Магнитное поле земли краткое содержание. Магнитное поле геологического прошлого Земли

В 1905 году Эйнштейн назвал одной из пяти главных загадок тогдашней физики причину земного магнетизма.

В том же 1905 году французский геофизик Бернар Брюнес провел в южном департаменте Канталь замеры магнетизма лавовых отложений эпохи плейстоцена. Вектор намагниченности этих пород составлял почти 180 градусов с вектором планетарного магнитного поля (его соотечественник П. Давид получил аналогичные результаты даже годом раньше). Брюнес пришел к заключению, что три четверти миллиона лет назад во время излияния лавы направление геомагнитных силовых линий было противоположным современному. Так был обнаружен эффект инверсии (обращения полярности) магнитного поля Земли. Во второй половине 1920-х годов выводы Брюнеса подтвердили П. Л. Меркантон и Монотори Матуяма, но эти идеи получили признание лишь к середине столетия.

Сейчас мы знаем, что геомагнитное поле существует не менее 3,5 млрд лет и за это время магнитные полюса тысячи раз обменивались местами (Брюнес и Матуяма исследовали последнюю по времени инверсию, которая сейчас носит их имена). Иногда геомагнитное поле сохраняет ориентацию в течение десятков миллионов лет, а иногда - не более пятисот веков. Сам процесс инверсии обычно занимает несколько тысячелетий, и по его завершении напряженность поля, как правило, не возвращается к прежней величине, а изменяется на несколько процентов.

Механизм геомагнитной инверсии не вполне ясен и поныне, а уж сто лет назад он вообще не допускал разумного объяснения. Поэтому открытия Брюнеса и Давида только подкрепили эйнштейновскую оценку - действительно, земной магнетизм был крайне загадочен и непонятен. А ведь к тому времени его исследовали свыше трехсот лет, а в XIX веке им занимались такие звезды европейской науки, как великий путешественник Александр фон Гумбольдт, гениальный математик Карл Фридрих Гаусс и блестящий физик-экспериментатор Вильгельм Вебер. Так что Эйнштейн воистину глядел в корень.

Как вы думаете, сколько у нашей планеты магнитных полюсов? Почти все скажут, что два - в Арктике и Антарктике. На самом деле ответ зависит от определения понятия полюса. Географическими полюсами считают точки пересечения земной оси с поверхностью планеты. Поскольку Земля вращается как твердое тело, таких точек всего две и ничего другого придумать нельзя. А вот с магнитными полюсами дело обстоит много сложнее. Например, полюсом можно счесть небольшую область (в идеале опять-таки точку), где магнитные силовые линии перпендикулярны земной поверхности. Однако любой магнитометр регистрирует не только планетарное магнитное поле, но и поля местных пород, электрических токов ионосферы, частиц солнечного ветра и прочих дополнительных источников магнетизма (причем их средняя доля не так уж мала, порядка нескольких процентов). Чем точнее прибор, тем лучше он это делает - и потому все больше затрудняет выделение истинного геомагнитного поля (его называют главным), источник которого находится в земных глубинах. Поэтому координаты полюса, определенные с помощью прямого измерения, не отличаются стабильностью даже в течение короткого отрезка времени.

Можно действовать иначе и установить положение полюса на основании тех или иных моделей земного магнетизма. В первом приближении нашу планету можно считать геоцентрическим магнитным диполем, ось которого проходит через ее центр. В настоящее время угол между нею и земной осью составляет 10 градусов (несколько десятилетий назад он был больше 11 градусов). При более точном моделировании выясняется, что дипольная ось смещена относительно центра Земли в направлении северо-западной части Тихого океана примерно на 540 км (это эксцентрический диполь). Есть и другие определения.

Но это еще не все. Земное магнитное поле реально не обладает дипольной симметрией и потому имеет множественные полюса, причем в огромном количестве. Если считать Землю магнитным четырехполюсником, квадруполем, придется ввести еще два полюса - в Малайзии и в южной части Атлантического океана. Октупольная модель задает восьмерку полюсов и т. д. Современные наиболее продвинутые модели земного магнетизма оперируют аж 168 полюсами. Стоит отметить, что в ходе инверсии временно исчезает лишь дипольная компонента геомагнитного поля, а прочие изменяются много слабее.

Полюса наоборот

Многие знают, что общепринятые названия полюсов верны с точностью до наоборот. В Арктике расположен полюс, на который указывает северный конец магнитной стрелки, - следовательно, его стоило бы считать южным (одноименные полюса отталкиваются, разноименные притягиваются!). Аналогично, северный магнитный полюс базируется в высоких широтах Южного полушария. Тем не менее по традиции мы именуем полюса в соответствии с географией. Физики давно условились, что силовые линии выходят из северного полюса любого магнита и входят в южный. Отсюда следует, что линии земного магнетизма покидают южный геомагнитный полюс и стягиваются к северному. Такова конвенция, и нарушать ее не стоит (самое время припомнить печальный опыт Паниковского!).

Магнитный полюс, как его ни определяй, не стоит на месте. Северный полюс геоцентрического диполя в 2000 году имел координаты 79,5 N и 71,6 W, а в 2010-м - 80,0 N и 72,0 W. Истинный Северный полюс (тот, который выявляют физические замеры) с 2000 года сместился с 81,0 N и 109,7 W к 85,2 N и 127,1 W. В течение почти всего ХХ века он делал не более 10 км в год, но после 1980 года вдруг начал двигаться гораздо быстрее. В начале 1990-х годов его скорость превысила 15 км в год и продолжает расти.

Как рассказал «Популярной механике» бывший руководитель геомагнитной лаборатории канадской Службы геологических исследований Лоуренс Ньюитт, сейчас истинный полюс мигрирует на северо-запад, перемещаясь ежегодно на 50 км. Если вектор его движения не изменится в течение нескольких десятилетий, то к середине XXI столетия он окажется в Сибири. Согласно реконструкции, выполненной несколько лет назад тем же Ньюиттом, в XVII и XVIII веках северный магнитный полюс преимущественно смещался на юго-восток и лишь примерно в 1860 году повернул на северо-запад. Истинный южный магнитный полюс последние 300 лет движется в эту же сторону, причем его среднегодичное смещение не превышает 10–15 км.

Откуда вообще у Земли магнитное поле? Одно из возможных объяснений просто бросается в глаза. Земля обладает внутренним твердым железо-никелевым ядром, радиус которого составляет 1220 км. Поскольку эти металлы ферромагнитны, почему бы не предположить, что внутреннее ядро имеет статическую намагниченность, которая и обеспечивает существование геомагнитного поля? Мультиполярность земного магнетизма можно списать на несимметричность распределения магнитных доменов внутри ядра. Миграцию полюсов и инверсии геомагнитного поля объяснить сложнее, но, наверное, попытаться можно.

Однако из этого ничего не получается. Все ферромагнетики остаются таковыми (то есть сохраняют самопроизвольную намагниченность) лишь ниже определенной температуры - точки Кюри. Для железа она равна 768°C (у никеля много ниже), а температура внутреннего ядра Земли значительно превышает 5000 градусов. Поэтому с гипотезой статического геомагнетизма приходится расстаться. Однако не исключено, что в космосе имеются остывшие планеты с ферромагнитными ядрами.

Рассмотрим другую возможность. Наша планета также обладает жидким внешним ядром толщиной приблизительно в 2300 км. Оно состоит из расплава железа и никеля с примесью более легких элементов (серы, углерода, кислорода и, возможно, радиоактивного калия - в точности не знает никто). Температура нижней части внешнего ядра почти совпадает с температурой внутреннего ядра, а в верхней зоне на границе с мантией понижается до 4400°C. Поэтому вполне естественно предположить, что благодаря вращению Земли там формируются круговые течения, которые могут оказаться причиной возникновения земного магнетизма.

Конвективное динамо

«Чтобы объяснить возникновение полоидального поля, необходимо принять во внимание вертикальные потоки вещества ядра. Они образуются благодаря конвекции: нагретый железно-никелевый расплав всплывает из нижней части ядра по направлению к мантии. Эти струи закручиваются силой Кориолиса подобно воздушным потокам циклонов. В Северном полушарии восходящие потоки вращаются по часовой стрелке, а в Южном - против, - объясняет профессор Калифорнийского университета Гэри Глатцмайер. - При подходе к мантии вещество ядра остывает и начинает обратное движение вглубь. Магнитные поля восходящих и нисходящих потоков гасят друг друга, и поэтому по вертикали поле не устанавливается. А вот в верхней части конвекционной струи, там, где она образует петлю и недолго движется по горизонтали, ситуация иная. В Северном полушарии силовые линии, которые до конвекционного восхождения смотрели на запад, поворачиваются по часовой стрелке на 90 градусов и ориентируются на север. В Южном полушарии они поворачиваются с востока против часовой стрелки и тоже направляются на север. В результате в обоих полушариях генерируется магнитное поле, указывающее с юга на север. Хоть это отнюдь не единственное возможное объяснение возникновения полоидального поля, его считают самым вероятным».

Именно такую схему ученые-геофизики обсуждали лет 80 назад. Они считали, что потоки проводящей жидкости внешнего ядра за счет своей кинетической энергии порождают электрические токи, охватывающие земную ось. Эти токи генерируют магнитное поле преимущественно дипольного типа, силовые линии которого на поверхности Земли вытянуты вдоль меридианов (такое поле называется полоидальным). Этот механизм вызывает ассоциацию с работой динамо-машины, отсюда и произошло его название.

