Математик Перельман Яков: вклад в науку. Известный российский математик Григорий Перельман

ИГРА РАЗУМА

Еще недавно математика не сулила ни славы, ни богатства своим «жрецам». Им даже Нобелевскую премию не давали. Нет такой номинации. Ведь, по весьма популярной легенде, жена Нобеля однажды изменила ему с математиком. И в отместку богач лишил всю их крючкотворную братию своего уважения и призовых денег.

Ситуация изменилась в 2000 году. Частный математический Институт Клэя (Clay Mathematics Institute) выбрал семь наиболее трудных задач. И пообещал за решение каждой платить по миллиону долларов. На математиков посмотрели с уважением. В 2001 году на экраны даже вышел фильм «Игры разума», главным героем которого стал математик.

Ныне только далекие от цивилизации люди не в курсе: один из обещанных миллионов - самый первый - уже присужден. Приза удостоен российский гражданин, житель Санкт-Петербурга Григорий Перельман за решение гипотезы Пуанкаре , которая его стараниями стала теоремой. 44-летний бородач утер нос всему миру. И теперь продолжает держать его - мир - в напряжении. Поскольку неизвестно, возьмет ли математик честно заслуженный миллион долларов или откажется. Прогрессивная общественность во многих странах натурально волнуется. По крайней мере газеты всех континентов ведут хронику финансово-математической интриги.

И на фоне этих увлекательных занятий - гаданий и дележа чужих денег - как-то потерялся смысл достижения Перельмана. Президент Института Клэя Джим Карлсон, конечно, заявлял в свое время, мол, цель призового фонда - не столько поиск ответов, сколько попытка повысить престиж математической науки и заинтересовать ею молодых людей. Но все-таки в чем суть?

ГИПОТЕЗА ПУАНКАРЕ - ЭТО ЧТО?

Загадка, разгаданная российским гением, затрагивает основы раздела математики, именуемого топологией. Ее - топологию - часто называют «геометрией на резиновом листе». Она имеет дело со свойствами геометрических форм, которые сохраняются, если форма растягивается, скручивается, изгибается. Иными словами, деформируется без разрывов, разрезов и склеек.

Топология важна для математической физики, поскольку позволяет понять свойства пространства. Или оценить его, не имея возможности взглянуть на форму этого пространства со стороны. Например, на нашу Вселенную.

Объясняя про гипотезу Пуанкаре, начинают так: представьте себе двухмерную сферу - возьмите резиновый диск и натяните его на шар. Так, чтобы окружность диска оказалась собранной в одной точке. Аналогичным образом, к примеру, можно стянуть шнуром спортивный рюкзак. В итоге получится сфера: для нас - трехмерная, но с точки зрения математики - всего лишь двухмерная.

Затем предлагают натянуть тот же диск на бублик. Вроде бы получится. Но края диска сойдутся в окружность, которую уже не стянуть в точку - она разрежет бублик.

Как написал в своей популярной книге другой российский математик, Владимир Успенский , «в отличие от двухмерных сфер трехмерные сферы недоступны нашему непосредственному наблюдению, и нам представить себе их так же трудно, как Василию Ивановичу из известного анекдота квадратный трехчлен».

Так вот, согласно гипотезе Пуанкаре, трехмерная сфера - это единственная трехмерная штуковина, поверхность которой может быть стянута в одну точку неким гипотетическим «гипершнуром».

Жюль Анри Пуанкаре предположил такое в 1904 году. Теперь Перельман убедил всех понимающих, что французский тополог был прав. И превратил его гипотезу в теорему.

Доказательство помогает понять, какая форма у нашей Вселенной. И позволяет весьма обоснованно предположить, что она и есть та самая трехмерная сфера. Но если Вселенная - единственная «фигура», которую можно стянуть в точку, то, наверное, можно и растянуть из точки. Что служит косвенным подтверждением теории Большого взрыва, которая утверждает: как раз из точки Вселенная и произошла.

Получается, что Перельман вместе с Пуанкаре огорчили так называемых креационистов - сторонников божественного начала мироздания. И пролили воду на мельницу физиков-материалистов.

А В ЭТО ВРЕМЯ

Гений пока не отказался от миллиона долларов

Математик упорно отказывает в общении журналистам. Нашим - совсем: даже голоса не подает. Западным - бросает реплики через закрытую дверь. Мол, отстаньте. Общается гений, похоже, лишь с президентом Института Клэя Джимом Карлсоном .

Сразу же после того как стало известно про миллион долларов Григория Перельмана, Карлсон на вопрос «Что решил гений?» ответил: «Он даст мне знать в свое время». То есть намекнул, что поддерживает с Григорием связь.

На днях от президента поступило новое сообщение. Его донесла до общественности британская газета The Telegraph: «Он сказал, что в какой-то момент сообщит мне о своем решении. Но он не сказал хотя бы приблизительно, когда это будет. Я не думаю, что это будет прямо завтра».

По словам президента, говорил гений сухо, но вежливо. Был краток. В оправдание Перельмана Карлсон заметил: «Не каждый день человек даже в шутку думает о возможности отказаться от миллиона долларов».

КСТАТИ

За что еще дадут миллион долларов

1. Проблема Кука

Нужно определить, может ли проверка правильности решения какой-либо задачи быть более длительной, чем получение самого решения. Эта логическая задача важна для специалистов по криптографии - шифрованию данных.

2. Гипотеза Римана

Существуют так называемые простые числа, например 2, 3, 5, 7 и т. д., которые делятся только сами на себя. Сколько их всего, неизвестно. Риман полагал, что это можно определить и найти закономерность их распределения. Кто найдет - тоже окажет услугу криптографии.

3. Гипотеза Берча и Свиннертон-Дайера

Проблема связана с решением уравнений с тремя неизвестными, возведенными в степени. Нужно придумать, как их решать, независимо от сложности.

