52 россиянина, в том числе и я, телефон не умолкает», — говорит Илья.

В мае Илья увидел информацию о наборе колонизаторов на Марс и одним из первых жителей России поместил свой видеоролик на сайт Mars One. Конкурсанты должны были убедить организаторов, почему именно они должны лететь на красную планету, доказать, что у них есть чувство юмора и затем рассказать о себе.

Илья Храмов. Фото из личного архива

Кандидат в колонизаторы Марса показывает видеоролик, который они сняли вместе с другом. В шапке-ушанке и тельняшке Илья на английском языке шутит, что можно не сомневаться, он настоящий русский, потому что именно так все в России и одеваются.

Кадр из конкурсного видеоролика. Фото: Скриншот с сайта

«К видеоролику я приложил анкету и мотивационное письмо, в котором составил свой психологический портрет. Всё отправил, посмотрел, что участвуют более 200 тысяч людей, и, честно говоря, не надеялся дальше пройти», — признаётся Илья.

Конкурсное видео Ильи Храмова

В начале января тольяттинец уже не сомневался в своем желании покинуть навсегда планету Земля и отправиться на неизведанную планету. На электронную почту молодого человека пришло письмо, в котором подтвердилось, что он успешно прошёл первый отборочный тур и должен готовиться к следующему этапу — прохождению медицинской комиссии и личному собеседованию.

Письмо от организаторов проекта Mars One. Фото: АиФ-Самара / Ксения Железнова

«Увидел письмо и думаю, всё, назад дороги нет. Буду всё делать для того, чтобы пройти все отборочные туры. Не сомневаюсь, что успешно пройду медицинское обследование, — говорит Илья. — Я уже взял отпуск, чтобы успеть подготовить все документы для второго тура. У меня идеальное зрение, спортивное телосложение и к тому же я не пью и не курю. Для собеседования тоже готов, свободно владею разговорным английским».

«Привези магнитик»

Илья показывает выцветшую фотографию, на которой ему три года. Голубоглазый ребёнок сидит на руках мамы. Этот снимок молодой человек обязательно возьмёт с собой на Марс. О своём участии в проекте Mars One сын сразу сообщил своей маме Ладе Юрьевне.

«Мама скептически относится к моему желанию улететь на Марс. Она даже всерьёз не воспринимает этого, смеётся надо мной. Без особой радости рассказывает, на каком канале меня опять показывали», — признаётся Илья.

Перед Ильей фотография мамы. Фото: АиФ-Самара / Ксения Железнова

Храмов говорит, что с раннего детства его воспитывали на фантастической литературе. Дома на книжной полке стоят книги Кира Булычева и братьев Стругацких. Из армии тольяттинец привёз много произведений писателя-фантаста Сергея Лукьяненко, которого постоянно перечитывает.

«Меня всегда манило будущее и неизвестное в литературе, а возможность полететь на Марс — это воплощение мечты и шаг к будущему. Я не хочу прославиться через этот проект, для меня важнее изменить свою жизнь. Юрий Гагарин и Нил Армстронг не побоялись полететь, поэтому и мне не страшно», — объясняет своё желание отправиться в космос участник проекта Mars One. Храмов не боится, что не вернётся, к такой судьбе он готов.

Илья с друзьями. Фото из личного архива

Друзья поддерживают Илью, хотя признаются, что до того, как их друг ещё не прошёл первый тур, они не верили в его успех. Кто-то пытался отговорить, просили остаться, потому что будут скучать. Теперь пишут ему сообщения: «Привези магнитик с Марса» или «Ты же знаешь, я бы вышел хорошим бортмехаником, бери меня с собой».

Молодому человеку звонит друг, Илья говорит, что перезвонит попозже и рассказывает про то, как будет жить без близких ему людей.

«На Марсе появится возможность общения с близкими мне людьми, поэтому я не буду чувствовать себя там одиноким. Для этого в 2018 году запустят два спутника, которые будут осуществлять связь между астронавтами и Землей, — говорит Илья. — В случае перенаселения Земли, я думаю, что кто-то из близких людей сможет прилететь ко мне, я место им займу».

В случае перенаселения Земли, Илья будет ждать на Марсе маму. Фото: АиФ-Самара / Ксения Железнова

Обязанности колонизаторов

Первые четыре колонизатора должны будут заниматься обустройством космической базы, проводить обслуживание техники и исследовать планету.

Марс Фото: www.mars-one.com

«Меня увлекают исследования, которыми я смог бы заниматься на Марсе. К тому же, в случае поломки я смогу починить оборудование. Девять лет нас будут готовить к полету, поэтому можно не сомневаться в том, что отправимся в космос подготовленными», — говорит Илья.