Описанная схема красива и наглядна, но, к сожалению, ошибочна. Она основана на предположении, что движение вещества внешнего ядра симметрично относительно земной оси. Однако в 1933 году английский математик Томас Каулинг доказал теорему, согласно которой никакие осесимметричные потоки не способны обеспечить существование долговременного геомагнитного поля. Даже если оно и появится, то век его окажется недолог, вдесятки тысяч раз меньше возраста нашей планеты. Нужна модель посложнее.

«Мы не знаем точно, когда возник земной магнетизм, однако это могло произойти вскоре после формирования мантии и внешнего ядра, - говорит один из крупнейших специалистов по планетарному магнетизму, профессор Калифорнийского технологического института Дэвид Стивенсон. - Для включения геодинамо требуется внешнее затравочное поле, причем не обязательно мощное. Эту роль, к примеру, могло взять на себя магнитное поле Солнца или поля токов, порожденных в ядре за счет термоэлектрического эффекта. В конечном счете это не слишком важно, источников магнетизма хватало. При наличии такого поля и кругового движения потоков проводящей жидкости запуск внутрипланетной динамомашины становился просто неизбежным».

Магнитная защита

Мониторинг земного магнетизма производят с помощью обширной сети геомагнитных обсерваторий, создание которой началось еще в 1830-х годах.

Для этих же целей используют корабельные, авиационные и космические приборы (к примеру, скалярный и векторный магнитометры датского спутника «Эрстед», работающие с 1999 года).

Напряженность геомагнитного поля варьирует приблизительно от 20 000 нанотесла вблизи побережья Бразилии до 65 000 нанотесла в районе южного магнитного полюса. С 1800 года его дипольная компонента сократилась почти на 13% (а с середины XVI века - на 20%), в то время как квадрупольная несколько возросла. Палеомагнитные исследования показывают, что в течение нескольких тысячелетий перед началом нашей эры напряженность геомагнитного поля упорно лезла вверх, а потом начала снижаться. Тем не менее нынешний планетарный дипольный момент значительно превышает свое среднее значение за последние полтораста миллионов лет (в 2010 году были опубликованы результаты палеомагнитных измерений, свидетельствующие, что 3,5 млрд лет назад земное магнитное поле было вдвое слабее нынешнего). Это означает, что вся история человеческих обществ от возникновения первых государств до нашего времени пришлась на локальный максимум земного магнитного поля. Интересно задуматься над тем, повлияло ли это на прогресс цивилизации. Такое предположение перестает казаться фантастическим, если учесть, что магнитное поле защищает биосферу от космического излучения.

И вот еще одно обстоятельство, которое стоит отметить. В юности и даже отрочестве нашей планеты все вещество ее ядра пребывало в жидкой фазе. Твердое внутреннее ядро сформировалось сравнительно недавно, возможно, всего лишь миллиард лет назад. Когда это произошло, конвекционные потоки стали более упорядоченными, что привело к более устойчивой работе геодинамо. Из-за этого геомагнитное поле выиграло в величине и стабильности. Можно предположить, что это обстоятельство благоприятно сказалось на эволюции живых организмов. В частности, усиление геомагнетизма улучшило защиту биосферы от космических излучений и тем самым облегчило выход жизни из океана на сушу.

Вот общепринятое объяснение такого запуска. Пусть для простоты затравочное поле почти параллельно оси вращения Земли (на самом деле достаточно, если оно имеет ненулевую компоненту в этом направлении, что практически неизбежно). Скорость вращения вещества внешнего ядра убывает по мере уменьшения глубины, причем из-за его высокой электропроводности силовые линии магнитного поля движутся вместе с ним - как говорят физики, поле «вморожено» в среду. Поэтому силовые линии затравочного поля будут изгибаться, уходя вперед на больших глубинах и отставая на меньших. В конце концов они вытянутся и деформируются настолько, что дадут начало тороидальному полю, круговым магнитным петлям, охватывающим земную ось и направленным в противоположные стороны в северном и южном полушариях. Этот механизм называется w-эффектом.

По словам профессора Стивенсона, очень важно понимать, что тороидальное поле внешнего ядра возникло благодаря полоидальному затравочному полю и, в свою очередь, породило новое полоидальное поле, наблюдаемое у земной поверхности: «Оба типа полей планетарного геодинамо взаимосвязаны и не могут существовать друг без друга».

15 лет назад Гэри Глатцмайер вместе с Полом Робертсом опубликовал очень красивую компьютерную модель геомагнитного поля: «В принципе для объяснения геомагнетизма давно имелся адекватный математический аппарат - уравнения магнитной гидродинамики плюс уравнения, описывающие силу тяготения и тепловые потоки внутри земного ядра. Модели, основанные на этих уравнениях, в первозданном виде очень сложны, однако их можно упростить и адаптировать для компьютерных вычислений. Именно это и проделали мы с Робертсом. Прогон на суперкомпьютере позволил построить самосогласованное описание долговременной эволюции скорости, температуры и давления потоков вещества внешнего ядра и связанной с ними эволюции магнитных полей. Мы также выяснили, что если проигрывать симуляцию на временных промежутках порядка десятков и сотен тысяч лет, то с неизбежностью возникают инверсии геомагнитного поля. Так что в этом отношении наша модель неплохо передает магнитную историю планеты. Однако есть затруднение, которое пока еще не удалось устранить. Параметры вещества внешнего ядра, которые закладывают в подобные модели, все еще слишком далеки от реальных условий. Например, нам пришлось принять, что его вязкость очень велика, иначе не хватит ресурсов самых мощных суперкомпьютеров. На самом деле это не так, есть все основания полагать, что она почти совпадает с вязкостью воды. Наши нынешние модели бессильны учесть и турбулентность, которая несомненно имеет место. Но компьютеры с каждым годом набирают силу, и лет через десять появятся гораздо более реалистичные симуляции».

«Работа геодинамо неизбежно связана с хаотическими изменениями потоков железо-никелевого расплава, которые оборачиваются флуктуациями магнитных полей,– добавляет профессор Стивенсон. - Инверсии земного магнетизма - это просто сильнейшие из возможных флуктуаций. Поскольку они стохастичны по своей природе, вряд ли их можно предсказывать заранее - во всяком случае мы этого не умеем».

Земля - это гигантский магнит, вокруг которого образуется магнитное поле. Магнитные полюса Земли не совпадают с истинными географическими полюсами - северным и южным. Силовые линии, идущие от одного магнитного полюса к другому, называются магнитными меридианами. Между магнитным и географическим меридианом образуется некоторый угол (около 11,5° - прим.. Поэтому намагниченная стрелка компаса точно показывает направление магнитных меридианов, а направление на северный географический полюс - лишь приблизительно.

Свободно подвешенная магнитная стрелка располагается горизонтально только на линии магнитного экватора, который не совпадает с географическим. Если двигаться к северу от магнитного экватора, то северный конец стрелки будет постепенно опускаться. Угол, образованный магнитной стрелкой и горизонтальной плоскостью, называют магнитным наклонением. На Северном магнитном полюсе (77° с.ш. и 102° з.д.) свободно подвешенная магнитная стрелка установится вертикально северным концом вниз, а на Южном магнитном полюсе (65° ю.ш. и 139° в.д. - прим.. Таким образом, магнитная стрелка показывает направление силовых линий магнитного поля над земной поверхностью.

Считается, что постоянное магнитное поле наша планета генерирует сама. Оно образуется из-за сложной системы электрических токов, возникающих при вращении Земли и перемещении жидкого вещества в её внешнем ядре. Положение магнитных полюсов и распределение магнитного поля по земной поверхности со временем меняются. Магнитное поле Земли простирается до высоты около 100 тыс. км. Оно отклоняет или захватывает частицы солнечного ветра, губительные для всех живых организмов. Эти заряженные частицы образуют радиационный пояс Земли, а вся область околоземного пространства, в которой они находятся, называют магнитосферой.

Солнце посылает к Земле огромный поток энергии, состоящий из электромагнитного излучения (видимого света, инфракрасного и радиоизлучения - прим.); ультрафиолетового и рентгеновского излучений; солнечных космических лучей, возникающих только во время очень сильных вспышек; и солнечного ветра - постоянного потока плазмы, образованного главным образом протонами (ионы водорода).

Электромагнитное излучение Солнца приходит к Земле через 8 мин., а потоки частиц, приносящие основную часть возмущения от Солнца, двигаются со скоростью около 1000 км/с и задерживаются на двое-трое суток. Основной причиной возмущений солнечного ветра, существенно влияющих на земные процессы, являются грандиозные выбросы вещества из короны Солнца. При движении к Земле они превращаются в магнитные облака и приводят к сильным, иногда экстремальным возмущениям на Земле. Особенно сильные возмущения магнитного поля Земли - магнитные бури - нарушают радиосвязь, вызывают интенсивные полярные сияния.

Полярное сияние над Землей (снимок из космоса)

Магнитные аномалии

В некоторых районах планеты наблюдаются отклонения магнитного склонения и магнитного наклонения от средних значений для данной территории. Например, в Курской области в районе месторождения железной руды напряжение магнитного поля в 5 раз выше, чем среднее для этого района. Месторождение так и называется - Курская магнитная аномалия - прим.. Иногда подобные отклонения наблюдаются на обширных площадях. Восточно-Сибирская магнитная аномалия характеризуется западным магнитным склонением, а не восточным.