4. Гипотеза Ходжа

В ХХ веке математики открыли метод исследования формы сложных объектов. Идея в том, чтобы использовать вместо самого объекта простые «кирпичики», которые склеиваются между собой и образуют его подобие. Нужно доказать, что такое допустимо всегда.

5. Уравнения Навье - Стокса

О них стоит вспомнить в самолете. Уравнения описывают воздушные потоки, которые удерживают его в воздухе. Сейчас уравнения решают приблизительно, по приблизительным формулам. Нужно найти точные и доказать, что в трехмерном пространстве существует решение уравнений, которое всегда верно.

6. Уравнения Янга - Миллса

В мире физики есть гипотеза: если элементарная частица обладает массой, то существует и ее нижний предел. Но какой - непонятно. Нужно до него добраться. Это, пожалуй, самая сложная задачка. Для ее решения необходимо создать «теорию всего» - уравнения, объединяющие все силы и взаимодействия в природе. Тот, кто сумеет, наверняка получит и Нобелевскую премию.

Последним великим достижением чистой математики называют доказательство петербуржцем Григорием Перельманом в 2002–2003 годах гипотезы Пуанкаре, высказанной в 1904 году и гласящей: «всякое связное, односвязное, компактное трехмерное многообразие без края гомеоморфно сфере S 3 ».

В этой фразе имеется несколько терминов, которые я постараюсь объяснить так, чтобы их общий смысл стал понятен нематематикам (я предполагаю, что читатель закончил среднюю школу и кое-что из школьной математики еще помнит).

Начнем с понятия гомеоморфизма, центрального в топологии. Вообще, топологию часто определяют как «резиновую геометрию», т. е. как науку о свойствах геометрических образов, которые не меняются при плавных деформациях без разрывов и склеек, а точнее, при возможности установить между двумя объектами взаимно-однозначное и взаимно-непрерывное соответствие.

Главную идею проще всего объяснить на классическом примере кружки и бублика. Первую можно превратить во второй непрерывной деформацией.

Эти рисунки наглядно показывают, что кружка гомеоморфна бублику, причем этот факт верен как для их поверхностей (двумерных многообразий, называемых тором), так и для заполненных тел (трехмерных многообразий с краем).

Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы.

  1. Трехмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трехмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R 3 , а также любые открытые множества точек в R 3 , к примеру внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т. е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем - у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.
  2. Связное. Понятие связности здесь самое простое. Многообразие связно, если оно состоит из одного куска, или, что то же самое, любые две его точки можно соединить непрерывной линией, не выходящей за его пределы.
  3. Односвязное. Понятие односвязности сложнее. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R 3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.
  4. Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определенные точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

Размерность многообразия - это число степеней свободы у точки, которая на нем «живет». У каждой точки есть окрестность в виде диска соответствующей размерности, т. е. интервала прямой в одномерном случае, круга на плоскости в двумерном, шара в трехмерном и т. д. Одномерных связных многообразий без края с точки зрения топологии всего два: это прямая и окружность. Из них только окружность компактна.

Примером пространства, не являющегося многообразием, может служить, например, пара пересекающихся линий - ведь у точки пересечения двух линий любая окрестность имеет форму креста, у нее нет окрестности, которая была бы сама по себе просто интервалом (а у всех других точек такие окрестности есть). Математики в таких случаях говорят, что мы имеем дело с особым многообразием, у которого есть одна особая точка.

Двумерные компактные многообразия хорошо известны. Если рассматривать только ориентируемые многообразия без края, то они с топологической точки зрения составляют простой, хотя и бесконечный, список: и так далее. Каждое такое многообразие получается из сферы приклеиванием нескольких ручек, число которых называется родом поверхности.

На рисунке изображены поверхности рода 0, 1, 2 и 3. Чем выделяется сфера из всех поверхностей этого списка? Оказывается, односвязностью: на сфере любую замкнутую кривую можно стянуть в точку, а на любой другой поверхности всегда можно указать кривую, которую стянуть в точку по поверхности невозможно.

Любопытно, что и трехмерные компактные многообразия без края можно в некотором смысле классифицировать, т. е. выстроить в некоторый список, хотя не такой прямолинейный, как в двумерном случае, а имеющий довольно сложную структуру. Тем не менее, трехмерная сфера S 3 выделяется в этом списке точно так же, как двумерная сфера в списке, приведенном выше. Тот факт, что любая кривая на S 3 стягивается в точку, доказывается столь же просто, как и в двумерном случае. А вот обратное утверждение, а именно, что это свойство уникально именно для сферы, т. е. что на любом другом трехмерном многообразии есть нестягиваемые кривые, очень трудное и в точности составляет содержание гипотезы Пуанкаре, о которой мы ведем речь.

Важно понимать, что многообразие может жить само по себе, о нем можно мыслить как о независимом объекте, никуда не вложенном. (Представьте себе жизнь двумерных существ на поверхности обычной сферы, не подозревающих о существовании третьего измерения.) К счастью, все двумерные поверхности из приведенного выше списка можно вложить в обычное пространство R 3 , что облегчает их визуализацию. Для трехмерной сферы S 3 (и вообще для любого компактного трехмерного многообразия без края) это уже не так, поэтому необходимы некоторые усилия для того, чтобы понять ее строение.

По-видимому, простейший способ объяснить топологическое устройство трехмерной сферы S 3 - это при помощи одноточечной компактификации. А именно, трехмерная сфера S 3 представляет собой одноточечную компактификацию обычного трехмерного (неограниченного) пространства R 3 .

Поясним эту конструкцию сначала на простых примерах. Возьмем обычную бесконечную прямую (одномерный аналог пространства) и добавим к ней одну «бесконечно удаленную» точку, считая, что при движении по прямой вправо или влево мы в конце концов попадаем в эту точку. С топологической точки зрения нет разницы между бесконечной прямой и ограниченным открытым отрезком (без концевых точек). Такой отрезок можно непрерывно изогнуть в виде дуги, свести поближе концы и вклеить в место стыка недостающую точку. Мы получим, очевидно, окружность - одномерный аналог сферы.