Молодой человек показывает татуировку на руке, на которой изображено то, что он не сможет взять с собой на Марс: барабаны, гитара, книги, город и кассеты.

Татуировка на память о жизни на Земле. Фото: АиФ-Самара / Ксения Железнова

«Придется оставить на Земле и сноуборд, но, думаю, что и там смогу придумать нечто подобное и прокачусь по марсианской пыли на доске», — говорит Илья.

Восьмого марта пройдёт очередной отборочный тур. Тогда станет известно, увеличит ли Илья свои шансы улететь на Марс или всё-таки останется на Земле, несмотря на мечты о космосе.

Анастасия Бархатова: «Улечу навсегда — это будет интересно»

Анастасия Бархатова закончила челябинский университет по специальности «микробиолог». Работает лаборантом на станции переливания крови, говорит, в её обязанности входит проверка крови на наличие ВИЧ и гепатита. О том, что можно стать участником проекта по переселению на Марс, случайно узнала из заметки на нидерландском сайте.

«Я тут же подала заявку, — рассказывает Настя. — Она должна быть на английском языке. Я его знаю и совершенствую, это официальный язык экспедиции, на следующих этапах будут предъявлены требования к уровню владения им. Ещё нужно было изложить свою мотивацию, чтоб организаторы понимали, что толкает меня на Марс».

Вошла в полпроцента избранных

Родственники Анастасии — физики по образованию. Бархатова признается, что с детства увлекалась космосом, микробиологией и научной фантастикой, «Туманность Андромеды» Ивана Ефремова была её любимой книгой. Увлекалась, но не до фанатизма. О том, что может побывать на Марсе, до проекта даже не думала.

Фото: www.mars-one.com

«Я попала в полпроцента избранных, это не может не радовать, — откровенно рассказывает Бархатова. — Принять участие в фантастически интересном проекте изъявили желание почти двести тысяч человек из ста сорока стран мира, в итоге первый этап прошли чуть больше тысячи человек. В их числе — я».
Настя говорит, узнала о своей победе на первом этапе 1 января, из официального электронного письма. Для неё это был самый лучший новогодний подарок.

Настя родилась в Верхнеуральске. Окончила ЧелГУ, практику проходила в НИИ в Оболенске, устроилась работать на станцию переливания крови, как и планировала на последнем курсе вуза. О том, что участвует в проекте колонизации Марса, не знали ни родственники, ни коллеги. До последнего — пока Настя не победила в первом этапе.

Вот так, помахав рукой друзьям и родным, Настя и улетит на Марс. Через десять лет, если пройдёт оставшиеся испытания. Фото: АиФ

Не размениваться на размышления

«Родственники, по-русски сказать, обалдели, — рассказывает Настя. — Коллеги тоже. Путешествие на Марс — это билет в один конец. Сразу заявлено, что на Земле и Красной планете абсолютно разные условия жизни, и тот, кто побывал на Марсе, уже не сможет существовать здесь. Но я не переживаю и не боюсь: проект слишком значителен и глобален, чтобы размениваться на размышления. Да, нам нельзя будет рожать детей и создавать семьи — но я согласна пожертвовать привычным укладом ради жизни на Марсе. Улечу навсегда — это очень интересно».

Как сообщается на официальном сайте проекта, среди прошедших первый этап — люди в возрасте от 18 до 81 года. Главное условие для всех претендентов — отличное здоровье: стопроцентное зрение, давление в пределах нормы, никаких хронических заболеваний, рост от 157 до 190 сантиметров. Дальше счастливчиков ждут новые испытания, пока не разглашается, какие именно.

Анастасия Бархатова рассказала читателям АиФ, что переехать на Марс она совершенно не боится. Фото: АиФ

«Я очень жду следующих этапов, — рассказывает микробиолог. — Знаю, что в случае успеха мне предстоит десятилетняя подготовка к путешествию, ведь само переселение назначено на 2025-й год. К 2015-му году будут сформированы шесть групп по четыре человека, а на 2018-й год назначена отправка первых аппаратов-роботов на Марс».

Узнав о победе в международном проекте своей землячки, челябинцы отреагировали по-разному. Кое-кто считает переселение не Марс не более, чем очередной «уткой», другие уверены, что прохождением отбора всё и ограничится, и никто в космос не полетит, третьи, и их большинство, искренне рады за Анастасию. И даже немного ей завидуют.



Понравилась статья? Поделитесь с друзьями!