Магнитное поле Земли.

Основные вопросы, рассматриваемые на лекции:

1. Природа геомагнетизма.

2. Элементы магнитного поля Земли.

3. Структура геомагнитного поля.

4. Магнитосфера и радиационные пояса Земли.

5. Вековые вариации геомагнитного поля.

6. Аномалии геомагнитного поля.

1. Природа геомагнетизма. Земной магнетизм, или геомагнетизм, – это свойство Земли как небесного тела, обусловливающее существование вокруг нее магнитного поля. Геомагнитология – наука о земном.

Теория гидромагнитного динамо основана на установленном геофизиками факте, что на глубине 2900 км находится «жидкое» внешнее ядро Земли с хорошей электропроводностью (106– 105 См/м).

Впервые идея гидромагнитного динамо была предложена в 1919 г. Лармором в Англии для объяснения магнетизма Солнца. В земном магнетизме (1947 г) советский физик Я. И. Френкель высказал идею о том, что тепловая конвекция в земном ядре является именно той причиной, которая приводит в действие гидромагнитное динамо земного ядра.

Основные положения гипотезы гидромагнитного динамо сводятся к следующему.

1. Благодаря так называемому гиромагнитному (от греч. Гиро – вращаюсь, кружусь) эффекту и вращению Земли во время ее образования могло возникнуть очень слабое магнитное поле. Гиромагнитный эффект – это намагничивание ферромагнитных тел вследствие их вращения и вращения их при определенных условиях намагничивания. В гиромагнитном эффекте обнаруживается связь между механическим и магнитным моментами атома.

2. Наличие свободных электронов в ядре и вращение Земли в таком слабом магнитном поле привели к индуцированию в ядре вихревых электрических токов.

3. Индуцированные вихревые токи в свою очередь создают (генерируют) магнитное поле, как это происходит в динамо-машинах. Увеличение магнитного поля Земли должно привести к новому увеличению вихревых токов в ядре, а последнее – к увеличению магнитного поля.

4. Процесс, подобный регенерации, длится до тех пор, пока рассеивание энергии вследствие вязкости ядра и его электрического сопротивления не скомпенсируется добавочной энергией вихревых токов и другими причинами.

Таким образом, по Френкелю, земное ядро является своеобразным природным турбогенератором. Роль турбины в нем играют тепловые потоки: они поднимают из недр ядра вверх по радиусу большие массы расплавленного металла, обладающего свойством жидкости. Более холодные, а значит и более тяжелые частицы верхних слоев опускаются вниз. Сила Кориолиса «закручивает» их вокруг земной оси, образуя, таким образом, гигантские витки внутри «земной динамо-машины». В этих замкнутых потоках горячего металла, как и в витках проволоки на якоре обычной динамо-машины, должен был когда-то давно возникнуть индукционный ток. Он постепенно подмагничивал земное ядро. Первоначальное очень слабое магнитное поле усиливалось до тех пор, пока с течением времени не дошло до своего предельного значения. Этот предел был достигнут в далеком прошлом. И хотя земной турбогенератор продолжает работу, кинетическая энергия потоков жидкого металла тратится теперь не на подмагничивание земного ядра, а целиком превращается в теплоту.

Магнитное поле Земли существует около З млрд лет, что примерно на 1,5 млрд лет меньше ее возраста. Значит, оно не было реликтовым и при отсутствии восстанавливающего механизма не смогло бы существовать в течение всей геологической истории Земли.

2. Элементы магнитного поля Земли. В каждой точке поверхности Земли магнитное поле характеризуется полным вектором напряженности Нт, величина и направление которого определяется тремя элементами земного магнетизма; горизонтальной составляющей напряженности Н, магнитным склонением D и наклонением I. Магнитное склонение – это угол в горизонтальной плоскости между географическим и магнитным меридианами; магнитное наклонение – угол в вертикальной плоскости между горизонтальной плоскостью и направлением полного вектора Нт.

Величины Н, X, У, Z, D и I носят название элементов земного магнетизма, при этом элементы Н, X, У и Z называют силовыми компонентами земного магнитного поля, а D и I – угловыми.

Полный вектор напряженности магнитного поля Земли Hт, его силовые составляющие Н, X, У и Z имеют размерность А/м, склонение D и наклонение I – угловые градусы, минуты и секунды. Напряженность магнитного поля Земли сравнительно невелика: полный вектор Нт.изменяется от 52,5 А/м на полюсе до 26,3 А/м на экваторе.

Рис. 5.1 – Элементы земного магнетизма

Абсолютные значения величин элементов земного магнетизма малы, и поэтому для их измерения применяются высокоточные приборы – магнитометры и магнитные вариометры; имеются вариометры для измерения величин Н и величин Z. Применяются походные магнитные станции, оснащенные сложными оптико-механическими и квантовыми магнитометрами. Линии, соединяющие на карте точки с одинаковым склонением D, называются изогонами, с одинаковым наклонением I – изоклинами, с одинаковыми Н или Z – изодинами горизонтальных или вертикальных составляющих полного вектора напряженности Нт и с одинаковыми X или У – изодинами северных или восточных составляющих. Значения элементов земного магнетизма непрерывно изменяются во времени и поэтому магнитные карты обновляются каждые пять лет.

3. Структура геомагнитного поля. Магнитное поле Земли по своей структуре неоднородно. Оно слагается из двух частей: постоянного и переменного полей. Постоянное поле вызвано внутренними источниками магнетизма; источниками переменного поля являются электрические токи в верхних слоях атмосферы – ионосфере и магнитосфере. В свою очередь постоянное магнитное поле по своей природе неоднородно и состоит из нескольких частей. Поэтому в целом магнитное поле Земли состоит из следующих полей:

Нт =Но+Hм+Hа+Hв+δH, (5.1)

где Нт – напряженность магнитного поля Земли; Но – напряженность дипольного поля, создаваемая однородной намагниченностью земного шара; Нм – напряженность недипольного, или материкового, поля, создаваемая внутренними причинами, обусловленными неоднородностью глубоких слоев Земли; На – напряженность аномального поля, создаваемая различной намагниченностью верхних частей земной коры; Нв – напряженность поля, источник которого связан с внешними причинами; δH – напряженность поля магнитных вариаций, вызванных внешними причинами.

Сумма полей Но+Hм=НГ образует главное магнитное поле Земли. Аномальное поле складывается из двух частей: поля регионального характера Нр и поля местного (локального) характера Нл. На региональную аномалию может накладываться локальная, и тогда Hа = Нр+Нл.



Сумму полей Но+Hм+Hв обычно называют нормальным полем. Однако поле Hв вносит очень небольшой вклад в общее геомагнитное поле Нт. Систематическое изучение геомагнитного поля, по данным магнитных обсерваторий и магнитных съемок, показывает, что внешнее поле по отношению к внутреннему составляет менее 1% и поэтому им можно пренебречь. В этом случае нормальное поле совпадает с главным магнитным полем Земли.

Геомагнитные полюсы располагаются в том месте, где земная магнитная ось пересекает поверхность Земли. Хотя северный магнитный полюс находится в Южном полушарии, а Южный – в Северном, в обиходе их называют по аналогии с географическими полюсами.

Со временем магнитные полюсы меняют свое положение. Так, северный магнитный полюс за сутки перемещается по поверхности Земли на 20,5 м (7,5 км в год), а южный – на 30 м (11 км в год).

4. Магнитосфера и радиационные пояса Земли. Магнитное поле Земли существует не только вблизи земной поверхности, но и на больших расстояниях от нее, что обнаружено с помощью космических ракет и межпланетных космических станций. На расстоянии 10–14 земных радиусов геомагнитное поле встречается с межплатным магнитным полем и с полем так называемого солнечного ветра. Солнечный ветер представляет собой истечение плазмы солнечной короны (коронального газа, состоящего главным образом из водорода и гелия) в межпланетное пространство. Скорость частиц солнечного ветра (протонов и электронов) огромна – около 400км/с, число частиц (корпускул) – несколько десятков в 1см 3 , температура – до 1,5–2 млн градусов. На границе магнитного поля и магнитного поля Земли напряженность составляет около (0,4–0,5)·10-2 А/м.

Область действия магнитного поля Земли называется магнитосферой, а ее внешняя граница – магнитопаузой (рис. 5.3). На геомагнитное поле существенно влияет солнечный ветер. Простирается магнитосфера, на огромные расстояния: наименьшее – в сторону Солнца – достигает 10–14 земных радиусов, наибольшее – с ночной стороны – около 16 радиусов Земли. Магнитный хвост имеет еще большие размеры (по данным искусственных спутников Земли – в сотни земных радиусов).

Рисунок 5.3 – Строение магнитосферы Земли: 1 – солнечный ветер; 2 – ударный фронт; 3 – магнитная полость; 4 – магнитопауза; 5 – верхняя граница полярной магнитосферной щели; 6 – плазменная мантия; 7 – внешний радиационный пояс или плазмосфера; 9 – нейтральный слой; 10 – плазменный слой

Максимум внутреннего протонного пояса располагается па расстоянии 3,5 радиуса Земли (22 тыс. км). Внутри плазмосферы, вблизи поверхности Земли, существует второй электронный радиационный пояс. Вблизи полюсов этот пояс располагается на расстоянии 100 км, однако основная его часть находится на расстоянии 4,4 – 10 тыс. км от поверхности планеты. Электроны в нем имеют энергию десятка – сотни кэВ. Интенсивность потоков электронов оценивается в 109 частиц на см 2 /с, т. е. на порядок выше, чем во внешнем электронном поясе.