Подобным же образом, если я возьму бесконечную плоскость и добавлю одну точку на бесконечности, к которой стремятся все прямые исходной плоскости, проходимые в любом направлении, то мы получим двумерную (обычную) сферу S 2 . Эту процедуру можно наблюдать при помощи стереографической проекции, которая каждой точке P сферы, за исключением северного полюса N, ставит в соответствие некоторую точку плоскости P".

Таким образом, сфера без одной точки - это топологически все равно, что плоскость, а добавление точки превращает плоскость в сферу.

В принципе, точно такая же конструкция применима и к трехмерной сфере и трехмерному пространству, только для ее осуществления необходим выход в четвертое измерение, и на чертеже это не так просто изобразить. Поэтому я ограничусь словесным описанием одноточечной компактификации пространства R 3 .

Представьте себе, что к нашему физическому пространству (которое мы, вслед за Ньютоном, считаем неограниченным евклидовым пространством с тремя координатами x, y, z) добавлена одна точка «на бесконечности» таким образом, что при движении по прямой в любом направлении вы в нее попадаете (т. е. каждая пространственная прямая замыкается в окружность). Тогда мы получим компактное трехмерное многообразие, которое и есть по определению сфера S 3 .

Легко понять, что сфера S 3 односвязна. В самом деле, любую замкнутую кривую на этой сфере можно немного сдвинуть, чтобы она не проходила через добавленную точку. Тогда мы получим кривую в обычном пространстве R 3 , которая легко стягивается в точку посредством гомотетий, т. е. непрерывного сжатия по всем трем направлениям.

Для понимания, как устроено многообразие S 3 , весьма поучительно рассмотреть его разбиение на два полнотория. Если из пространства R 3 выбросить полноторие, то останется нечто не очень понятное. А если пространство компактифицировать в сферу, то это дополнение превращается тоже в полноторие. То есть сфера S 3 разбивается на два полнотория, имеющих общую границу - тор.

Вот как это можно понять. Вложим тор в R 3 как обычно, в виде круглого бублика, и проведем вертикальную прямую - ось вращения этого бублика. Через ось проведем произвольную плоскость, она пересечет наше полноторие по двум кругам, показанным на рисунке зеленым цветом, а дополнительная часть плоскости разбивается на непрерывное семейство красных окружностей. К их числу относится и центральная ось, выделенная более жирно, потому что в сфере S 3 прямая замыкается в окружность. Трехмерная картина получается из этой двумерной вращением вокруг оси. Полный набор повернутых окружностей заполнит при этом трехмерное тело, гомеоморфное полноторию, только выглядящее необычно.

В самом деле, центральная ось будет в нем осевой окружностью, а остальные будут играть роль параллелей - окружностей, составляющих обычное полноторие.

Чтобы было с чем сравнивать 3-сферу, я приведу еще один пример компактного 3-многообразия, а именно трехмерный тор. Трехмерный тор можно построить следующим образом. Возьмем в качестве исходного материала обычный трехмерный куб:

В нем имеется три пары граней: левая и правая, верхняя и нижняя, передняя и задняя. В каждой паре параллельных граней отождествим попарно точки, получающиеся друг из друга переносом вдоль ребра куба. То есть будем считать (чисто абстрактно, без применения физических деформаций), что, например, A и A" - это одна и та же точка, а B и B" - тоже одна точка, но отличная от точки A. Все внутренние точки куба будем рассматривать как обычно. Сам по себе куб - это многообразие с краем, но после проделанных склеек край замыкается сам на себя и исчезает. В самом деле, окрестностями точек A и A" в кубе (они лежат на левой и правой заштрихованных гранях) служат половинки шаров, которые после склейки граней сливаются в целый шарик, служащий окрестностью соответствующей точки трехмерного тора.

Чтобы ощутить устройство 3-тора исходя из обыденных представлений о физическом пространстве, нужно выбрать три взаимно перпендикулярных направления: вперед, влево и вверх - и мысленно считать, как в фантастических рассказах, что при движении в любом из этих направлений достаточно долгое, но конечное время, мы вернемся в исходную точку, но с противоположного направления. Это тоже «компактификация пространства», но не одноточечная, использованная раньше для построения сферы, а более сложная.

На трехмерном торе есть нестягиваемые пути; например, таковым является отрезок AA" на рисунке (на торе он изображает замкнутый путь). Его нельзя стянуть, потому что при любой непрерывной деформации точки A и A" обязаны двигаться по своим граням, оставаясь строго друг напротив друга (иначе кривая разомкнется).

Итак, мы видим, что бывают односвязные и неодносвязные компактные 3-многообразия. Перельман доказал, что односвязное многообразие ровно одно.

Исходной идеей доказательства является использование так называемого «потока Риччи»: мы берем односвязное компактное 3-многообразие, наделяем его произвольной геометрией (т. е. вводим некоторую метрику с расстояниями и углами), а затем рассматриваем его эволюцию вдоль потока Риччи. Ричард Гамильтон, который высказал эту идею в 1981 году, надеялся, что при такой эволюции наше многообразие превратится в сферу. Оказалось, что это неверно, - в трехмерном случае поток Риччи способен портить многообразие, т. е. делать из него немногообразие (нечто с особыми точками, как в приведенном выше примере пересекающихся прямых). Перельману путем преодоления неимоверных технических трудностей, с использованием тяжелого аппарата уравнений с частными производными, удалось внести поправки в поток Риччи вблизи особых точек таким образом, что при эволюции топология многообразия не меняется, особых точек не возникает, а в конце концов, оно превращается в круглую сферу. Но нужно объяснить, наконец, что же такое этот поток Риччи. Потоки, использованные Гамильтоном и Перельманом, относятся к изменению внутренней метрики на абстрактном многообразии, и это объяснить довольно трудно, поэтому я ограничусь описанием «внешнего» потока Риччи на одномерных многообразиях, вложенных в плоскость.