Мощность радиации в радиационных поясах достаточно высокая – несколько сотен и даже тысяч биологических эквивалентов рентгена в сутки. Поэтому космические корабли с космонавтами на борту запускают на орбиты, располагающиеся ниже этих поясов.

Если бы магнитосфера отсутствовала, то потоки солнечного и космического ветра, не встречая сопротивления, устремлялись бы к поверхности Земли и оказывали губительное воздействие на все живые существа, включая человека.

5. Вековые вариации геомагнитного поля. Процесс изменения среднегодовых значений того или иного элемента земного магнетизма за период в несколько десятилетий и столетий носит название вековых вариаций, а их изменение от года к году называется вековым ходом.

Судить о прошлом геомагнитного поля – его направлении и напряженности – позволяет так называемый эффект «вмораживания магнитного поля в материал». Любая горная порода, любое вещество, содержащее железо или другой ферромагнитный элемент, постоянно находятся под воздействием магнитного поля Земли. Элементарные магнитики в этом материале стремятся ориентироваться вдоль магнитных силовых линий.

Если материал нагревать, то наступит момент, когда тепловое движение частиц станет столь энергичным, что разрушит магнитную упорядоченность. Затем, когда материал будет остывать, то, начиная с точки Кюри (точкой Кюри называется температура, ниже которой породы становятся ферромагнитными; для чистого железа точка Кюри 769°С, для магнетита – 580°С), магнитное поле одерживает верх над силами хаотического движения. Элементарные магнитики снова выстроятся так, как велит им магнитное поле, и останутся в этом положении до тех пор, пока тело не будет снова нагрето. Таким образом, геомагнитное поле оказывается как бы «вмороженным» в материал.

В настоящее время магнитное поле Земли убывает на 2,5 % за 100 лет, и примерно за 4000 лет, если не изменится характер этого спада, оно должно уменьшиться до нулевого значения. Однако палеомагнитологи утверждают, что этого не произойдет.

Если сложить все циклические кривые с разными периодами колебания магнитного поля Земли, то получим так называемую «сглаженную, или осредненную, кривую», которая достаточно хорошо совпадает с синусоидой, имеющей период 8000 лет. В настоящее время суммарное значение колебаний магнитного поля находится на нисходящем отрезке синусоиды.

Различная продолжительность периодов колебания геомагнитного поля объясняется, по-видимому, отсутствием сбалансированности движущихся частей гидромагнитного динамо и различной их электропроводностью.

Инверсия – это взаимообмен магнитных полюсов местами. При инверсиях Северный магнитный полюс перемещается на место Южного, а Южный – на место Северного.

Иногда вместо инверсии говорят о «перескоке» полюсов. Однако это слово по отношению к полюсам не совсем подходит, поскольку перемещаются полюсы не так уж и быстро – по некоторым оценкам «перескок» длится 5 и даже 10 тыс. лет.

За последние 600 тыс. лет установлено 12 эпох инверсии геомагнитного поля (Готтенборга – 10–12 тыс. лет, Лашами – 20 – 24 тыс. лет и т. д.). Характерно, что с этими эпохами совпадают существенные геологические, климатические и биологические изменения на планете.

6. Аномалии геомагнитного поля. Магнитная аномалия – это отклонения величин элементов земного магнетизма от нормальных значений, которые наблюдались бы в данном месте в случае однородного намагничивания Земли.

Если в каком-либо месте обнаруживаются резкие изменения магнитного склонения и наклонения, то это указывает, что под земной поверхностью скрыты горные породы, содержащие ферромагнитные минералы. К ним относятся магнетит, титано-магнетит, гематит и др. Наибольшей магнитной восприимчивостью обладает магнетит, поэтому значительное число аномалий связано с его наличием в горных породах.

В зависимости от размеров магнитные аномалии делят на материковые, региональные и локальные. Материковые аномалии являются следствием нахождения под их центрами мощных вихревых токов. Причины региональных и локальных аномалий – горные породы, обладающие повышенными магнитными свойствами. Эти породы, находясь в магнитном поле Земли, намагничиваются и создают добавочное магнитное поле.

Магнитные свойства в той или иной степени присущи всем горным породам. При помещении какой-либо породы в магнитное поле каждый элемент ее объема приобретает намагниченность. Способность вещества менять свою намагниченность под воздействием внешнего магнитного поля называется магнитной восприимчивостью. В зависимости от числового значения и знака магнитной восприимчивости все природные вещества делятся на три группы: диамагнитные, парамагнитные, ферромагнитные. При этом для диамагнитных веществ магнитная восприимчивость отрицательная, а для парамагнитных и ферромагнитных – положительная.

У диамагнитных веществ (кварц, мрамор, графит, медь, золото, серебро, свинец, вода и др.) намагниченность пропорциональна напряженности магнитного поля и направлена навстречу ему. Диамагнитные вещества вызывают ослабление магнитного поля Земли и способствуют образованию отрицательных магнитных аномалий.

У парамагнитных веществ (метаморфические и изверженные породы, щелочные металлы и др.) намагниченность также пропорциональна напряженности магнитного поля, но в отличие от диамагнитных имеет одинаковое с ним направление. У ферромагнитных веществ (железо, никель, кобальт и др.) намагниченность значительно больше, чем у диа- и парамагнитных веществ, не пропорциональна напряженности магнитного толя, сильно зависит от температуры и «магнитной предыстории» вещества.

Основной вклад в создание аномалий магнитного поля вносят ферромагнитные.минералы (магнетит, титаномагнетит, ильменит и др.) и содержащие их гордые породы. поскольку в целом магнитная восприимчивость горных пород изменяется в больших пределах (.в миллионы раз), то интенсивность аномалий магнитного поля варьирует также в широких пределах.

Переменное магнитное поле Земли. Источники переменного магнитного поля находятся за пределами земного пространства. По своему происхождению они представляют собой токи индукционного характера, возникающие в высоких слоях атмосферы (от ста до нескольких тысяч километров). Образуются индукционные токи истечением плазмы – потоком заряженных частиц обоего знака (корпускул), летящих от Солнца. Проникая в магнитное поле Земли, корпускулы захватываются им и вызывают ряд сложных явлений, таких, как ионизация атмосферы, полярные сияния, образование радиационных поясов Земли и др.

Переменное магнитное поле накладывается на главное магнитное поле Земли и обусловливает различные его вариации во времени. Одни из них происходят плавно, подчиняются определенной закономерности. Это так называемые периодические (невозмущенные) вариации. Другие имеют беспорядочный характер, параметры геомагнитного поля (периоды, амплитуды, фазы) непрерывно и резко меняют свое значение.

Солнечно-суточные вариации представляют собой изменения элементов земного магнетизма с периодом, равным продолжительности солнечных суток. Солнечно-суточные вариации элементов земного магнетизма зависят от времени года и географической широты, поскольку они определяются интенсивностью ультрафиолетовых лучей Солнца и, следовательно, положением Земли по отношению к Солнцу. При этом характерно, что фазы колебаний и по широте, и по времени года остаются практически неизменными, меняются в основном амплитуды колебания.

Лунно-суточные вариации элементов земного магнетизма связаны с положением Луны по отношению к горизонту и обусловлены воздействием силы тяжести Луны на земную атмосферу. Лунно-суточные вариации элементов земного магнетизма небольшие – составляют всего 10–15 % солнечно-суточных вариаций.

К возмущенным непериодическим колебаниям относится магнитные бури. Одна из их характерных особенностей – внезапность появления. На фоне довольно спокойного магнитного поля, почти в один и тот же момент на всем земном шаре, все элементы земного магнетизма внезапно меняют свои значения, и дальнейший ход бури претерпевает очень быстрые и непрерывные изменения.

По интенсивности (по величине амплитуды) магнитные бури принято делить на слабые, умеренные и большие. Амплитуды элементов земного магнетизма во время очень больших магнитных бурь достигают для магнитного склонения нескольких градусов, для вертикальной и горизонтальной составляющих –2 –4 А/м и более. Интенсивность бурь возрастает от низких геомагнитных широт к высоким. Продолжительность бурь обычно составляет несколько суток. Частота и сила магнитных бурь зависит от солнечной активности.

В последние годы ученые стали извлекать практическую пользу из магнитных бурь, получив возможность с их помощью «прощупывать» Землю до больших глубин. Способ исследования недр Земли с использованием магнитных возмущений называется магнитно-теллурическим зондированием, так как здесь одновременно рассматриваются магнитные возмущения и теллурические (т. е. земные) токи, вызванные ими в Земле. В результате магнитно-теллурического зондирования установлено, что па глубине 300–400 км электропроводность Земли резко увеличивается. До этих глубин Земля практически является изолятором.

Большинство планет Солнечной системы в той или иной степени обладают магнитными полями.
Специальный раздел геофизики, изучающий происхождение и природу магнитного поля Земли называется геомагнетизмом. Геомагнетизм рассматривает проблемы возникновения и эволюции основной, постоянной составляющей геомагнитного поля, природа переменной составляющей (примерно 1% от основного поля), а так же структура магнитосферы – самых верхних намагниченных плазменных слоев земной атмосферы, взаимодействующих с солнечным ветром и защищающих Землю от космического проникающего излучения. Важной задачей является изучение закономерностей вариаций геомагнитного поля, поскольку они обусловлены внешними воздействиями, связанными в первую очередь с солнечной активностью.