Представим себе гладкую замкнутую кривую на евклидовой плоскости, выберем на ней направление и рассмотрим в каждой точке касательный вектор единичной длины. Тогда при обходе кривой в выбранном направлении этот вектор будет поворачиваться с какой-то угловой скоростью, которая называется кривизной. В тех местах, где кривая изогнута круче, кривизна (по абсолютной величине) будет больше, а там, где она более плавная, кривизна будет меньше.

Кривизну будем считать положительной, если вектор скорости поворачивает в сторону внутренней части плоскости, разбитой нашей кривой на две части, и отрицательной, если он поворачивает вовне. Это соглашение не зависит от направления обхода кривой. В точках перегиба, где вращение меняет направление, кривизна будет равна 0. Например, окружность радиуса 1 имеет постоянную положительную кривизну, равную 1 (если считать ее в радианах).

Теперь забудем про касательные векторы и к каждой точке кривой прикрепим, наоборот, перпендикулярный ей вектор, по длине равный кривизне в данной точке и направленный вовнутрь, если кривизна положительна, и вовне, если отрицательна, а затем заставим каждую точку двигаться в направлении соответствующего вектора со скоростью, пропорциональной его длине. Вот пример:

Оказывается, что любая замкнутая кривая на плоскости ведет себя при такой эволюции подобным же образом, т. е. превращается, в конце концов, в окружность. Это и есть доказательство одномерного аналога гипотезы Пуанкаре при помощи потока Риччи (впрочем, само утверждение в данном случае и так очевидно, просто способ доказательства иллюстрирует, что происходит в размерности 3).

Заметим в заключение, что рассуждение Перельмана доказывает не только гипотезу Пуанкаре, но и гораздо более общую гипотезу геометризации Тёрстона, которая в известном смысле описывает устройство всех вообще компактных трехмерных многообразий. Но этот предмет лежит уже за рамками настоящей элементарной статьи.

За неимением места, я не буду говорить о неориентируемых многообразиях, примером которых может служить известная бутылка Клейна - поверхность, которую нельзя вложить в пространство без самопересечений.

Фото Н. Четвериковой Последним великим достижением чистой математики называют доказательство петербуржцем Григорием Перельманом в 2002—2003 годах гипотезы Пуанкаре, высказанной в 1904 году и гласящей: «всякое связное, односвязное, компактное трехмерное многообразие без края гомеоморфно сфере S 3 ».

В этой фразе имеется несколько терминов, которые я постараюсь объяснить так, чтобы их общий смысл стал понятен нематематикам (я предполагаю, что читатель закончил среднюю школу и кое-что из школьной математики еще помнит).

Начнем с понятия гомеоморфизма, центрального в топологии. Вообще, топологию часто определяют как «резиновую геометрию», т. е. как науку о свойствах геометрических образов, которые не меняются при плавных деформациях без разрывов и склеек, а точнее, при возможности установить между двумя объектами взаимно-однозначное и взаимно-непрерывное соответствие.

Главную идею проще всего объяснить на классическом примере кружки и бублика. Первую можно превратить во второй непрерывной деформацией: Эти рисунки наглядно показывают, что кружка гомеоморфна бублику, причем этот факт верен как для их поверхностей (двумерных многообразий, называемых тором), так и для заполненных тел (трехмерных многообразий с краем).

Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы.

1. Трехмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трехмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R 3 , а также любые открытые множества точек в R 3 , к примеру внутренность полнотория (бублика). Если рассмотреть замкнутое полно-торие, т. е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем -у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.

2. Связное. Понятие связности здесь самое простое. Многообразие связно, если оно состоит из одного куска, или, что-то же самое, любые две его точки можно соединить непрерывной линией, не выходящей за его пределы.

3. Односвязное. Понятие односвязности сложнее. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R 3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.

4. Компактное. Многообразие компактно, если любой его гомео-морфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определенные точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

Размерность многообразия -это число степеней свободы у точки, которая на нем «живет». У каждой точки есть окрестность в виде диска соответствующей размерности, т. е. интервала прямой в одномерном случае, круга на плоскости в двумерном, шара в трехмерном и т. д. Одномерных связных многообразий без края с точки зрения топологии всего два: это прямая и окружность. Из них только окружность компактна.

Примером пространства, не являющегося многообразием, может служить, например, пара пересекающихся линий — ведь у точки пересечения двух линий любая окрестность имеет форму креста, у нее нет окрестности, которая была бы сама по себе просто интервалом (а у всех других точек такие окрестности есть). Математики в таких случаях говорят, что мы имеем дело с особым многообразием, у которого есть одна особая точка.

Двумерные компактные многообразия хорошо известны. Если рассматривать только ориентируемые 1 многообразия без края, то они с топологической точки зрения составляют простой, хотя и бесконечный, список: и так далее. Каждое такое многообразие получается из сферы приклеиванием нескольких ручек, число которых называется родом поверхности.

1 За неимением места, я не буду говорить о неориентируемых многообразиях, примером которых может служить известная бутылка Клейна — поверхность, которую нельзя вложить в пространство без самопересечений.


На рисунке изображены поверхности рода 0, 1, 2 и 3. Чем выделяется сфера из всех поверхностей этого списка? Оказывается, односвязностью: на сфере любую замкнутую кривую можно стянуть в точку, а на любой другой поверхности всегда можно указать кривую, которую стянуть в точку по поверхности невозможно.

Любопытно, что и трехмерные компактные многообразия без края можно в некотором смысле классифицировать, т. е. выстроить в некоторый список, хотя не такой прямолинейный, как в двумерном случае, а имеющий довольно сложную структуру. Тем не менее, трехмерная сфера S 3 выделяется в этом списке точно так же, как двумерная сфера в списке, приведенном выше. Тот факт, что любая кривая на S 3 стягивается в точку, доказывается столь же просто, как и в двумерном случае. А вот обратное утверждение, а именно, что это свойство уникально именно для сферы, т. е. что на любом другом трехмерном многообразии есть нестягиваемые кривые, очень трудное и в точности составляет содержание гипотезы Пуанкаре, о которой мы ведем речь.

Важно понимать, что многообразие может жить само по себе, о нем можно мыслить как о независимом объекте, никуда не вложенном. (Представьте себе жизнь двумерных существ на поверхности обычной сферы, не подозревающих о существовании третьего измерения.) К счастью, все двумерные поверхности из приведенного выше списка можно вложить в обычное пространство R 3 , что облегчает их визуализацию. Для трехмерной сферы S 3 (и вообще для любого компактного трехмерного многообразия без края) это уже не так, поэтому необходимы некоторые усилия для того, чтобы понять ее строение.

По-видимому, простейший способ объяснить топологическое устройство трехмерной сферы S 3 — это при помощи одноточечной компактифика-ции. А именно, трехмерная сфера S 3 представляет собой одноточечную компактификацию обычного трехмерного (неограниченного) пространства R 3 .

Поясним эту конструкцию сначала на простых примерах. Возьмем обычную бесконечную прямую (одномерный аналог пространства) и добавим к ней одну «бесконечно удаленную» точку, считая, что при движении по прямой вправо или влево мы в конце концов попадаем в эту точку. С топологической точки зрения нет разницы между бесконечной прямой и ограниченным открытым отрезком (без концевых точек). Такой отрезок можно непрерывно изогнуть в виде дуги, свести поближе концы и вклеить в место стыка недостающую точку. Мы получим, очевидно, окружность — одномерный аналог сферы.

Подобным же образом, если я возьму бесконечную плоскость и добавлю одну точку на бесконечности, к которой стремятся все прямые исходной плоскости, проходимые в любом направлении, то мы получим двумерную (обычную) сферу S 2 . Эту процедуру можно наблюдать при помощи стереографической проекции, которая каждой точке P сферы, за исключением северного полюса N, ставит в соответствие некоторую точку плоскости P":

Таким образом, сфера без одной точки — это топологически все равно, что плоскость, а добавление точки превращает плоскость в сферу.

В принципе, точно такая же конструкция применима и к трехмерной сфере и трехмерному пространству, только для ее осуществления необходим выход в четвертое измерение, и на чертеже это не так просто изобразить. Поэтому я ограничусь словесным описанием одноточечной компактификации пространства R 3 .

Представьте себе, что к нашему физическому пространству (которое мы, вслед за Ньютоном, считаем неограниченным евклидовым пространством с тремя координатами x, y, z) добавлена одна точка «на бесконечности» таким образом, что при движении по прямой в любом направлении вы в нее попадаете (т.е. каждая пространственная прямая замыкается в окружность). Тогда мы получим компактное трехмерное многообразие, которое и есть по определению сфера S 3 .

Легко понять, что сфера S 3 односвязна. В самом деле, любую замкнутую кривую на этой сфере можно немного сдвинуть, чтобы она не проходила через добавленную точку. Тогда мы получим кривую в обычном пространстве R 3 , которая легко стягивается в точку посредством гомотетий, т. е. непрерывного сжатия по всем трем направлениям.

Для понимания, как устроено многообразие S 3 , весьма поучительно рассмотреть его разбиение на два полнотория. Если из пространства R 3 выбросить полноторие, то останется нечто не очень понятное. А если пространство компактифицировать в сферу, то это дополнение превращается тоже в полноторие. То есть сфера S 3 разбивается на два полнотория, имеющих общую границу — тор.

Вот как это можно понять. Вложим тор в R 3 как обычно, в виде круглого бублика, и проведем вертикальную прямую — ось вращения этого бублика. Через ось проведем произвольную плоскость, она пересечет наше полноторие по двум кругам, показанным на рисунке зеленым цветом, а дополнительная часть плоскости разбивается на непрерывное семейство красных окружностей. К их числу относится и центральная ось, выделенная более жирно, потому что в сфере S 3 прямая замыкается в окружность. Трехмерная картина получается из этой двумерной вращением вокруг оси. Полный набор повернутых окружностей заполнит при этом трехмерное тело, гомео-морфное полноторию, только выглядящее необычно.

В самом деле, центральная ось будет в нем осевой окружностью, а остальные будут играть роль параллелей — окружностей, составляющих обычное полноторие.

Чтобы было с чем сравнивать 3-сферу, я приведу еще один пример компактного 3-многообразия, а именно трехмерный тор. Трехмерный тор можно построить следующим образом. Возьмем в качестве исходного материала обычный трехмерный куб:

В нем имеется три пары граней: левая и правая, верхняя и нижняя, передняя и задняя. В каждой паре параллельных граней отождествим попарно точки, получающиеся друг из друга переносом вдоль ребра куба. То есть будем считать (чисто абстрактно, без применения физических деформаций), что, например, A и A" - это одна и та же точка, а B и B" - тоже одна точка, но отличная от точки A. Все внутренние точки куба будем рассматривать как обычно. Сам по себе куб-это многообразие с краем, но после проделанных склеек край замыкается сам на себя и исчезает. В самом деле, окрестностями точек A и A" в кубе (они лежат на левой и правой заштрихованных гранях) служат половинки шаров, которые после склейки граней сливаются в целый шарик, служащий окрестностью соответствующей точки трехмерного тора.

Чтобы ощутить устройство 3-тора исходя из обыденных представлений о физическом пространстве, нужно выбрать три взаимно перпендикулярных направления: вперед, влево и вверх — и мысленно считать, как в фантастических рассказах, что при движении в любом из этих направлений достаточно долгое, но конечное время, мы вернемся в исходную точку, но с противоположного направления Это тоже «компактификация пространства», но не одноточечная, использованная раньше для построения сферы, а более сложная.