Это может быть удивительно, но сегодня нет единой точки зрения на механизм возникновения магнитного поля планет, хотя почти общепризнанной является гипотеза магнитного гидродинамо, основанная на признании существования токопроводящего жидкого внешнего ядра. Тепловая конвекция, то есть перемешивание вещества во внешнем ядре, способствует образованию кольцевых электрических токов. Скорость перемещения вещества в верхней части жидкого ядра будет несколько меньше, а нижних слоев – больше относительно мантии в первом случае и твердого ядра – во втором. Подобные медленные течения вызывают формирование кольцеобразных (тороидальных) замкнутых по форме электрических полей, не выходящих за пределы ядра. Благодаря взаимодействию тороидальных электрических полей с конвективными течениями во внешнем ядре возникает суммарное магнитное поле дипольного характера, ось которого примерно совпадает с осью вращения Земли. Для “запуска” подобного процесса необходимо начальное, хотя бы очень слабое, магнитное поле, которое может генерироваться гиромагнитным эффектом, когда вращающееся тело намагничивается в направлении оси его вращения.

Не последнюю роль играет и солнечный ветер – поток заряжённых частиц, в основном протонов и электронов, идущих от Солнца. Для Земли солнечный ветер представляет собой поток заряженных частиц постоянного направления, а это не что иное, как электрический ток.

Согласно определению направления тока он направлен в сторону, противоположную движению отрицательно заряженных частиц (электронов), т.е. от Земли к Солнцу. Частицы образующие солнечный ветер, обладающие массой и зарядом, увлекаются верхними слоями атмосферы в сторону вращения Земли. В 1958 году был открыт радиационный пояс Земли. Это огромная зона в космосе, охватывающая Землю в области экватора. В радиационном поясе основными носителями зарядов являются электроны. Их плотность на 2 – 3 порядка превышает плотность других носителей зарядов. И таким образом существует электрический ток вызванный направленным круговым движением частиц солнечного ветра, увлекаемых круговым движением Земли, порождающий электромагнитное “вихревое” поле.

Следует отметить, что магнитный поток, вызванный током солнечного ветра, пронизывает и вращающийся вместе с Землей поток раскаленной лавы внутри нее. В результате этого взаимодействия в ней наводится электродвижущая сила, под действием которой течет ток, который так же создает магнитное поле. Вследствие этого магнитное поле Земли является результирующим полем от взаимодействия тока ионосферы и тока лавы.

Реально существующая картина магнитного поля Земли зависит не только от конфигурации токового слоя, но и от магнитных свойств земной коры, а так же от относительного расположения магнитных аномалий. Здесь можно провести аналогию с контуром с током при наличии ферромагнитного сердечника и без него. Известно, что ферромагнитный сердечник не только меняет конфигурацию магнитного поля, но и значительно усиливает его.

Достоверно установлено что магнитное поле Земли реагирует на солнечную активность, однако если связывать возникновение магнитного поля планет только с токовыми слоями в жидком ядре, взаимодействующими с солнечным ветром, то можно сделать заключение, что планеты солнечной системы, имеющие одинаковое направление вращения, должны иметь одинаковое направление магнитных полей. Однако, например, Юпитер опровергает это утверждение.

Интересно, что при взаимодействии солнечного ветра с возбужденным магнитным полем Земли, на Землю действует вращающий момент, направленный в сторону вращения Земли. Таким образом, Земля относительно солнечного ветра проявляет себя аналогично двигателю постоянного тока с самовозбуждением. Источником энергии (генератором) в данном случае является Солнце. Поскольку и магнитное поле, и вращающий момент, действующий на землю, зависят от тока Солнца, а последний от степени солнечной активности, то при увеличении солнечной активности должен увеличиваться вращающий момент, действующий на Землю и увеличиваться скорость ее вращения.

Составляющие геомагнитного поля

Собственное магнитное поле Земли (геомагнитное поле) можно разделить на cледующие три основные части – основное (внутреннее) магнитное поле Земли , включая мировые аномалии, магнитные поля локальных областей внешних оболочек, переменное (внешнее) магнитное поле Земли.

1. ОСНОВНОЕ МАГНИТНОЕ ПОЛЕ ЗЕМЛИ (внутреннее) , испытывающее медленные изменения во времени (вековые вариации) с периодами от 10 до 10 000 лет, сосредоточенными в интервалах 10–20, 60–100, 600–1200 и 8000 лет. Последний связан с изменением дипольного магнитного момента в 1,5–2 раза.

Магнитные силовые линии, созданные на компьютерной модели геодинамо, показывают, насколько структура магнитного поля Земли проще за ее пределами, чем внутри ядра (спутанные трубочки в центре). На поверхности Земли большая часть линий магнитного поля выходит изнутри (длинные желтые трубочки) у Южного полюса и входит внутрь (длинные голубые трубочки) около Северного.

Большинство людей обычно не задумываются, почему стрелка компаса показывает на север или юг. Но магнитные полюса планеты не всегда располагались так, как сегодня.

Исследования минералов показывают, что магнитное поле Земли за 4-5 млрд. лет существования планеты меняло свою ориентацию с севера на юг и обратно сотни раз. Однако в течение последних 780 тыс. лет ничего подобного не происходило, несмотря на то, что средний период смены магнитных полюсов – 250 тыс. лет. Кроме того, геомагнитное поле ослабло почти на 10% с тех пор, как оно впервые было измерено в 30-х гг. XIX в. (т.е. почти в 20 раз быстрее, чем если бы, лишившись источника энергии, оно снизило свою силу естественным путем). Грядет ли следующая смена полюсов?

Источник колебаний магнитного поля спрятан в центре Земли. Наша планета, подобно другим телам Солнечной системы, создает свое магнитное поле с помощью внутреннего генератора, принцип работы которого такой же, как и обычного электрического, преобразующего кинетическую энергию своих движущихся частиц в электромагнитное поле. В электрогенераторе движение происходит в витках катушки, а внутри планеты или звезды – в проводящей жидкой субстанции. Огромная масса расплавленного железа объемом в 5 раз больше Луны циркулирует в сердцевине Земли, образуя так называемое геодинамо.

За последние десять лет ученые разработали новые подходы к исследованию работы геодинамо и его магнитных свойств. Спутники передают четкие моментальные фотоснимки геомагнитного поля на поверхности Земли, а современные методы компьютерного моделирования и созданные в лабораториях физические модели помогают интерпретировать данные орбитальных наблюдений. Проведенные эксперименты натолкнули ученых на новое объяснение того, как происходила переполяризация в прошлом и как она может начаться в будущем.

Во внутреннем строении Земли выделяется расплавленное внешнее ядро, где сложная турбулентная конвекция генерирует геомагнитное поле.

Энергия геодинамо

Что же приводит в действие геодинамо. К 40-м гг. прошлого столетия физики признавали три необходимых условия образования магнитного поля планеты, и последующие научные построения исходили из данных положений. Первое условие – большой объем электропроводящей жидкой массы, насыщенной железом, образующей внешнее ядро Земли. Под ним расположено внутреннее ядро Земли, состоящее почти из чистого железа, а над ним – 2900 км твердых пород плотной мантии и тонкой земной коры, образующей континенты и ложе океана. Давление на ядро, создаваемое земной корой и мантией, в 2 млн. раз выше, чем на поверхности Земли. Температура ядра также крайне высока – около 5000о по Цельсию, как и температура поверхности Солнца.

Вышеописанные параметры экстремальной среды предопределяют второе требование к работе геодинамо: необходимость источника энергии для приведения в движение жидкой массы. Внутренняя энергия отчасти термального, отчасти химического происхождения создает внутри ядра условия выталкивания. Ядро больше разогревается внизу, чем наверху. (Высокие температуры “замурованы” внутри него со времен образования Земли.) Это означает, что более разогретая, менее плотная металлическая составляющая ядра стремится вверх. Когда жидкая масса достигает верхних слоев, она теряет часть своего тепла, отдавая его вышележащей мантии. Затем жидкое железо остывает, становясь плотнее, чем окружающая масса, и опускается. Процесс перемещения тепла путем поднятия и опускания жидкой массы получил название тепловой конвекции.

Третье необходимое условие поддержания магнитного поля – вращение Земли. Возникающая при этом сила Кориолиса отклоняет движение поднимающейся жидкой массы внутри Земли так же, как она поворачивает океанические течения и тропические циклоны, вихри перемещения которых видны на космических снимках. В центре Земли сила Кориолиса закручивает поднимающуюся жидкую массу в штопор или спираль, подобно оторвавшейся пружине.

Земля обладает насыщенной железом жидкой массой, сосредоточенной в ее центре, энергией, достаточной для поддержания конвекции, и силой Кориолиса, закручивающей конвекционные потоки. Данный фактор крайне важен для поддержания работы геодинамо на протяжении миллионов лет. Но нужны новые знания, чтобы ответить на вопрос о том, как образуется магнитное поле и почему время от времени полюса меняются местами.

Переполяризация

Ученые давно задавались вопросом, почему магнитные полюса Земли время от времени меняются местами. Последние исследования вихревых перемещений расплавленных масс внутри Земли позволяют понять, как происходит переполяризация.

Магнитное поле, значительно интенсивнее и сложнее поля ядра, внутри которого и образуются магнитные колебания, было обнаружено на границе мантии и ядра. Возникающие в сердцевине электротоки препятствуют непосредственным измерениям его магнитного поля.