На трехмерном торе есть нестягиваемые пути; например, таковым является отрезок AA" на рисунке (на торе он изображает замкнутый путь). Его нельзя стянуть, потому что при любой непрерывной деформации точки A и A" обязаны двигаться по своим граням, оставаясь строго друг напротив друга (иначе кривая разомкнется).

Итак, мы видим, что бывают односвязные и неодносвязные компактные 3-многообразия. Перельман доказал, что односвязное многообразие ровно одно.

Исходной идеей доказательства является использование так называемого «потока Риччи»: мы берем односвязное компактное 3-многообразие, наделяем его произвольной геометрией (т.е. вводим некоторую метрику с расстояниями и углами), а затем рассматриваем его эволюцию вдоль потока Риччи. Ричард Гамильтон, который высказал эту идею в 1981 году, надеялся, что при такой эволюции наше многообразие превратится в сферу. Оказалось, что это неверно, — в трехмерном случае поток Риччи способен портить многообразие, т. е. делать из него немногообразие (нечто с особыми точками, как в приведенном выше примере пересекающихся прямых). Перельману путем преодоления неимоверных технических трудностей, с использованием тяжелого аппарата уравнений с частными производными, удалось внести поправки в поток Риччи вблизи особых точек таким образом, что при эволюции топология многообразия не меняется, особых точек не возникает, а в конце концов оно превращается в круглую сферу. Но нужно объяснить наконец, что же такое этот поток Риччи. Потоки, использованные Гамильтоном и Перельманом, относятся к изменению внутренней метрики на абстрактном многообразии, и это объяснить довольно трудно, поэтому я ограничусь описанием «внешнего» потока Риччи на одномерных многообразиях, вложенных в плоскость.

Представим себе гладкую замкнутую кривую на евклидовой плоскости, выберем на ней направление и рассмотрим в каждой точке касательный вектор единичной длины. Тогда при обходе кривой в выбранном направлении этот вектор будет поворачиваться с какой-то угловой скоростью, которая называется кривизной. В тех местах, где кривая изогнута круче, кривизна (по абсолютной величине) будет больше, а там, где она более плавная, кривизна будет меньше.

Кривизну будем считать положительной, если вектор скорости поворачивает в сторону внутренней части плоскости, разбитой нашей кривой на две части, и отрицательной, если он поворачивает вовне. Это соглашение на зависит от направления обхода кривой. В точках перегиба, где вращение меняет направление, кривизна будет равна 0. Например, окружность радиуса 1 имеет постоянную положительную кривизну, равную 1 (если считать ее в радианах).

Теперь забудем про касательные векторы и к каждой точке кривой прикрепим, наоборот, перпендикулярный ей вектор, по длине равный кривизне в данной точке и направленный вовнутрь, если кривизна положительна, и вовне, если отрицательна, а затем заставим каждую точку двигаться в направлении соответствующего вектора со скоростью, пропорциональной его длине. Вот пример:

Оказывается, что любая замкнутая кривая на плоскости ведет себя при такой эволюции подобным же образом, т. е. превращается в конце концов в окружность. Это и есть доказательство одномерного аналога гипотезы Пуанкаре при помощи потока Риччи (впрочем, само утверждение в данном случае и так очевидно, просто способ доказательства иллюстрирует, что происходит в размерности 3).

Заметим в заключение, что рассуждение Перельмана доказывает не только гипотезу Пуанкаре, но и гораздо более общую гипотезу геометризации Тёрстона, которая в известном смысле описывает устройство всех вообще компактных трехмерных многообразий. Но этот предмет лежит уже за рамками настоящей элементарной статьи.

Сергей Дужин,
докт.физ.-мат. наук,
старший научный сотрудник
Санкт-Петербургского отделения
Математического института РАН

Анри Пуанкаре (1854-1912), один из величайших математиков, в 1904 г. сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…

Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре — «это центральная проблема математики и физики , попытка понять какой формы может быть Вселенная , к ней очень трудно подобраться».

Раз в неделю Григорий Перельман ездил в Принстон, чтобы принять участие в семинаре «Института углублённых исследований». На семинаре один из математиков Гарвардского университета отвечает на вопрос Перельмана: «Теория Уильяма Тёрстона (1946-2012 гг., математик, труды в области «Трехмерной геометрии и топологии»), получившая название гипотезы геометризации описывает все возможные трёхмерные поверхности и является шагом вперёд по сравнению с гипотезой Пуанкаре. Если Вы докажете предположение Уильяма Тёрстона, то и гипотеза Пуанкаре распахнёт перед Вами все свои двери и более того её решение изменит весь топологический ландшафт современной науки ».

Шесть ведущих американских университетов в марте 2003 г. приглашают Перельмана прочесть цикл лекций, разъясняющих его работу. В апреле 2003 г. Перельман совершает научное турне. Его лекции становятся выдающимся научным событием. В Принстоне послушать его приезжают Джон Болл (председатель международного математического союза), Эндрю Уайлз (математик, работы в области арифметики эллиптических кривых, доказал теорему Ферма в 1994 г.), Джон Нэш (математик, работающий в области теории игр и дифференциальной геометрии).

Григорию Перельману удалось решить одну из семи задач тысячелетия и математически описать так называемою формулу Вселенной , доказать гипотезу Пуанкаре. Над этой гипотезой наиболее светлые умы бились более 100 лет, и за доказательство которой мировым математическим сообществом (математическим институтом имени Клэя) был обещан $1 млн. Её вручение прошло 8 июня 2010 г. Григорий Перельман не появился на ней, и у мирового математического сообщества «поотпадали челюсти».

В 2006 году за решение гипотезы Пуанкаре математику была присуждена высшая математическая награда - Филдсовская премия (медаль Филдса). Джон Болл лично посетил Санкт-Петербург с тем, чтобы уговорить принять премию. Её он принять отказался со словами: «Общество вряд ли способно всерьёз оценить мою работу ».

«Филдсовская премия (и медаль) вручается один раз в 4 года на каждом международном математическом конгрессе молодым учёным (моложе 40 лет), внёсшим заметный вклад в развитие математики. Помимо медали награждённым вручается 15 тыс. канадских долларов ($13 000)»

В исходной формулировке гипотеза Пуанкаре звучит следующим образом: «Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере». В переводе на общедоступный язык , это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений , а Перельман спустя 100 лет математически это доказал .

Выражение Григория Перельмана теоремы Пуанкаре о преобразовании материи в другое состояние, форму имеет сходство со знаниями, изложенными в книге Анастасии Новых «Сэнсэй IV»: «По факту, вся эта бесконечная для нас Вселенная занимает место в миллиарды раз меньше, чем кончик самой тонкой медицинской иглы» . А также возможностью управления материальной Вселенной путём преобразований, вносимых Наблюдателем из контролирующих измерений выше шестого (с 7 по 72 включительно) (доклад « » тема «Эзоосмическая решётка»).

Григория Перельмана отличали аскетичность жизни, суровость предъявляемых как себе, так и к другим этических требований. Глядя на него складывается ощущение, что он только телесно проживает в общем со всеми остальными современниками пространстве , а Духовно в каком-то ином , где даже за $1 млн. не идут на самые «невинные» компромиссы с Совестью . И что это за пространство такое, и можно ли хоть краешком глаза посмотреть на него?..

Исключительная важность гипотезы , выдвинутой около века назад математиком Пуанкаре , касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания . Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.

Перельман, отвергая медали и премии спрашивает: «А зачем они мне? Они мне совершенно ни к чему. Каждому понятно, если доказательство правильное, то никакого другого признания уже не требуется. Пока во мне не развилась подозрительность, у меня был выбор, либо сказать вслух о дезинтеграции математического сообщества в целом, в связи с его низким моральным уровнем, либо ничего не сказать и позволить обращаться с собой, как с быдлом. Теперь же, когда я стал более чем подозрительным, я не могу оставаться быдлом и продолжать молчать, поэтому мне остаётся только уйти».

Для того чтобы заниматься современной математикой нужно иметь тотально чистый ум, без малейшей примеси, которая дезинтегрирует его, дезориентирует, подменяет ценности, и принять эту премию означает продемонстрировать слабость. Идеальный учёный занимается только наукой, не заботится больше ни о чём (власть и капитал), у него должен быть чистый ум, а для Перельмана нет большей важности, чем жить в соответствии с этим идеалом. Полезно ли для математики вся эта затея с миллионами, и нужен ли настоящему учёному такой стимул? И это желание капитала купить и подчинить себе всё в этом мире разве не оскорбительно? Или можно продать свою чистоту за миллион? Деньги, сколько бы там их ни было, эквивалентны истине Души ? Ведь мы имеем дело с априорной оценкой проблем, к которым деньги просто не должны иметь отношения, разве не так?! Делать же из всего этого что-то вроде лото-миллион, или тотализатор, значит потакать дезинтеграции научного, да и человеческого сообщества в целом (см. доклад и в книге «АллатРа» последние 50 страниц о пути построения созидательного общества). И денежные средства (энергия), которые бизнесмены готовы отдавать на науку, если и надо использовать, то корректно, что ли, не унижая Дух подлинного служения , как ни верти, неоценимого денежным эквивалентом: «Что такое миллион, по сравнению , с чистотой, или Величием тех сфер (об измерениях глобальной Вселенной и о Духовном мире см. книгу «АллатРа» и доклад ) , в которые не способно проникнуть даже человеческое воображение (ум) ?! Что такое миллион звёздного неба для времени?!».

Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы :

- Топология - (от греч. topos - место и logos - учение) - раздел математики, изучающий топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т.к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо - двумя.

- Гомеоморфизм (греч. ομοιο - похожий, μορφη - форма) - взаимно однозначное соответствие между двумя топологическим пространствами, при котором оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения называют гомеоморфными, или топологическими отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типу называются гомеоморфными, или топологически эквивалентными.

- Трёхмерное многообразие без края . Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трёхмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру, внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т.е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем - у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.

- Полното́рие (полното́рий) — геометрическое тело, гомеоморфное произведению двумерного диска и окружности D 2 * S 1 . Неформально, полноторие — бублик, тогда как тор — только его поверхность (пустотелая камера колеса).

- Односвязное . Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.

- Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

Ильназ Башаров

Литература:

Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. ;

Новых. А. «АллатРа», К.: АллатРа, 2013 г.

Теорема Пуанкаре – математическая формула «Вселенной». Григорий Перельман. Часть 1 (из серии «Настоящий Человек в науке»)

Анри Пуанкаре (1854-1912), один из величайших математиков, в 1904 г. сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…

Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре - «это центральная проблема математики и физики , попытка понять какой формы может быть Вселенная , к ней очень трудно подобраться».

Раз в неделю Григорий Перельман ездил в Принстон, чтобы принять участие в семинаре «Института углублённых исследований». На семинаре один из математиков Гарвардского университета отвечает на вопрос Перельмана: «Теория Уильяма Тёрстона (1946-2012 гг., математик, труды в области «Трехмерной геометрии и топологии»), получившая название гипотезы геометризации описывает все возможные трёхмерные поверхности и является шагом вперёд по сравнению с гипотезой Пуанкаре. Если Вы докажете предположение Уильяма Тёрстона, то и гипотеза Пуанкаре распахнёт перед Вами все свои двери и более того её решение изменит весь топологический ландшафт современной науки ».

Шесть ведущих американских университетов в марте 2003 г. приглашают Перельмана прочесть цикл лекций, разъясняющих его работу. В апреле 2003 г. Перельман совершает научное турне. Его лекции становятся выдающимся научным событием. В Принстоне послушать его приезжают Джон Болл (председатель международного математического союза), Эндрю Уайлз (математик, работы в области арифметики эллиптических кривых, доказал теорему Ферма в 1994 г.), Джон Нэш (математик, работающий в области теории игр и дифференциальной геометрии).