Важно, что большая часть геомагнитного поля образуется только в четырех обширных областях на границе ядра и мантии. Хотя геодинамо продуцирует очень сильное магнитное поле, только 1% его энергии распространяется за пределами ядра. Общая конфигурация магнитного поля, измеренного на поверхности, носит название диполя, который большую часть времени ориентирован по земной оси вращения. Как и в поле линейного магнита, основной геомагнитный поток направлен от центра Земли в Южном полушарии и к центру – в Северном. (Стрелка компаса указывает на северный географический полюс, поскольку рядом находится южный магнитный полюс диполя.) Космические наблюдения показали, что магнитный поток имеет неравномерное глобальное распределение, наибольшая напряженность прослеживается на Антарктическом побережье, под Северной Америкой и Сибирью.

Ульрих Кристенсен (Ulrich R. Christensen) из Научно-исследовательского института Солнечной системы Макса Планка в Катленбурге-Линдау, Германия, считает, что эти обширные участки земли существуют тысячи лет и поддерживаются постоянно развивающейся конвекцией внутри ядра. Могут ли аналогичные явления быть причиной смены полюсов? Историческая геология свидетельствует, что смены полюсов происходили в относительно короткие промежутки времени – от 4 тыс. до 10 тыс. лет. Если бы геодинамо прекратило свою работу, то диполь существовал бы еще 100 тыс. лет. Быстрая же смена полярности дает основание полагать, что некое неустойчивое положение нарушает первоначальную полярность и вызывает новую смену полюсов.

В отдельных случаях таинственная неустойчивость может объясняться некоторым хаотическим изменением структуры магнитного потока, которое лишь случайно приводит к переполяризации. Однако частота смены полярности, проявляющаяся все более устойчиво за последние 120 млн. лет, говорит о возможности внешнего регулирования. Одной из причин его может быть перепад температуры в нижнем слое мантии, и вследствие этого – изменение в характере излияний ядра.

Некоторые симптомы переполяризации были выявлены при анализе карт, которые были сделаны со спутников Magsat и Oersted. Готье Гюло (Gauthier Hulot) и его коллеги из Парижского геофизического института отметили, что длительные изменения геомагнитного поля возникают на границе ядра и мантии в тех местах, где направление геомагнитного потока обратно нормальному для данного полушария. Наибольший из так называемых участков обратного магнитного поля протянулся из южной оконечности Африки на запад к Южной Америке. На данном участке магнитный поток направлен внутрь, к ядру, в то время как большая часть его в Южном полушарии направлена из центра.

Районы, где магнитное поле направлено в противоположную для данного полушария сторону, возникают при случайном прорыве закрученных и петляющих линий магнитного поля за пределы ядра Земли. Участки обратного магнитного поля могут существенно ослабить магнитное поле на поверхности Земли, называемое диполем, и свидетельствовать о начале смены земных полюсов. Они появляются, когда поднимающаяся жидкая масса проталкивает горизонтальные магнитные линии вверх в расплавленном внешнем ядре. Такое конвективное излияние иногда закручивает и выдавливает магнитную линию (а). Одновременно силы вращения Земли вызывают винтовую циркуляцию расплава, которая может затянуть петлю на выдавленной магнитной линии (б). Когда выталкивающая сила достаточно велика, чтобы выбросить петлю из ядра, на границе ядро-мантия образуется пара участков магнитного потока.

Самое серьезное открытие, сделанное при сравнении последних измерений, полученных с Oersted, и проведенных в 1980 г., заключалось в том, что новые участки обратного магнитного поля продолжают формироваться, например, на границе ядро-мантия под восточным побережьем Северной Америки и Арктикой. Более того, ранее выявленные участки выросли и немного сдвинулись в сторону полюсов. В конце 80-х гг. XX в. Дэвид Габбинс (David Gubbins) из Лидского университета в Англии, изучая старые карты геомагнитного поля, отметил, что распространение, рост и смещение в сторону полюсов участков обратного магнитного поля объясняет снижение силы диполя в историческом времени.

Согласно теоретическим положениям о силовых магнитных линиях, возникающие в жидкой среде ядра под действием силы Кориолиса малые и большие вихри закручивают силовые линии в узел. Каждый поворот собирает все больше силовых линий в ядре, усиливая таким образом энергию магнитного поля. Если процесс продолжается беспрепятственно, то магнитное поле усиливается бесконечно. Однако электрическое сопротивление рассеивает и выравнивает витки силовых линий настолько, чтобы остановить самопроизвольный рост магнитного поля и продолжить воспроизводство внутренней энергии.

Участки с интенсивным магнитным нормальным и обратным полем формируются на границе ядро-мантия, где малые и большие завихрения взаимодействуют с магнитными полями восточно-западного направления, описываемыми как тороидальные, которые проникают внутрь ядра. Турбулентные жидкостные перемещения могут закручивать линии тороидальных полей в петли, называемые полоидальными полями, имеющими ориентацию север-юг. Иногда закручивание происходит при поднятии текучей массы. Если такое излияние достаточно мощно, то вершина полоидальной петли выталкивается из ядра (см. врезку слева). В результате такого выталкивания образуются два участка, на которых петля пересекает границу ядро-мантия. На одном из них возникает направление магнитного потока, совпадающее с общим направлением поля диполя в данном полушарии; на другом же участке поток направлен противоположно.

Когда вращение относит участок обратного магнитного поля ближе к географическому полюсу, чем участок с нормальным потоком, наблюдается ослабление диполя, который наиболее уязвим вблизи своих полюсов. Таким образом можно объяснить обратное магнитное поле на юге Африки. При глобальном наступлении смены полюсов участки обратного магнитного поля могут разрастаться по всему региону вблизи географических полюсов.

Контурные карты магнитного поля Земли на границе ядро-мантия, составленные по измерениям, сделанным со спутника, показывают, что большая часть магнитного потока направлена от центра Земли в Южном полушарии и к центру в Северном. Но в некоторых районах складывается обратная картина. Участки обратного магнитного поля росли в числе и размерах между 1980 и 2000 г. Если они заполонят все пространство у обоих полюсов, то может произойти переполяризация.

Модели cмены полюсов

На картах магнитного поля представлено, как при нормальной полярности большая часть магнитного потока направлена от центра Земли (желтый цвет) в Южном полушарии и к ее центру (голубой цвет) в Северном (а). Начало переполяризации отмечается появлением нескольких ареалов обратного магнитного поля (голубой цвет в Южном полушарии и желтый в Северном), напоминающих об образовании его участков на границе ядро-мантия. Приблизительно за 3 тыс. лет они уменьшили напряженность поля диполя, которое сменилось более слабым, но более сложным переходным полем на границе ядро-мантия (б). Смена полюсов стала частым явлением через 6 тыс. лет, когда на границе ядро-мантия стали преобладать участки обратного магнитного поля (в). К этому времени полная смена полюсов проявилась и на поверхности Земли. Но только еще через 3 тыс. лет произошла полная замена диполя, включая ядро Земли (г).

Что же происходит с внутренним магнитным полем сегодня?

Большинство из нас знает, что географические полюса постоянно совершают сложные петлеобразные движения в направлении суточного вращения Земли (прецессия оси с периодом периодом в 25776 лет). Обычно эти перемещения протекают вблизи воображаемой оси вращения Земли и не приводят к заметному изменению климата. Подробнее о смещении полюсов. Hо мало кто обратил внимание, что в конце 1998 года общая составляющая этих перемещений сместилась. В течении месяца полюс сместился в сторону Канады на 50 километров. В настоящее время северный полюс “ползет” вдоль 120 параллели западной долготы. Можно предположить, что если нынешняя тенденция в перемещении полюсов продолжится до 2010, то северный полюс может сместиться на 3-4 тысячи километров. Конечная точка дрейфа – Большие Медвежьи озера в Канаде. Южный полюс, соответственно, сместится из центра Антарктиды к Индийскому океану.

Смещение магнитных полюсов регистрируется с 1885 г. За последние 100 лет магнитный полюс в южном полушарии переместился почти на 900 км и вышел в Индийский океан. Новейшие данные по состоянию арктического магнитного полюса (движущегося по направлению к Восточно-Сибирской мировой магнитной аномалии через Ледовитый океан): показали что с 1973 по 1984 гг.его пробег составил 120 км, с 1984 по 1994 гг. – более 150 км. Характерно, что эти данные расчетные, но они подтвердились конкретными замерами и северного магнитного полюса По данным на начало 2002-го года скорость дрейфа северного магнитного полюса увеличилась с 10 км/год в 70-х годах, до 40 км/год в 2001-м году.

Кроме того, падает напряжённость земного магнитного поля, причём весьма неравномерно. Так, за последние 22 года она уменьшилась в среднем на 1,7 процента, а в некоторых регионах – например, в южной части Атлантического океана, – на 10 процентов. Впрочем кое-где на нашей планете напряжённость магнитного поля, вопреки общей тенденции, даже слегка возросла.

Подчеркнем, что ускорение движения полюсов (в среднем на 3 км/год за десятилетие) и движение их по коридорам инверсии магнитных полюсов (более 400 палеоинверсий позволили выявить эти коридоры) заставляет подозревать нас о том, что в данном перемещении полюсов следует усматривать не экскурс, а переполюсовку магнитного поля Земли.

Ускорение может довести перемещение полюсов до 200 км в год, так что инверсия осуществится гораздо быстрее, чем это предполагается исследователями далекими от профессиональных оценок реальных процессов переполюсовки.

В истории Земли изменения положения географических полюсов происходили неоднократно, и с этим явлением, в первую очередь, связывают оледенение обширных областей суши и кардинальные перемены климата всей планеты. Но отголоски в человеческой истории получила только последняя катастрофа, скорее всего связанная со сдвигом полюсов, произошедшая около 12-ти тысяч лет назад. Все мы знаем – Мамонты вымерли. Но всё было гораздо серьёзнее.

Исчезновении сотен видов животных не подлежит сомнению. О Всемирном Потопе и Гибели Атлантиды ведутся дискуссии. Но одно несомненно – отголоски величайшей катастрофа на памяти человечества имеют под собой реальную основу. И вызвана, скорее всего, смещением полюсов всего на 2000 км.

На модели ниже представлены магнитное поле внутри ядра (пучок силовых линий в центре) и появление диполя (длинные изогнутые линии) за 500 лет (а) до середины переполяризации (б) магнитного диполя и спустя 500 лет на этапе ее завершения (в).

Магнитное поле геологического прошлого Земли

За последние 150 млн. лет переполяризация происходила сотни раз, о чем свидетельствуют минералы, намагниченные полем Земли во время разогрева горных пород. Затем породы остыли, а минералы сохранили прежнюю магнитную ориентацию.

Шкалы инверсий магнитного поля: I – за последние 5 млн. лет; II – за последние 55 млн. лет. Черный цвет – нормальная намагниченность, белый цвет – обратная намагниченность (по У.У. Харленду и др., 1985)

Инверсии магнитного поля – это смена знака осей симметричного диполя. В 1906 году Б. Брюн, измеряя магнитные свойства неогеновых, сравнительно молодых лав в центральной Франции, обнаружил, что их намагниченность противоположна по направлению современному геомагнитному полю, то есть Северный и Южный магнитные полюса как бы поменялись местами. Наличие обратно намагниченных горных пород является следствием не каких-то необычных условий в момент ее образования, а результатом инверсии магнитного поля Земли в данный момент. Обращение полярности геомагнитного поля – важнейшее открытие в палеомагнитологии, позволившее создать новую науку магнитостратиграфию, изучающую расчленение отложений горных пород на основе их прямой или обращенной намагниченности. И главное здесь заключается в доказательстве синхронности этих обращений знака в пределах всего земного шара. В таком случае в руках геологов оказывается весьма действенный метод корреляции отложений и событий.

В реальном магнитном поле Земли время, в течение которого происходит изменение знака полярности, может быть как коротким, вплоть до тысячи лет, так и составлять миллионы лет.
Временные интервалы преобладания какой-либо одной полярности получили название геомагнитных эпох, и части из них присвоены имена выдающихся геомагнитологов Брюнесса, Матуямы, Гаусса и Гильберта. В пределах эпох выделяются меньшие по длительности интервалы той или иной полярности, называемые геомагнитными эпизодами. Наиболее эффектно выявление интервалов прямой и обратной полярности геомагнитного поля было проведено для молодых в геологическом смысле лавовых потоков в Исландии, Эфиопии и других местах. Недостаток этих исследований заключается в том, что процесс излияния лав был прерывистым процессом, поэтому вполне возможен пропуск какого-либо магнитного эпизода.

Когда появилась возможность по отобранным породам одного возраста, но взятым на разных континентах, определять положение палеомагнитных полюсов интересующего нас временного интервала, то оказалось, что вычисленный осредненный полюс, скажем, по верхнеюрским породам (170 – 144 млн. лет) Северной Америки и такой же полюс по таким же породам Европы будут находиться в разных местах. Получалось как бы два Северных полюса, чего при дипольной системе быть не может. Для того чтобы Северный полюс был один,следовало изменить положение континентов на поверхности Земли. В нашем случае это означало сближение Европы и Северной Америки до совпадения их бровок шельфа, то есть до глубин океана примерно в 200 м. Иными словами, двигаются не полюсы, а континенты.

Применение палеомагнитного метода позволило осуществить детальные реконструкции раскрытия относительно молодых Атлантического, Индийского, Северного Ледовитого океанов и понять историю развития более древнего Тихого океана. Современное расположение континентов – это результат раскола суперконтинента Пангея, начавшегося около 200 млн. лет тому назад. Линейное магнитное поле океанов дает возможность определить скорость движения плит, а его рисунок дает наилучшую информацию для проведения геодинамического анализа.

Благодаря палеомагнитным исследованиям установили, что раскол Африки и Антарктиды произошел 160 млн. лет назад. Наиболее древние аномалии с возрастом 170 млн. лет (средняя юра) обнаружены по краям Атлантики у берегов Северной Америки и Африки. Это и есть время начала распада суперматерика. Южная Атлантика возникла 120 – 110 млн. лет назад, а Северная значительно позже (80 – 65 млн. лет назад) и т.д. Подобные примеры можно привести по любому из океанов и, как бы “читая” палеомагнитную летопись, реконструировать историю их развития и перемещение литосферных плит.

Мировые аномалии – отклонения от эквивалентного диполя до 20% напряженности отдельных областей с характерными размерами до10 000 км. Эти аномальные поля испытывают вековые вариации, приводящие к изменениям со временем в течение многих лет и столетий. Примеры аномалий: Бразильская, Канадская, Сибирская, Курская. В ходе вековых вариаций мировые аномалии смещаются, распадаются и возникают вновь. На низких широтах имеется западный дрейф по долготе со скоростью 0,2° в год.

2. МАГНИТНЫЕ ПОЛЯ ЛОКАЛЬНЫХ ОБЛАСТЕЙ внешних оболочек с протяженностью от нескольких до сотен км. Они обусловлены намагниченностью горных пород в верхнем слое Земли, слагающих земную кору и расположенных близко к поверхности. Одна из наиболее мощных – Курская магнитная аномалия.

3. ПЕРЕМЕННОЕ МАГНИТНОЕ ПОЛЕ ЗЕМЛИ (так же называемое внешним) определяется источниками в виде токовых систем, находящимися за пределами земной поверхности и в ее атмосфере. Основными источниками таких полей и их изменений являются корпускулярные потоки замагниченной плазмы, приходящие от Солнца вместе с солнечным ветром, и формирующие структуру и форму земной магнитосферы.

Прежде всего видно, что эта структура имеет «слоистую» форму. Однако иногда можно наблюдать «разрыв» верхних слоев, очевидно, происходящий под влиянием усиления солнечного ветра. Например как здесь:

При этом от скорости и плотности Солнечного ветра в такой момент зависит степень величины «нагрева», отражается в цветовой гамме от желтого до фиолетового, что в действительности отражает величину давления на магнитное поле в этой зоне (правый верхий рисунок).

Структура магнитного поля земной атмосферы (внешнего магнитного поля Земли)

Земное магнитное поле находится под воздействием потока намагниченной солнечной плазмы. В результате взаимодействия с полем Земли образуется внешняя граница околоземного магнитного поля, называемая магнитопаузой . Она ограничивает земную магнитосферу. Из-за воздействия солнечных корпускулярных потоков размеры и форма магнитосферы постоянно меняются, и возникает переменное магнитное поле, определяемое внешними источниками. Его переменность обязана своим происхождением токовым системам, развивающимся на различных высотах от нижних слоев ионосферы до магнитопаузы. Изменения магнитного поля Земли во времени, вызванные различными причинами, называются геомагнитными вариациями, которые различаются как по своей длительности, так и по локализации на Земле и в ее атмосфере.

Магнитосфера – область околоземного космического пространства, контролируемая магнитным полем Земли. Магнитосфера формируется в результате взаимодействия солнечного ветра с плазмой верхних слоев атмосферы и магнитным полем Земли. По форме магнитосфера представляет собой каверну и длинный хвост, которые повторяют форму магнитных силовых линий. Подсолнечная точка в среднем находится на расстоянии 10 земных радиусов, а хвост магнитосферы простирается за орбиту Луны. Топология магнитосферы определяется областями вторжения солнечной плазмы внутрь магнитосферы и характером токовых систем.

Хвост магнитосферы образован силовыми линиями магнитного поля Земли, выходящими из полярных областей и вытянутых под действием солнечного ветра на сотни земных радиусов от Солнца в ночную сторону Земли. В итоге плазма солнечного ветра и солнечных корпускулярных потоков как бы обтекают земную магнитосферу, придавая ей своеобразную хвостатую форму.
В хвосте магнитосферы, на больших расстояниях от Земли, напряженность магнитного поля Земли, а следовательно и их защитные свойства, ослабляются, и некоторые частицы солнечной плазмы получают возможность проникнуть и попасть во внутрь земной магнитосферы и магнитных ловушек радиационных поясов. Проникая в головную часть магнитосферы в область овалов полярных сияний под действием изменяющегося давления солнечного ветра и межпланетного поля, хвост служит местом формирования потоков высыпающихся частиц, вызывающих полярные сияния и авроральные токи. Магнитосфера отделена от межпланетного пространства магнитопаузой. Вдоль магнитопаузы частицы корпускулярных потоков обтекают магнитосферу. Влияние солнечного ветра на земное магнитное поле иногда бывает очень сильным. Магнитопауза – внешняя граница магнитосферы Земли (или планеты), на которой динамическое давление солнечного ветра уравновешивается давлением собственного магнитного поля. При типичных параметрах солнечного ветра подсолнечная точка удалена от центра Земли на 9–11 земных радиусов. В период магнитных возмущений на Земле магнитопауза может заходить за геостационарную орбиту (6,6 радиусов Земли). При слабом солнечном ветре подсолнечная точка находится на расстоянии 15–20 радиусов Земли.