Григорию Перельману удалось решить одну из семи задач тысячелетия и математически описать так называемою формулу Вселенной , доказать гипотезу Пуанкаре. Над этой гипотезой наиболее светлые умы бились более 100 лет, и за доказательство которой мировым математическим сообществом (математическим институтом имени Клэя) был обещан $1 млн. Её вручение прошло 8 июня 2010 г. Григорий Перельман не появился на ней, и у мирового математического сообщества «поотпадали челюсти».

В 2006 году за решение гипотезы Пуанкаре математику была присуждена высшая математическая награда - Филдсовская премия (медаль Филдса). Джон Болл лично посетил Санкт-Петербург с тем, чтобы уговорить принять премию. Её он принять отказался со словами: «Общество вряд ли способно всерьёз оценить мою работу».

«Филдсовская премия (и медаль) вручается один раз в 4 года на каждом международном математическом конгрессе молодым учёным (моложе 40 лет), внёсшим заметный вклад в развитие математики. Помимо медали награждённым вручается 15 тыс. канадских долларов ($13 000)»

В исходной формулировке гипотеза Пуанкаре звучит следующим образом: «Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере». В переводе на общедоступный язык, это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений , а Перельман спустя 100 лет математически это доказал .


Выражение Григория Перельмана теоремы Пуанкаре о преобразовании материи в другое состояние, форму имеет сходство со знаниями, изложенными в книге Анастасии Новых «Сэнсэй IV»: «По факту, вся эта бесконечная для нас Вселенная занимает место в миллиарды раз меньше, чем кончик самой тонкой медицинской иглы» . А также возможностью управления материальной Вселенной путём преобразований, вносимых Наблюдателем из контролирующих измерений выше шестого (с 7 по 72 включительно) (доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » тема «Эзоосмическая решётка»).

Григория Перельмана отличали аскетичность жизни, суровость предъявляемых как себе, так и к другим этических требований. Глядя на него складывается ощущение, что он только телесно проживает в общем со всеми остальными современниками пространстве , а Духовно в каком-то ином , где даже за $1 млн. не идут на самые «невинные» компромиссы с Совестью . И что это за пространство такое, и можно ли хоть краешком глаза посмотреть на него?..

Исключительная важность гипотезы, выдвинутой около века назад математиком Пуанкаре, касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания . Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.

Перельман, отвергая медали и премии спрашивает: «А зачем они мне? Они мне совершенно ни к чему. Каждому понятно, если доказательство правильное, то никакого другого признания уже не требуется. Пока во мне не развилась подозрительность, у меня был выбор, либо сказать вслух о дезинтеграции математического сообщества в целом, в связи с его низким моральным уровнем, либо ничего не сказать и позволить обращаться с собой, как с быдлом. Теперь же, когда я стал более чем подозрительным, я не могу оставаться быдлом и продолжать молчать, поэтому мне остаётся только уйти».

Для того чтобы заниматься современной математикой нужно иметь тотально чистый ум, без малейшей примеси, которая дезинтегрирует его, дезориентирует, подменяет ценности, и принять эту премию означает продемонстрировать слабость. Идеальный учёный занимается только наукой, не заботится больше ни о чём (власть и капитал), у него должен быть чистый ум, а для Перельмана нет большей важности, чем жить в соответствии с этим идеалом. Полезно ли для математики вся эта затея с миллионами, и нужен ли настоящему учёному такой стимул? И это желание капитала купить и подчинить себе всё в этом мире разве не оскорбительно? Или можно продать свою чистоту за миллион? Деньги, сколько бы там их ни было, эквивалентны истине Души ? Ведь мы имеем дело с априорной оценкой проблем, к которым деньги просто не должны иметь отношения, разве не так?! Делать же из всего этого что-то вроде лото-миллион, или тотализатор, значит потакать дезинтеграции научного, да и человеческого сообщества в целом (см. доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » и в книге «АллатРа » последние 50 страниц о пути построения созидательного общества). И денежные средства (энергия), которые бизнесмены готовы отдавать на науку, если и надо использовать, то корректно, что ли, не унижая Дух подлинного служения , как ни верти, неоценимого денежным эквивалентом: «Что такое миллион, по сравнению , с чистотой, или Величием тех сфер (об измерениях глобальной Вселенной и о Духовном мире см. книгу «АллатРа » и доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » ), в которые не способно проникнуть даже человеческое воображение (ум) ?! Что такое миллион звёздного неба для времени?!».

Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы :

Топология - (от греч. topos - место и logos - учение) - раздел математики, изучающий топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т.к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо - двумя.

Гомеоморфизм (греч. ομοιο - похожий, μορφη - форма) – взаимно однозначное соответствие между двумя топологическим пространствами, при котором оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения называют гомеоморфными, или топологическими отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типу называются гомеоморфными, или топологически эквивалентными.

Трёхмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трёхмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру, внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т.е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем – у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.

Полното́рие (полното́рий) - геометрическое тело, гомеоморфное произведению двумерного диска и окружности D2 * S1. Неформально, полноторие - бублик, тогда как тор - только его поверхность (пустотелая камера колеса).

Односвязное. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.

Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

Продолжение следует...

Ильназ Башаров

Литература:

– Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. http://allatra-science.org/pub... ;

– Новых. А. «АллатРа», К.: АллатРа, 2013 г. http://schambala.com.ua/book/a... .

– Новых. А., «Сэнсэй-IV», К.: ЛОТОС, 2013 г., 632 c. http://schambala.com.ua/book/s...

– Сергей Дужин, докт.физ.-мат. наук,старший научный сотрудник Санкт- Петербургского отделения Математического института РАН



Понравилась статья? Поделитесь с друзьями!