Геомагнитные вариации

Изменение магнитного поля Земли во времени под действием различных факторов называются геомагнитными вариациями. Разность между наблюдаемой величиной напряженности магнитного поля и средним ее значением за какой-либо длительный промежуток времени, например, месяц или год, называется геомагнитной вариацией. Согласно наблюдениям, геомагнитные вариации непрерывно изменяются во времени, причем такие изменения часто носят периодический характер.

Cуточные вариации геомагнитного поля возникают регулярно в основном за счет токов в ионосфере Земли, вызванных изменениями освещенности земной ионосферы Солнцем в течение суток.

Суточная геомагнитная вариация за период 19.03.2010 12:00 по 21.03.2010 00:00

Магнитное поле Земли описывается семью параметрами. Для измерения земного магнитного поля в любой точке, мы должны измерить направление и напряжённость поля. Параметры, описывающие направление магнитного поля: склонение (D), наклонение (I). D и I измеряются в градусах. Напряженность общего поля (F) описывается горизонтальной компонентой (H), вертикальной компонентой (Z) и северной (X) и восточной (Y) компонентами горизотальной напряженности. Эти комопненты могут быть измерены в Эрстедах (1 Эрстед=1 гауссу), но обычно – в наноТеслах (1нТ х 100 000 = 1 эрстеду).

Нерегулярные вариации магнитного поля возникают вследствие воздействия потока солнечной плазмы (солнечного ветра) на магнитосферу Земли, а так же изменений внутри магнитосферы и взаимодействия магнитосферы с ионосферой.

На рисунке ниже видны (слева направо) изображения текущих – магнитного поля, давления, конвекционных потоков в ионосфере, а также графики изменения величин скорости и плотности солнечного ветра (V, Dens) и величин вертикальной и восточной компонент внешнего магнитного поля Земли.

27-дневные вариации существуют как тенденция к повторению увеличения геомагнитной активности через каждые 27 дней, соответствующих периоду вращения Солнца относительно земного наблюдателя. Эта закономерность связана с существованием долгоживущих активных областей на Солнце, наблюдаемых в течении нескольких оборотов Солнца. Эта закономерность проявляется в виде 27-дневной повторяемости магнитной активности и магнитных бурь.

Сезонные вариации магнитной активности уверенно выявляются на основании среднемесячных данных о магнитной активности, полученных путем обработки наблюдений за несколько лет. Их амплитуда увеличивается с ростом общей магнитной активности. Найдено, что сезонные вариации магнитной активности имеют два максимума, соответствующие периодам равноденствий, и два минимума, соответствующие периодам солнцестояний. Причиной этих вариаций является образование активных областей на Солнце, которые группируются в зонах от 10 до 30° северной и южной гелиографических широт. Поэтому в периоды равноденствий, когда плоскости земного и солнечного экваторов совпадают, Земля наиболее подвержена действию активных областей на Солнце.

11-летние вариации. Наиболее ярко связь между солнечной активностью и магнитной активностью проявляется при сопоставлении длинных рядов наблюдений, кратных 11 летним периодам солнечной активности. Наиболее известной мерой солнечной активности является число солнечных пятен. Найдено, что в годы максимального количества солнечных пятен магнитная активность также достигает наибольшей величины, однако возрастание магнитной активности несколько запаздывает по отношению к росту солнечной, так что в среднем это запаздывание составляет один год.

Вековые вариации – медленные вариации элементов земного магнетизма с периодами от нескольких лет и более. В отличии от суточных, сезонных, и других вариаций внешнего происхождения, вековые вариации связаны с источниками, лежащими внутри земного ядра. Амплитуда вековых вариаций достигает десятков нТл/год, изменения среднегодовых значений таких элементов, названы вековым ходом. Изолинии вековых вариаций концентрируются вокруг нескольких точек – центры или фокусы векового хода, в этих центрах величина векового хода достигает максимальных значений.

Магнитная буря – влияние на организм человека

Локальные характеристики магнитного поля изменяются и колеблются иногда в течение многих часов, а потом восстанавливаются до прежнего уровня. Это явление называется магнитной бурей. Магнитные бури часто начинаются внезапно и одновременно по всему земному шару.

Ударная волна солнечного ветра через сутки после вспышки на Солнце достигает орбиты Земли и начинается магнитная буря. Тяжелобольные явно реагируют с первых часов после вспышки на Солнце, остальные – с момента начала бури на Земле. Общее для всех – изменение биоритмов в эти часы. Число случаев инфаркта миокарда увеличивается на следующий день после вспышки (примерно в 2 раза больше по сравнению с магнитоспокойными днями). В этот же день начинается магнитосферная буря, вызванная вспышкой. У абсолютно здоровых – активируется иммунная система, может быть увеличение работоспособности, улучшение настроения.

Примечание: геомагнитный штиль, продолжающийся подряд несколько дней или больше, действует на организм городского жителя, по многим параметрам, как и буря – угнетающе, вызывая депрессию и ослабление иммунитета. Лёгкий “дребезг” магнитного поля в пределах Кр = 0 – 3 помогает легче переносить перепады атмосферного давления и других метеофакторов.

Принята следущая градация величин Kp-индекса:

Kp = 0-1 – геoмaгнитнaя oбстaнoвкa спoкoйнaя (штиль);

Kp = 1-2 – геoмaгнитнaя oбстaнoвкa oт спoкoйнoй дo слaбoвoзмущеннoй;

Kp = 3-4 – oт слaбoвoзмущеннoй дo вoзмущеннoй;

Kp = 5 и выше – слабая магнитная буря (уровень G1);

Kp = 6 и выше – средняя магнитная буря (уровень G2);

Kp = 7 и выше – сильная магнитная буря (уровень G3); возможны аварии, ухудшение самочувствия у метеозависимых людей

Kp = 8 и выше – очень сильная магнитная буря (уровень G4);

Kp = 9 – экстремально сильная магнитная буря (уровень G5) – максимально возможная величина.

Он-лайн наблюдение за состоянием магнитосферы и магнитными бурями здесь:

В результате многочисленных исследований, проводившихся в Институте космических исследований (ИКИ), Институте земного магнетизма, ионосферы и распространения радиоволн (ИЗМИРАН), Медицинской академии им. И.М. Сеченова и Института медико-биологических проблем РАН, выяснилось, что во время геомагнитных бурь у пациентов с патологией сердечно- сосудистой системы, особенно у перенесших инфаркт миокарда, подскакивало артериальное давление, заметно увеличивалась вязкость крови, замедлялась скорость ее течения в капиллярах, изменялся сосудистый тонус и активизировались стрессорные гормоны.

В организме некоторых здоровых людей тоже происходили изменения, но они вызывали в основном усталость, ослабление внимания, головные боли, головокружения и серьезной опасности не представляли. Несколько сильнее на изменения реагировал организм космонавтов: у них возникали аритмии и изменялся сосудистый тонус. Эксперименты на орбите также показали, что на состояние человека негативно влияют именно электромагнитные поля, а не другие факторы, которые действуют на Земле, но исключены в космосе. Кроме того, была выявлена еще одна “группа риска” – здоровые люди с перенапряженной адаптационной системой, связанной с воздействием дополнительного стресса (в данном случае – невесомости, также влияющей на сердечно-сосудистую систему).

Исследователи пришли к выводу, что геомагнитные бури вызывают такой же адаптационный стресс, как и резкая смена часовых поясов, сбивающая биологические суточные ритмы человека. Внезапные вспышки на Солнце и прочие проявления солнечной активности резко меняют относительно регулярные ритмы геомагнитного поля Земли, что вызывает у животных и у людей сбой их собственных ритмов и порождает адаптационный стресс.

Здоровые люди с ним справляются относительно легко, но для людей с патологией сердечно-сосудистой системы, с перенапряженной адаптационной системой и для новорожденных он потенциально опасен.

Предвидеть ответную реакцию невозможно. Все зависит от многих факторов: от состояния человека, от характера бури, от частотного спектра электромагнитных колебаний и т.д. Пока неизвестно, как изменения геомагнитного поля влияют на биохимические и биофизические процессы, происходящие в организме: что представляют собой приемники геомагнитных сигналов-рецепторов, реагирует ли человек на воздействие электромагнитное излучение всем организмом, отдельными органами или даже отдельными клетками. В настоящее время с целью изучения влияния солнечной активности на людей открывается лаборатория гелиобиологии в Институте космических исследований.

9. Н.В.Короновский. МАГНИТНОЕ ПОЛЕ ГЕОЛОГИЧЕСКОГО ПРОШЛОГО ЗЕМЛИ // Московский государственный университет им. М.В.Ломоносова. Соросовский Образовательный Журнал, N5, 1996, cтр. 56-63

Работа по физике

Ученика 10 класса А

Школы №1202

Круглова Егора

Магнитное поле

В XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле. По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды (токи) . Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства

Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только направления вектора но и его модуля.

Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl :

Это соотношение принято называть законом Ампера.

В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (Тл).

Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно 0,5·10–4 Тл. Большой лабораторный электромагнит может создать поле не более 5 Тл.

Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки: если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.

Правило левой руки и правило буравчика.

Линии магнитной индукции полей постоянного магнита и катушки с током



Понравилась статья? Поделитесь с друзьями!